Wind Farm Layout Optimization Based on Dynamic Opposite Learning-Enhanced Sparrow Search Algorithm
In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a problem that must be solved for wind power gene...
Saved in:
Published in | International journal of energy research Vol. 2024; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Hindawi
2024
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0363-907X 1099-114X |
DOI | 10.1155/2024/4322211 |
Cover
Loading…
Abstract | In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a problem that must be solved for wind power generation. Considering the uncertainty of wind farms, we regard wind farm layout optimization (WFLO) as a strongly nonlinear problem. In this paper, we improve the sparrow search algorithm (SSA) using dynamic opposite learning (DOL) strategy. Twenty-eight benchmark test results prove that compared with other algorithms, the improved algorithm DOLSSA has excellent robustness and the ability of searching for a better solution when solving a strongly nonlinear optimization problem, and the DOL strategy effectively improves the shortcomings of the original algorithm which is prone to local optimization and space limitation. In this paper, the authors establish the dynamic rotational coordinates of wind farms and set six different physical scenarios by considering the wind direction and wind speed variables, and the results prove that the performance of DOLSSA is optimal. |
---|---|
AbstractList | In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a problem that must be solved for wind power generation. Considering the uncertainty of wind farms, we regard wind farm layout optimization (WFLO) as a strongly nonlinear problem. In this paper, we improve the sparrow search algorithm (SSA) using dynamic opposite learning (DOL) strategy. Twenty-eight benchmark test results prove that compared with other algorithms, the improved algorithm DOLSSA has excellent robustness and the ability of searching for a better solution when solving a strongly nonlinear optimization problem, and the DOL strategy effectively improves the shortcomings of the original algorithm which is prone to local optimization and space limitation. In this paper, the authors establish the dynamic rotational coordinates of wind farms and set six different physical scenarios by considering the wind direction and wind speed variables, and the results prove that the performance of DOLSSA is optimal. |
Author | Hu, Tianyu Zhu, Yun Zhang, Lidong Guo, Yahui Wu, Chengke |
Author_xml | – sequence: 1 givenname: Yun surname: Zhu fullname: Zhu, Yun organization: School of Electrical EngineeringGuangxi UniversityNanning 530004Chinagxu.edu.cn – sequence: 2 givenname: Yahui orcidid: 0009-0002-1204-3000 surname: Guo fullname: Guo, Yahui organization: School of Electrical EngineeringGuangxi UniversityNanning 530004Chinagxu.edu.cn – sequence: 3 givenname: Tianyu orcidid: 0000-0003-1717-1810 surname: Hu fullname: Hu, Tianyu organization: Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen 518172Chinacas.cn – sequence: 4 givenname: Chengke orcidid: 0000-0001-9976-1253 surname: Wu fullname: Wu, Chengke organization: Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen 518172Chinacas.cn – sequence: 5 givenname: Lidong orcidid: 0000-0003-2975-460X surname: Zhang fullname: Zhang, Lidong organization: School of Energy and Power EngineeringNortheast Electric Power UniversityJilin 132012Chinaneepu.edu.cn |
BookMark | eNp9kE9PwkAQxTcGEwG9-QGaeNTK_uu2PaKCmpBwQCO3Zli2dAndrdslBD-9i3Ay0dNM8n5vJu_1UMdYoxC6JviekCQZUEz5gDNKKSFnqEtwnseE8HkHdTETLM5xOr9AvbZdYxw0knbR4kObZTQGV0cT2Nutj6aN17X-Aq-tiR6gVcsoLE97A7WWQW1sq72KJgqc0WYVj0wFRgZq1oBzdhfNgiKraLhZWad9VV-i8xI2rbo6zT56H4_eHl_iyfT59XE4iSVjqY8JByEhRMAglSxzTqTgQoiUpSUhglAushKAiownCrhMF3TJkgyrtMxKBoL10c3xbuPs51a1vljbrTPhZUHzhAuaZhQHih4p6WzbOlUWUvufsN6B3hQEF4cui0OXxanLYLr7ZWqcrsHt_8Jvj3gVyoWd_p_-BjZegtQ |
CitedBy_id | crossref_primary_10_3390_jmse12101714 crossref_primary_10_1016_j_energy_2024_134154 |
Cites_doi | 10.1023/A:1008202821328 10.1109/ACCESS.2021.3052960 10.1007/s11831-022-09804-w 10.1016/j.energy.2022.125328 10.1145/3437802.3437813 10.1016/j.apenergy.2021.118160 10.1016/j.renene.2022.10.024 10.1109/EI252483.2021.9713451 10.1016/j.engappai.2023.106198 10.1016/j.energy.2022.123188 10.1007/s10546-019-00473-0 10.1007/s11831-023-09887-z 10.1016/j.enconman.2022.116174 10.1088/1742-6596/1452/1/012072 10.1016/j.jweia.2021.104548 10.1016/j.enconman.2022.115347 10.1155/2021/5556780 10.1016/j.knosys.2019.104966 10.1016/j.renene.2021.10.032 10.1088/1742-6596/1820/1/012147 10.1016/j.egyr.2021.12.022 10.1016/j.resourpol.2022.102816 10.1016/j.apenergy.2020.115090 10.1016/j.eneco.2022.105945 10.1016/j.enconman.2021.115047 10.1016/j.energy.2020.118310 10.1080/21642583.2019.1708830 10.1007/s00521-021-05963-2 10.1016/j.enconman.2022.115639 10.1016/j.renene.2022.12.063 10.1016/j.dibe.2020.100033 10.1111/j.0006-341X.2003.00125.x 10.1016/j.heliyon.2023.e14784 10.19912/j.0254-0096.tynxb.2020-1302 10.3390/app12147332 10.1016/j.energy.2022.124845 10.1016/j.energy.2023.126787 10.1109/ICCICT50803.2021.9510032 10.3233/jifs-169453 10.1109/jestie.2022.3218257 10.1016/j.energy.2019.07.019 10.1016/j.ecmx.2022.100307 10.1016/j.engappai.2022.105778 10.5267/j.ijiec.2015.8.004 10.1007/s10462-019-09768-7 10.1016/j.renene.2023.04.032 10.1016/j.isatra.2022.06.014 10.1016/j.energy.2020.119214 10.1016/j.eswa.2014.08.006 10.1109/JAS.2023.123387 10.1109/tevc.2007.894200 10.1109/PSGEC54663.2022.9881060 10.1016/j.enconman.2021.114610 10.1109/ICNN.1995.488968 10.1016/j.seta.2022.102239 10.3390/app11209746 10.1016/j.asoc.2023.110306 10.1016/j.eswa.2021.116445 10.1109/4235.985692 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Yun Zhu et al. Copyright © 2024 Yun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2024 Yun Zhu et al. – notice: Copyright © 2024 Yun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SP 7ST 7TB 7TN 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W F28 FR3 GNUQQ H96 HCIFZ KR7 L.G L6V L7M M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI |
DOI | 10.1155/2024/4322211 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
Editor | Okbaz, Abdulkeri |
Editor_xml | – sequence: 1 givenname: Abdulkeri surname: Okbaz fullname: Okbaz, Abdulkeri |
ExternalDocumentID | 10_1155_2024_4322211 |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Program grantid: JSGG20220831105800002 – fundername: Guangxi Innovation-Driven Development Project grantid: AA19254034 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJCF ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXME ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARAPS ATCPS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HCIFZ HHY HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT .Y3 24P 31~ 8WZ A6W AAMMB AANHP AASGY AAYXX ABDPE ABEML ACBWZ ACCMX ACRPL ACSCC ACXQS ACYXJ ADMLS ADNMO AEFGJ AEUYN AGQPQ AGXDD AI. AIDQK AIDYY AIURR ALUQN ASPBG AVWKF AZFZN BFHJK CITATION CMOOK EJD FEDTE H13 HF~ HVGLF LH4 LW6 M59 PALCI PHGZM PHGZT RIWAO RJQFR RNS ROL SAMSI VH1 7SP 7ST 7TB 7TN 8FD 8FE 8FG ABUWG AZQEC C1K DWQXO F1W F28 FR3 GNUQQ H96 KR7 L.G L6V L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI |
ID | FETCH-LOGICAL-c337t-14a6ca2020acecf941c64666737f11612468faa26845ea4c7b2d3580e7f8f3a63 |
IEDL.DBID | RHX |
ISSN | 0363-907X |
IngestDate | Fri Jul 25 10:39:35 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Sun Jul 06 05:02:28 EDT 2025 Sun Jun 02 18:52:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-14a6ca2020acecf941c64666737f11612468faa26845ea4c7b2d3580e7f8f3a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1717-1810 0000-0001-9976-1253 0009-0002-1204-3000 0000-0003-2975-460X |
OpenAccessLink | https://dx.doi.org/10.1155/2024/4322211 |
PQID | 2954627820 |
PQPubID | 996365 |
ParticipantIDs | proquest_journals_2954627820 crossref_citationtrail_10_1155_2024_4322211 crossref_primary_10_1155_2024_4322211 hindawi_primary_10_1155_2024_4322211 |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2024 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | e_1_2_11_30_2 e_1_2_11_55_2 e_1_2_11_57_2 e_1_2_11_13_2 e_1_2_11_34_2 e_1_2_11_51_2 e_1_2_11_11_2 e_1_2_11_32_2 e_1_2_11_53_2 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_48_2 e_1_2_11_29_2 Liang J. J. (e_1_2_11_60_2) 2013 e_1_2_11_20_2 e_1_2_11_43_2 e_1_2_11_45_2 e_1_2_11_24_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_41_2 e_1_2_11_17_2 e_1_2_11_15_2 e_1_2_11_36_2 e_1_2_11_59_2 e_1_2_11_19_2 e_1_2_11_38_2 e_1_2_11_31_2 e_1_2_11_54_2 e_1_2_11_56_2 e_1_2_11_35_2 e_1_2_11_50_2 e_1_2_11_12_2 e_1_2_11_52_2 e_1_2_11_10_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_26_2 e_1_2_11_3_2 Jeevanantham P. (e_1_2_11_33_2) 2022; 1 e_1_2_11_47_2 e_1_2_11_1_2 e_1_2_11_49_2 e_1_2_11_44_2 e_1_2_11_46_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_40_2 e_1_2_11_61_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_42_2 e_1_2_11_16_2 e_1_2_11_14_2 e_1_2_11_58_2 e_1_2_11_37_2 e_1_2_11_18_2 e_1_2_11_39_2 |
References_xml | – ident: e_1_2_11_56_2 doi: 10.1023/A:1008202821328 – ident: e_1_2_11_35_2 doi: 10.1109/ACCESS.2021.3052960 – ident: e_1_2_11_34_2 doi: 10.1007/s11831-022-09804-w – ident: e_1_2_11_40_2 doi: 10.1016/j.energy.2022.125328 – ident: e_1_2_11_29_2 doi: 10.1145/3437802.3437813 – ident: e_1_2_11_2_2 doi: 10.1016/j.apenergy.2021.118160 – ident: e_1_2_11_8_2 doi: 10.1016/j.renene.2022.10.024 – ident: e_1_2_11_32_2 doi: 10.1109/EI252483.2021.9713451 – ident: e_1_2_11_22_2 doi: 10.1016/j.engappai.2023.106198 – ident: e_1_2_11_6_2 doi: 10.1016/j.energy.2022.123188 – ident: e_1_2_11_47_2 doi: 10.1007/s10546-019-00473-0 – ident: e_1_2_11_26_2 doi: 10.1007/s11831-023-09887-z – volume: 1 start-page: 1 year: 2022 ident: e_1_2_11_33_2 article-title: Sparrow search algorithm based cluster head selection in wsn publication-title: International Journal of Recent Trends in Computer Science and Applications – ident: e_1_2_11_18_2 doi: 10.1016/j.enconman.2022.116174 – ident: e_1_2_11_48_2 doi: 10.1088/1742-6596/1452/1/012072 – ident: e_1_2_11_11_2 doi: 10.1016/j.jweia.2021.104548 – ident: e_1_2_11_17_2 doi: 10.1016/j.enconman.2022.115347 – ident: e_1_2_11_36_2 doi: 10.1155/2021/5556780 – ident: e_1_2_11_51_2 doi: 10.1016/j.knosys.2019.104966 – ident: e_1_2_11_12_2 doi: 10.1016/j.renene.2021.10.032 – ident: e_1_2_11_27_2 doi: 10.1088/1742-6596/1820/1/012147 – ident: e_1_2_11_28_2 doi: 10.1016/j.egyr.2021.12.022 – ident: e_1_2_11_4_2 doi: 10.1016/j.resourpol.2022.102816 – ident: e_1_2_11_9_2 doi: 10.1016/j.apenergy.2020.115090 – ident: e_1_2_11_1_2 doi: 10.1016/j.eneco.2022.105945 – ident: e_1_2_11_16_2 doi: 10.1016/j.enconman.2021.115047 – ident: e_1_2_11_14_2 doi: 10.1016/j.energy.2020.118310 – ident: e_1_2_11_25_2 doi: 10.1080/21642583.2019.1708830 – ident: e_1_2_11_52_2 doi: 10.1007/s00521-021-05963-2 – ident: e_1_2_11_37_2 doi: 10.1016/j.enconman.2022.115639 – ident: e_1_2_11_49_2 doi: 10.1016/j.renene.2022.12.063 – ident: e_1_2_11_42_2 doi: 10.1016/j.dibe.2020.100033 – ident: e_1_2_11_61_2 doi: 10.1111/j.0006-341X.2003.00125.x – ident: e_1_2_11_41_2 doi: 10.1016/j.heliyon.2023.e14784 – ident: e_1_2_11_46_2 doi: 10.19912/j.0254-0096.tynxb.2020-1302 – ident: e_1_2_11_38_2 doi: 10.3390/app12147332 – ident: e_1_2_11_7_2 doi: 10.1016/j.energy.2022.124845 – ident: e_1_2_11_23_2 doi: 10.1016/j.energy.2023.126787 – ident: e_1_2_11_30_2 doi: 10.1109/ICCICT50803.2021.9510032 – ident: e_1_2_11_58_2 doi: 10.3233/jifs-169453 – volume-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization year: 2013 ident: e_1_2_11_60_2 – ident: e_1_2_11_24_2 doi: 10.1109/jestie.2022.3218257 – ident: e_1_2_11_43_2 doi: 10.1016/j.energy.2019.07.019 – ident: e_1_2_11_45_2 doi: 10.1016/j.ecmx.2022.100307 – ident: e_1_2_11_53_2 doi: 10.1016/j.engappai.2022.105778 – ident: e_1_2_11_55_2 doi: 10.5267/j.ijiec.2015.8.004 – ident: e_1_2_11_13_2 doi: 10.1007/s10462-019-09768-7 – ident: e_1_2_11_5_2 doi: 10.1016/j.renene.2023.04.032 – ident: e_1_2_11_19_2 doi: 10.1016/j.isatra.2022.06.014 – ident: e_1_2_11_10_2 doi: 10.1016/j.energy.2020.119214 – ident: e_1_2_11_59_2 doi: 10.1016/j.eswa.2014.08.006 – ident: e_1_2_11_20_2 doi: 10.1109/JAS.2023.123387 – ident: e_1_2_11_50_2 doi: 10.1109/tevc.2007.894200 – ident: e_1_2_11_31_2 doi: 10.1109/PSGEC54663.2022.9881060 – ident: e_1_2_11_44_2 doi: 10.1016/j.enconman.2021.114610 – ident: e_1_2_11_54_2 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_11_3_2 doi: 10.1016/j.seta.2022.102239 – ident: e_1_2_11_15_2 doi: 10.3390/app11209746 – ident: e_1_2_11_21_2 doi: 10.1016/j.asoc.2023.110306 – ident: e_1_2_11_39_2 doi: 10.1016/j.eswa.2021.116445 – ident: e_1_2_11_57_2 doi: 10.1109/4235.985692 |
SSID | ssj0009917 |
Score | 2.3981535 |
Snippet | In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is subject to velocity... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Algorithms Alternative energy sources Clean technology Electric power generation Electricity Layouts Local optimization Machine learning Optimization algorithms Renewable resources Search algorithms Turbines Wind direction Wind farms Wind power Wind power generation Wind speed |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LS8MwHA46EfQgPnE6JYd5krB1TdL2JJtuDNEp6nC3kqTpJuzl1iH-9_7Spk4R9VaaEMjr9873IVSuUik9riUJqsonVEhGfMocEIZSBDqCK-aah8K3Hd7u0use69mA29yWVeYyMRXU0USZGHnF5KN4zaC7XUxfiWGNMtlVS6GxitZABPvgfK01mp37hyXsbpBy7qbZSnADe3npO2PG66cVahINjvNNKa0PjDf89vJDOqcqp7WNtqytiOvZ5u6gFT3eRZtfEAT3kHyGUXBLzEb4RrxPFgm-Axkwso8rcQN0VITh4yojnofWtEpLY4ur2ifN8SAtAsCP0xSPEWcFyLg-7MP0k8FoH3VbzafLNrG0CUS5rpcQhwquBEyvKpRWcUAdxSk39J5e7ICBV6Pcj4UwMC9MC6o8WYtMMlR7sR-7grsHqDCejPUhwq4QlLlggVDwu6QfSSYDLxAyhl9xwFgRnefrFiqLKW6oLYZh6lswFppVDu0qF9HZZ-9phqXxS7-y3YJ_upXy_QntxZuHy2Ny9HfzMdowg2XRlBIqJLOFPgH7IpGn9hB9AG2HyuQ priority: 102 providerName: ProQuest |
Title | Wind Farm Layout Optimization Based on Dynamic Opposite Learning-Enhanced Sparrow Search Algorithm |
URI | https://dx.doi.org/10.1155/2024/4322211 https://www.proquest.com/docview/2954627820 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UY6IPxs-I4tIHfDKLjLXd9gjKJEbR-BH3trSjAxIYBEaM_73XrvhFjL7t49Zk7bV3v17vdwhVa0QIj0lhB7XEtwkX1PYJdWAxFDyQXZhirkoUvu2w9jO5jmhkSJJmyyF8sHYKnpNzoiICKod3FRRMgfJ29MmtG-jCujokCVgvWpxv__HtN8uz3leQ93WwtARruxJuoy3jEOJGMYI7aEVmu2jzC03gHhIv0AoO-XSEb_jbeJ7jO5joI5NBiZtgiLoYLi6L6vLwVh_FktiQp_bsVtbXkX78ONGki7g4ZYwbw954Osj7o330HLaeLtq2qY1gJ67r5bZDOEs4_F6NJzJJA-IkjDBVw9NLHfDi6oT5KeeKy4VKThJP1Lsq4im91E9dztwDVMrGmTxE2OWcUBfcDALgSvhdQUXgBVyk8CgNKC2js0W_xYkhDlf1K4axBhCUxqqXY9PLZXT6IT0pCDN-kauaIfhDrLIYn9jMrlmsYpOsrpj-jv7XyjHaULfF1kkFlfLpXJ6AM5ELCxQqvLLQWrPVuX-wNCS3tHq9AxQEwo0 |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVohyQC1QFQrFBzihiE1s53FAFa_tAgscALG3YDsOW4l9wAYh_lR_Y2ecpFAh6IlbFFs-jMfz8Iy_D2CtKbSOQqu9pGliTygtvVhIH42hVonN8Ihxeih8fBK2L8RhV3Yn4Hf9FobaKmub6Ax1NjR0R75J9agwIHS3H6Nbj1ijqLpaU2iUanFkHx8wZRtvHezh_q4HQWv_fLftVawCnuE8KjxfqNAozPmbyliTJ8I3oQiJ_TLKfYx_AhHGuVKEgiKtEibSQUa1Qhvlcc5VyHHdSfggOE_oRMWtn08gv4lj-HW1UUw6u3WjvZR0xyA2BZU1fP8fFzjVo9z74dcLX-AcXOsTzFaRKdsuVekzTNjBHMw8wyucB32Jq7CWuuuzjnoc3hfsFC1Ov3rKyXbQI2YMP_ZKmnscdT1hllUortfe_qDnWg7Y2cihP7Ky3Zlt31yjsItefwEu3kWcX6AxGA7sV2BcKSE5xjsCszwdZ1rqJEqUzvFXnki5CBu13FJTIZgTkcZN6jIZKVOSclpJeRHW_84elcgdr8xbq7bgP9OW6_1Jq2M-Tp-Ucunt4VWYbp8fd9LOwcnRN_hIC5f3OMvQKO7u7QpGNoX-7tSJwdV76-8fGgAFbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEQgOiFXs-AAnFLVJ7CwHhIC2Yi2IRfQWbMehSHShDUL8Gl_HOHFYhIATtyi2fBiPZ_GM3wPYqFAhfE8JK6zIwKJcMCugzEZjKHioYjxirn4ofNrwDq7pUZM1h-C1eAuj2yoLm5gZ6rgr9R15WdejPEeju5UT0xZxXq3v9B4tzSClK60FnUauIsfq5RnTt8H2YRX3etNx6rWr_QPLMAxY0nX91LIp9yTH_L_CpZJJSG3pUU8zYfqJjbGQQ70g4VwjojDFqfSFE-u6ofKTIHG55-K6wzDiY1ZUKcHIXq1xfvEB-RtmfL9ZpRRT0GbRds-YvnGgZaqLHLb9xSGOtnQm_nz_zTNk7q4-BZMmTiW7uWJNw5DqzMDEJ_TCWRA3uAqp836bnPCX7lNKztD-tM3DTrKH_jEm-FHNSe9xNOsQU8Rgut5ZtU4ra0Agl70MC5Lkzc9k9-EOxZ222nNw_S8CnYdSp9tRC0BczilzMfqhmPOJIBZMhH7IRYK_kpCxRdgq5BZJg2euaTUeoiyvYSzSUo6MlBdh8312L8fx-GHehtmCP6atFPsTmUM_iD5UdOn34XUYQ92NTg4bx8swrtfNL3VWoJT2n9QqhjmpWDP6ROD2v1X4DdSFCv8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Farm+Layout+Optimization+Based+on+Dynamic+Opposite+Learning%E2%80%90Enhanced+Sparrow+Search+Algorithm&rft.jtitle=International+journal+of+energy+research&rft.au=Zhu%2C+Yun&rft.au=Guo%2C+Yahui&rft.au=Hu%2C+Tianyu&rft.au=Wu%2C+Chengke&rft.date=2024&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1155%2F2024%2F4322211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2024_4322211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |