Wind Farm Layout Optimization Based on Dynamic Opposite Learning-Enhanced Sparrow Search Algorithm

In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a problem that must be solved for wind power gene...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 2024; no. 1
Main Authors Zhu, Yun, Guo, Yahui, Hu, Tianyu, Wu, Chengke, Zhang, Lidong
Format Journal Article
LanguageEnglish
Published Bognor Regis Hindawi 2024
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1155/2024/4322211

Cover

Loading…
Abstract In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a problem that must be solved for wind power generation. Considering the uncertainty of wind farms, we regard wind farm layout optimization (WFLO) as a strongly nonlinear problem. In this paper, we improve the sparrow search algorithm (SSA) using dynamic opposite learning (DOL) strategy. Twenty-eight benchmark test results prove that compared with other algorithms, the improved algorithm DOLSSA has excellent robustness and the ability of searching for a better solution when solving a strongly nonlinear optimization problem, and the DOL strategy effectively improves the shortcomings of the original algorithm which is prone to local optimization and space limitation. In this paper, the authors establish the dynamic rotational coordinates of wind farms and set six different physical scenarios by considering the wind direction and wind speed variables, and the results prove that the performance of DOLSSA is optimal.
AbstractList In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a problem that must be solved for wind power generation. Considering the uncertainty of wind farms, we regard wind farm layout optimization (WFLO) as a strongly nonlinear problem. In this paper, we improve the sparrow search algorithm (SSA) using dynamic opposite learning (DOL) strategy. Twenty-eight benchmark test results prove that compared with other algorithms, the improved algorithm DOLSSA has excellent robustness and the ability of searching for a better solution when solving a strongly nonlinear optimization problem, and the DOL strategy effectively improves the shortcomings of the original algorithm which is prone to local optimization and space limitation. In this paper, the authors establish the dynamic rotational coordinates of wind farms and set six different physical scenarios by considering the wind direction and wind speed variables, and the results prove that the performance of DOLSSA is optimal.
Author Hu, Tianyu
Zhu, Yun
Zhang, Lidong
Guo, Yahui
Wu, Chengke
Author_xml – sequence: 1
  givenname: Yun
  surname: Zhu
  fullname: Zhu, Yun
  organization: School of Electrical EngineeringGuangxi UniversityNanning 530004Chinagxu.edu.cn
– sequence: 2
  givenname: Yahui
  orcidid: 0009-0002-1204-3000
  surname: Guo
  fullname: Guo, Yahui
  organization: School of Electrical EngineeringGuangxi UniversityNanning 530004Chinagxu.edu.cn
– sequence: 3
  givenname: Tianyu
  orcidid: 0000-0003-1717-1810
  surname: Hu
  fullname: Hu, Tianyu
  organization: Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen 518172Chinacas.cn
– sequence: 4
  givenname: Chengke
  orcidid: 0000-0001-9976-1253
  surname: Wu
  fullname: Wu, Chengke
  organization: Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen 518172Chinacas.cn
– sequence: 5
  givenname: Lidong
  orcidid: 0000-0003-2975-460X
  surname: Zhang
  fullname: Zhang, Lidong
  organization: School of Energy and Power EngineeringNortheast Electric Power UniversityJilin 132012Chinaneepu.edu.cn
BookMark eNp9kE9PwkAQxTcGEwG9-QGaeNTK_uu2PaKCmpBwQCO3Zli2dAndrdslBD-9i3Ay0dNM8n5vJu_1UMdYoxC6JviekCQZUEz5gDNKKSFnqEtwnseE8HkHdTETLM5xOr9AvbZdYxw0knbR4kObZTQGV0cT2Nutj6aN17X-Aq-tiR6gVcsoLE97A7WWQW1sq72KJgqc0WYVj0wFRgZq1oBzdhfNgiKraLhZWad9VV-i8xI2rbo6zT56H4_eHl_iyfT59XE4iSVjqY8JByEhRMAglSxzTqTgQoiUpSUhglAushKAiownCrhMF3TJkgyrtMxKBoL10c3xbuPs51a1vljbrTPhZUHzhAuaZhQHih4p6WzbOlUWUvufsN6B3hQEF4cui0OXxanLYLr7ZWqcrsHt_8Jvj3gVyoWd_p_-BjZegtQ
CitedBy_id crossref_primary_10_3390_jmse12101714
crossref_primary_10_1016_j_energy_2024_134154
Cites_doi 10.1023/A:1008202821328
10.1109/ACCESS.2021.3052960
10.1007/s11831-022-09804-w
10.1016/j.energy.2022.125328
10.1145/3437802.3437813
10.1016/j.apenergy.2021.118160
10.1016/j.renene.2022.10.024
10.1109/EI252483.2021.9713451
10.1016/j.engappai.2023.106198
10.1016/j.energy.2022.123188
10.1007/s10546-019-00473-0
10.1007/s11831-023-09887-z
10.1016/j.enconman.2022.116174
10.1088/1742-6596/1452/1/012072
10.1016/j.jweia.2021.104548
10.1016/j.enconman.2022.115347
10.1155/2021/5556780
10.1016/j.knosys.2019.104966
10.1016/j.renene.2021.10.032
10.1088/1742-6596/1820/1/012147
10.1016/j.egyr.2021.12.022
10.1016/j.resourpol.2022.102816
10.1016/j.apenergy.2020.115090
10.1016/j.eneco.2022.105945
10.1016/j.enconman.2021.115047
10.1016/j.energy.2020.118310
10.1080/21642583.2019.1708830
10.1007/s00521-021-05963-2
10.1016/j.enconman.2022.115639
10.1016/j.renene.2022.12.063
10.1016/j.dibe.2020.100033
10.1111/j.0006-341X.2003.00125.x
10.1016/j.heliyon.2023.e14784
10.19912/j.0254-0096.tynxb.2020-1302
10.3390/app12147332
10.1016/j.energy.2022.124845
10.1016/j.energy.2023.126787
10.1109/ICCICT50803.2021.9510032
10.3233/jifs-169453
10.1109/jestie.2022.3218257
10.1016/j.energy.2019.07.019
10.1016/j.ecmx.2022.100307
10.1016/j.engappai.2022.105778
10.5267/j.ijiec.2015.8.004
10.1007/s10462-019-09768-7
10.1016/j.renene.2023.04.032
10.1016/j.isatra.2022.06.014
10.1016/j.energy.2020.119214
10.1016/j.eswa.2014.08.006
10.1109/JAS.2023.123387
10.1109/tevc.2007.894200
10.1109/PSGEC54663.2022.9881060
10.1016/j.enconman.2021.114610
10.1109/ICNN.1995.488968
10.1016/j.seta.2022.102239
10.3390/app11209746
10.1016/j.asoc.2023.110306
10.1016/j.eswa.2021.116445
10.1109/4235.985692
ContentType Journal Article
Copyright Copyright © 2024 Yun Zhu et al.
Copyright © 2024 Yun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2024 Yun Zhu et al.
– notice: Copyright © 2024 Yun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
F28
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
L7M
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOI 10.1155/2024/4322211
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
Editor Okbaz, Abdulkeri
Editor_xml – sequence: 1
  givenname: Abdulkeri
  surname: Okbaz
  fullname: Okbaz, Abdulkeri
ExternalDocumentID 10_1155_2024_4322211
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  grantid: JSGG20220831105800002
– fundername: Guangxi Innovation-Driven Development Project
  grantid: AA19254034
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARAPS
ATCPS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.Y3
24P
31~
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABDPE
ABEML
ACBWZ
ACCMX
ACRPL
ACSCC
ACXQS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEUYN
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AIURR
ALUQN
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
CMOOK
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
M59
PALCI
PHGZM
PHGZT
RIWAO
RJQFR
RNS
ROL
SAMSI
VH1
7SP
7ST
7TB
7TN
8FD
8FE
8FG
ABUWG
AZQEC
C1K
DWQXO
F1W
F28
FR3
GNUQQ
H96
KR7
L.G
L6V
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c337t-14a6ca2020acecf941c64666737f11612468faa26845ea4c7b2d3580e7f8f3a63
IEDL.DBID RHX
ISSN 0363-907X
IngestDate Fri Jul 25 10:39:35 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Sun Jul 06 05:02:28 EDT 2025
Sun Jun 02 18:52:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-14a6ca2020acecf941c64666737f11612468faa26845ea4c7b2d3580e7f8f3a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1717-1810
0000-0001-9976-1253
0009-0002-1204-3000
0000-0003-2975-460X
OpenAccessLink https://dx.doi.org/10.1155/2024/4322211
PQID 2954627820
PQPubID 996365
ParticipantIDs proquest_journals_2954627820
crossref_citationtrail_10_1155_2024_4322211
crossref_primary_10_1155_2024_4322211
hindawi_primary_10_1155_2024_4322211
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2024
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_11_30_2
e_1_2_11_55_2
e_1_2_11_57_2
e_1_2_11_13_2
e_1_2_11_34_2
e_1_2_11_51_2
e_1_2_11_11_2
e_1_2_11_32_2
e_1_2_11_53_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_48_2
e_1_2_11_29_2
Liang J. J. (e_1_2_11_60_2) 2013
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
e_1_2_11_24_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_17_2
e_1_2_11_15_2
e_1_2_11_36_2
e_1_2_11_59_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_31_2
e_1_2_11_54_2
e_1_2_11_56_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_12_2
e_1_2_11_52_2
e_1_2_11_10_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_26_2
e_1_2_11_3_2
Jeevanantham P. (e_1_2_11_33_2) 2022; 1
e_1_2_11_47_2
e_1_2_11_1_2
e_1_2_11_49_2
e_1_2_11_44_2
e_1_2_11_46_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_40_2
e_1_2_11_61_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
e_1_2_11_16_2
e_1_2_11_14_2
e_1_2_11_58_2
e_1_2_11_37_2
e_1_2_11_18_2
e_1_2_11_39_2
References_xml – ident: e_1_2_11_56_2
  doi: 10.1023/A:1008202821328
– ident: e_1_2_11_35_2
  doi: 10.1109/ACCESS.2021.3052960
– ident: e_1_2_11_34_2
  doi: 10.1007/s11831-022-09804-w
– ident: e_1_2_11_40_2
  doi: 10.1016/j.energy.2022.125328
– ident: e_1_2_11_29_2
  doi: 10.1145/3437802.3437813
– ident: e_1_2_11_2_2
  doi: 10.1016/j.apenergy.2021.118160
– ident: e_1_2_11_8_2
  doi: 10.1016/j.renene.2022.10.024
– ident: e_1_2_11_32_2
  doi: 10.1109/EI252483.2021.9713451
– ident: e_1_2_11_22_2
  doi: 10.1016/j.engappai.2023.106198
– ident: e_1_2_11_6_2
  doi: 10.1016/j.energy.2022.123188
– ident: e_1_2_11_47_2
  doi: 10.1007/s10546-019-00473-0
– ident: e_1_2_11_26_2
  doi: 10.1007/s11831-023-09887-z
– volume: 1
  start-page: 1
  year: 2022
  ident: e_1_2_11_33_2
  article-title: Sparrow search algorithm based cluster head selection in wsn
  publication-title: International Journal of Recent Trends in Computer Science and Applications
– ident: e_1_2_11_18_2
  doi: 10.1016/j.enconman.2022.116174
– ident: e_1_2_11_48_2
  doi: 10.1088/1742-6596/1452/1/012072
– ident: e_1_2_11_11_2
  doi: 10.1016/j.jweia.2021.104548
– ident: e_1_2_11_17_2
  doi: 10.1016/j.enconman.2022.115347
– ident: e_1_2_11_36_2
  doi: 10.1155/2021/5556780
– ident: e_1_2_11_51_2
  doi: 10.1016/j.knosys.2019.104966
– ident: e_1_2_11_12_2
  doi: 10.1016/j.renene.2021.10.032
– ident: e_1_2_11_27_2
  doi: 10.1088/1742-6596/1820/1/012147
– ident: e_1_2_11_28_2
  doi: 10.1016/j.egyr.2021.12.022
– ident: e_1_2_11_4_2
  doi: 10.1016/j.resourpol.2022.102816
– ident: e_1_2_11_9_2
  doi: 10.1016/j.apenergy.2020.115090
– ident: e_1_2_11_1_2
  doi: 10.1016/j.eneco.2022.105945
– ident: e_1_2_11_16_2
  doi: 10.1016/j.enconman.2021.115047
– ident: e_1_2_11_14_2
  doi: 10.1016/j.energy.2020.118310
– ident: e_1_2_11_25_2
  doi: 10.1080/21642583.2019.1708830
– ident: e_1_2_11_52_2
  doi: 10.1007/s00521-021-05963-2
– ident: e_1_2_11_37_2
  doi: 10.1016/j.enconman.2022.115639
– ident: e_1_2_11_49_2
  doi: 10.1016/j.renene.2022.12.063
– ident: e_1_2_11_42_2
  doi: 10.1016/j.dibe.2020.100033
– ident: e_1_2_11_61_2
  doi: 10.1111/j.0006-341X.2003.00125.x
– ident: e_1_2_11_41_2
  doi: 10.1016/j.heliyon.2023.e14784
– ident: e_1_2_11_46_2
  doi: 10.19912/j.0254-0096.tynxb.2020-1302
– ident: e_1_2_11_38_2
  doi: 10.3390/app12147332
– ident: e_1_2_11_7_2
  doi: 10.1016/j.energy.2022.124845
– ident: e_1_2_11_23_2
  doi: 10.1016/j.energy.2023.126787
– ident: e_1_2_11_30_2
  doi: 10.1109/ICCICT50803.2021.9510032
– ident: e_1_2_11_58_2
  doi: 10.3233/jifs-169453
– volume-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization
  year: 2013
  ident: e_1_2_11_60_2
– ident: e_1_2_11_24_2
  doi: 10.1109/jestie.2022.3218257
– ident: e_1_2_11_43_2
  doi: 10.1016/j.energy.2019.07.019
– ident: e_1_2_11_45_2
  doi: 10.1016/j.ecmx.2022.100307
– ident: e_1_2_11_53_2
  doi: 10.1016/j.engappai.2022.105778
– ident: e_1_2_11_55_2
  doi: 10.5267/j.ijiec.2015.8.004
– ident: e_1_2_11_13_2
  doi: 10.1007/s10462-019-09768-7
– ident: e_1_2_11_5_2
  doi: 10.1016/j.renene.2023.04.032
– ident: e_1_2_11_19_2
  doi: 10.1016/j.isatra.2022.06.014
– ident: e_1_2_11_10_2
  doi: 10.1016/j.energy.2020.119214
– ident: e_1_2_11_59_2
  doi: 10.1016/j.eswa.2014.08.006
– ident: e_1_2_11_20_2
  doi: 10.1109/JAS.2023.123387
– ident: e_1_2_11_50_2
  doi: 10.1109/tevc.2007.894200
– ident: e_1_2_11_31_2
  doi: 10.1109/PSGEC54663.2022.9881060
– ident: e_1_2_11_44_2
  doi: 10.1016/j.enconman.2021.114610
– ident: e_1_2_11_54_2
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_11_3_2
  doi: 10.1016/j.seta.2022.102239
– ident: e_1_2_11_15_2
  doi: 10.3390/app11209746
– ident: e_1_2_11_21_2
  doi: 10.1016/j.asoc.2023.110306
– ident: e_1_2_11_39_2
  doi: 10.1016/j.eswa.2021.116445
– ident: e_1_2_11_57_2
  doi: 10.1109/4235.985692
SSID ssj0009917
Score 2.3981535
Snippet In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Clean technology
Electric power generation
Electricity
Layouts
Local optimization
Machine learning
Optimization algorithms
Renewable resources
Search algorithms
Turbines
Wind direction
Wind farms
Wind power
Wind power generation
Wind speed
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LS8MwHA46EfQgPnE6JYd5krB1TdL2JJtuDNEp6nC3kqTpJuzl1iH-9_7Spk4R9VaaEMjr9873IVSuUik9riUJqsonVEhGfMocEIZSBDqCK-aah8K3Hd7u0use69mA29yWVeYyMRXU0USZGHnF5KN4zaC7XUxfiWGNMtlVS6GxitZABPvgfK01mp37hyXsbpBy7qbZSnADe3npO2PG66cVahINjvNNKa0PjDf89vJDOqcqp7WNtqytiOvZ5u6gFT3eRZtfEAT3kHyGUXBLzEb4RrxPFgm-Axkwso8rcQN0VITh4yojnofWtEpLY4ur2ifN8SAtAsCP0xSPEWcFyLg-7MP0k8FoH3VbzafLNrG0CUS5rpcQhwquBEyvKpRWcUAdxSk39J5e7ICBV6Pcj4UwMC9MC6o8WYtMMlR7sR-7grsHqDCejPUhwq4QlLlggVDwu6QfSSYDLxAyhl9xwFgRnefrFiqLKW6oLYZh6lswFppVDu0qF9HZZ-9phqXxS7-y3YJ_upXy_QntxZuHy2Ny9HfzMdowg2XRlBIqJLOFPgH7IpGn9hB9AG2HyuQ
  priority: 102
  providerName: ProQuest
Title Wind Farm Layout Optimization Based on Dynamic Opposite Learning-Enhanced Sparrow Search Algorithm
URI https://dx.doi.org/10.1155/2024/4322211
https://www.proquest.com/docview/2954627820
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UY6IPxs-I4tIHfDKLjLXd9gjKJEbR-BH3trSjAxIYBEaM_73XrvhFjL7t49Zk7bV3v17vdwhVa0QIj0lhB7XEtwkX1PYJdWAxFDyQXZhirkoUvu2w9jO5jmhkSJJmyyF8sHYKnpNzoiICKod3FRRMgfJ29MmtG-jCujokCVgvWpxv__HtN8uz3leQ93WwtARruxJuoy3jEOJGMYI7aEVmu2jzC03gHhIv0AoO-XSEb_jbeJ7jO5joI5NBiZtgiLoYLi6L6vLwVh_FktiQp_bsVtbXkX78ONGki7g4ZYwbw954Osj7o330HLaeLtq2qY1gJ67r5bZDOEs4_F6NJzJJA-IkjDBVw9NLHfDi6oT5KeeKy4VKThJP1Lsq4im91E9dztwDVMrGmTxE2OWcUBfcDALgSvhdQUXgBVyk8CgNKC2js0W_xYkhDlf1K4axBhCUxqqXY9PLZXT6IT0pCDN-kauaIfhDrLIYn9jMrlmsYpOsrpj-jv7XyjHaULfF1kkFlfLpXJ6AM5ELCxQqvLLQWrPVuX-wNCS3tHq9AxQEwo0
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVohyQC1QFQrFBzihiE1s53FAFa_tAgscALG3YDsOW4l9wAYh_lR_Y2ecpFAh6IlbFFs-jMfz8Iy_D2CtKbSOQqu9pGliTygtvVhIH42hVonN8Ihxeih8fBK2L8RhV3Yn4Hf9FobaKmub6Ax1NjR0R75J9agwIHS3H6Nbj1ijqLpaU2iUanFkHx8wZRtvHezh_q4HQWv_fLftVawCnuE8KjxfqNAozPmbyliTJ8I3oQiJ_TLKfYx_AhHGuVKEgiKtEibSQUa1Qhvlcc5VyHHdSfggOE_oRMWtn08gv4lj-HW1UUw6u3WjvZR0xyA2BZU1fP8fFzjVo9z74dcLX-AcXOsTzFaRKdsuVekzTNjBHMw8wyucB32Jq7CWuuuzjnoc3hfsFC1Ov3rKyXbQI2YMP_ZKmnscdT1hllUortfe_qDnWg7Y2cihP7Ky3Zlt31yjsItefwEu3kWcX6AxGA7sV2BcKSE5xjsCszwdZ1rqJEqUzvFXnki5CBu13FJTIZgTkcZN6jIZKVOSclpJeRHW_84elcgdr8xbq7bgP9OW6_1Jq2M-Tp-Ucunt4VWYbp8fd9LOwcnRN_hIC5f3OMvQKO7u7QpGNoX-7tSJwdV76-8fGgAFbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEQgOiFXs-AAnFLVJ7CwHhIC2Yi2IRfQWbMehSHShDUL8Gl_HOHFYhIATtyi2fBiPZ_GM3wPYqFAhfE8JK6zIwKJcMCugzEZjKHioYjxirn4ofNrwDq7pUZM1h-C1eAuj2yoLm5gZ6rgr9R15WdejPEeju5UT0xZxXq3v9B4tzSClK60FnUauIsfq5RnTt8H2YRX3etNx6rWr_QPLMAxY0nX91LIp9yTH_L_CpZJJSG3pUU8zYfqJjbGQQ70g4VwjojDFqfSFE-u6ofKTIHG55-K6wzDiY1ZUKcHIXq1xfvEB-RtmfL9ZpRRT0GbRds-YvnGgZaqLHLb9xSGOtnQm_nz_zTNk7q4-BZMmTiW7uWJNw5DqzMDEJ_TCWRA3uAqp836bnPCX7lNKztD-tM3DTrKH_jEm-FHNSe9xNOsQU8Rgut5ZtU4ra0Agl70MC5Lkzc9k9-EOxZ222nNw_S8CnYdSp9tRC0BczilzMfqhmPOJIBZMhH7IRYK_kpCxRdgq5BZJg2euaTUeoiyvYSzSUo6MlBdh8312L8fx-GHehtmCP6atFPsTmUM_iD5UdOn34XUYQ92NTg4bx8swrtfNL3VWoJT2n9QqhjmpWDP6ROD2v1X4DdSFCv8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Farm+Layout+Optimization+Based+on+Dynamic+Opposite+Learning%E2%80%90Enhanced+Sparrow+Search+Algorithm&rft.jtitle=International+journal+of+energy+research&rft.au=Zhu%2C+Yun&rft.au=Guo%2C+Yahui&rft.au=Hu%2C+Tianyu&rft.au=Wu%2C+Chengke&rft.date=2024&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1155%2F2024%2F4322211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2024_4322211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon