Theoretical models of modulated nematic phases
Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theor...
Saved in:
Published in | Soft matter Vol. 19; no. 15; pp. 2675 - 274 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
12.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/d2sm01600a |
Cover
Loading…
Abstract | Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices.
This paper presents fundamental information about novel modulated nematic phases, namely twist-bend nematics, splay-bend nematics and splay nematics, and the review of their elasticity models and the deformations occurring in external fields. |
---|---|
AbstractList | Novel modulated nematic phases, such as twist–bend nematics, splay–bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist–bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices. Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices.Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices. Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices. This paper presents fundamental information about novel modulated nematic phases, namely twist-bend nematics, splay-bend nematics and splay nematics, and the review of their elasticity models and the deformations occurring in external fields. |
Author | Szmigielski, Micha |
AuthorAffiliation | Lodz University of Technology Institute of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Institute of Physics – sequence: 0 name: Lodz University of Technology |
Author_xml | – sequence: 1 givenname: Micha surname: Szmigielski fullname: Szmigielski, Micha |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36974725$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9LwzAUB_AgE_dDL96VghcROvOrTXIc8ydMPDjBW8nSV9bRNjNpD_73Zm5OGJ7y4H3eI3zfEPUa2wBC5wSPCWbqNqe-xiTFWB-hARGcx6nksrev2UcfDb1fYcwkJ-kJ6rNUCS5oMkDj-RKsg7Y0uopqm0PlI1tsqq7SLeRRA7UO3Wi91B78KToudOXhbPeO0PvD_Xz6FM9eH5-nk1lsGBNtTDiVC8o5ZYkWusCFZrnEzCSpUlKLNCmkSFSecCwKQ0gOoUOxlgACS1OkbISut3vXzn524NusLr2BqtIN2M5nVGJMuJKEBnp1QFe2c034XUaFUpwJqlRQlzvVLWrIs7Ura-2-st8kArjZAuOs9w6KPSE428Sc3dG3l5-YJwHjA2zKNsRkm9bpsvp_5GI74rzZr_67HPsGH8iF5g |
CitedBy_id | crossref_primary_10_3390_cryst15020120 crossref_primary_10_1088_1361_6633_ad627b crossref_primary_10_1021_acsmaterialslett_3c00665 crossref_primary_10_1080_02678292_2024_2333318 crossref_primary_10_1103_PhysRevE_108_014701 crossref_primary_10_1103_PhysRevE_109_044702 |
Cites_doi | 10.1209/epl/i2001-00513-x 10.1063/1.3671996 10.1007/978-90-481-8829-1 10.1039/c3cp52222a 10.1103/PhysRevLett.22.918 10.1126/sciadv.abb8212 10.1063/1.4769458 10.1103/PhysRevE.81.031704 10.1103/PhysRevE.98.022704 10.1103/PhysRevE.89.052502 10.1039/C6SM01197G 10.1073/pnas.1315740110 10.1039/C6SM00537C 10.1103/PhysRevE.87.052503 10.1039/C9CP03581H 10.1002/cphc.200400182 10.1103/PhysRevE.92.030501 10.1039/C5SM02018B 10.1016/0038-1098(72)90186-X 10.1103/PhysRevE.67.061708 10.1080/026782997209153 10.1103/PhysRevE.80.031709 10.1103/PhysRevLett.38.848 10.1039/C9CP00984A 10.1103/PhysRevLett.111.067801 10.1073/pnas.1314654110 10.1016/j.molliq.2019.111707 10.1126/science.abb4536 10.1080/02678292.2016.1204635 10.1103/PhysRevE.101.052707 10.1073/pnas.2002290117 10.1103/PhysRevE.78.011705 10.1080/02678292.2020.1795944 10.1146/annurev-conmatphys-031620-105712 10.1134/S0021364014140070 10.1039/C6SM00482B 10.1039/C4TC01927J 10.1103/PhysRevE.100.022704 10.1038/s41467-021-25231-0 10.1103/PhysRevLett.123.068001 10.1080/02678290110104586 10.1080/15421406.2017.1303598 10.1209/0295-5075/9/3/010 10.1080/026782997208082 10.1103/PhysRevLett.124.037801 10.1103/PhysRevE.84.031704 10.1103/PhysRevE.101.022704 10.1103/PhysRevE.89.060501 10.1016/j.molliq.2018.01.050 10.1073/pnas.1721786115 10.1103/PhysRevE.93.040701 10.1103/PhysRevE.89.030501 10.1080/02678292.2021.1955417 10.1103/PhysRevLett.82.940 10.1103/PhysRevE.101.012702 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/d2sm01600a |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 274 |
ExternalDocumentID | 36974725 10_1039_D2SM01600A d2sm01600a |
Genre | Journal Article Review |
GroupedDBID | -JG 0-7 0R~ 123 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION L-8 NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c337t-1428b244235a7af0fa3d803c56998a765f8759d5407fc11dec5620a8ee708cf63 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri Jul 11 09:50:35 EDT 2025 Mon Jun 30 12:06:42 EDT 2025 Wed Feb 19 02:24:14 EST 2025 Thu Apr 24 23:03:44 EDT 2025 Tue Jul 01 03:13:38 EDT 2025 Tue Dec 17 20:59:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-1428b244235a7af0fa3d803c56998a765f8759d5407fc11dec5620a8ee708cf63 |
Notes | Micha Szmigielski is a PhD student at the Interdisciplinary Doctoral School, Lodz University of Technology, ód , Poland. He obtained his MSc degree in Technical Physics (specialisation Optoelectronics) in 2020. Currently, he is doing theoretical research on the elastic properties of novel modulated nematic phases under the supervision of Professor Mariola Buczkowska at the Liquid Crystals Physics Group, Institute of Physics, Lodz University of Technology. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0965-951X |
PMID | 36974725 |
PQID | 2799437299 |
PQPubID | 2047495 |
PageCount | 3 |
ParticipantIDs | crossref_citationtrail_10_1039_D2SM01600A pubmed_primary_36974725 proquest_journals_2799437299 rsc_primary_d2sm01600a proquest_miscellaneous_2800149812 crossref_primary_10_1039_D2SM01600A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-12 |
PublicationDateYYYYMMDD | 2023-04-12 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Rudquist (D2SM01600A/cit58/1) 1997; 22 Čopič (D2SM01600A/cit3/1) 2013; 110 Pleiner (D2SM01600A/cit32/1) 1989; 9 Vaupotič (D2SM01600A/cit16/1) 2014; 89 Ginzburg (D2SM01600A/cit55/1) 2004; 5 Selinger (D2SM01600A/cit10/1) 2022; 13 Rosseto (D2SM01600A/cit45/1) 2020; 101 Rudquist (D2SM01600A/cit59/1) 1997; 23 Dozov (D2SM01600A/cit1/1) 2001; 56 Virga (D2SM01600A/cit39/1) 2014; 89 Rosseto (D2SM01600A/cit28/1) 2020; 101 Meyer (D2SM01600A/cit40/1) 1969; 22 Tomczyk (D2SM01600A/cit11/1) 2016; 12 Meyer (D2SM01600A/cit62/1) 2013; 111 Dozov (D2SM01600A/cit8/1) 2017; 44 Chen (D2SM01600A/cit2/1) 2013; 110 Meyer (D2SM01600A/cit5/1) 2016; 43 Parsouzi (D2SM01600A/cit6/1) 2016; 6 Challa (D2SM01600A/cit7/1) 2014; 89 Chiappini (D2SM01600A/cit26/1) 2019; 123 Garoff (D2SM01600A/cit61/1) 1977; 38 Sebastián (D2SM01600A/cit30/1) 2020; 124 Lorman (D2SM01600A/cit19/1) 1999; 82 Memmer (D2SM01600A/cit20/1) 2002; 29 Merkel (D2SM01600A/cit22/1) 2018; 98 Castles (D2SM01600A/cit60/1) 2009; 80 Blinov (D2SM01600A/cit42/1) 2011 de Gennes (D2SM01600A/cit54/1) 1972; 10 Barbero (D2SM01600A/cit47/1) 2003; 67 Shiyanovskii (D2SM01600A/cit56/1) 2017; 44 Meyer (D2SM01600A/cit52/1) 2016; 12 Buka (D2SM01600A/cit41/1) 2013 Chaturvedi (D2SM01600A/cit27/1) 2019; 100 Zola (D2SM01600A/cit13/1) 2017; 649 Meyer (D2SM01600A/cit53/1) Panov (D2SM01600A/cit63/1) 2011; 99 Parsouzi (D2SM01600A/cit14/1) 2019; 21 Longa (D2SM01600A/cit49/1) 2016; 93 Dozov (D2SM01600A/cit18/1) 2020; 47 Mandle (D2SM01600A/cit36/1) 2021; 12 Lelidis (D2SM01600A/cit48/1) 2019; 295 Kats (D2SM01600A/cit51/1) 2014; 100 Meyer (D2SM01600A/cit17/1) 1976 Paterson (D2SM01600A/cit9/1) 2016; 12 Sebastián (D2SM01600A/cit31/1) 2021; 48 Rosseto (D2SM01600A/cit44/1) 2018; 267 Fernández-Rico (D2SM01600A/cit25/1) 2020; 369 Meyer (D2SM01600A/cit23/1) 2020; 6 Shamid (D2SM01600A/cit38/1) 2013; 87 Meyer (D2SM01600A/cit24/1) 2015; 3 Krishnamurthy (D2SM01600A/cit57/1) 2016; 12 Bisi (D2SM01600A/cit37/1) 2008; 78 Panov (D2SM01600A/cit64/1) 2012; 101 Cestari (D2SM01600A/cit21/1) 2011; 84 Mandle (D2SM01600A/cit34/1) 2019; 21 Zola (D2SM01600A/cit46/1) 2017; 44 Mertelj (D2SM01600A/cit29/1) 2018; 8 Greco (D2SM01600A/cit4/1) 2013; 15 Pająk (D2SM01600A/cit12/1) 2018; 115 Chen (D2SM01600A/cit35/1) 2020; 117 Barbero (D2SM01600A/cit43/1) 2015; 92 Čopič (D2SM01600A/cit15/1) 2020; 101 Sec (D2SM01600A/cit50/1) Dhakal (D2SM01600A/cit33/1) 2010; 81 |
References_xml | – issn: 1976 end-page: p 271-343 publication-title: Molecular Fluids doi: Meyer – issn: 2013 publication-title: Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications doi: Buka Éber – doi: Sec – issn: 2011 publication-title: Structure and Properties of Liquid Crystals doi: Blinov – doi: Meyer Dozov Davidson Dokli Knezevic Lesac Luckhurst – volume: 56 start-page: 247 year: 2001 ident: D2SM01600A/cit1/1 publication-title: Europhys. Lett. doi: 10.1209/epl/i2001-00513-x – volume: 99 start-page: 261903 year: 2011 ident: D2SM01600A/cit63/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3671996 – volume-title: Structure and Properties of Liquid Crystals year: 2011 ident: D2SM01600A/cit42/1 doi: 10.1007/978-90-481-8829-1 – volume: 15 start-page: 14961 year: 2013 ident: D2SM01600A/cit4/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52222a – volume: 22 start-page: 918 year: 1969 ident: D2SM01600A/cit40/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.22.918 – volume: 6 start-page: eabb8212 year: 2020 ident: D2SM01600A/cit23/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb8212 – volume: 101 start-page: 234106 year: 2012 ident: D2SM01600A/cit64/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4769458 – volume: 81 start-page: 031704 year: 2010 ident: D2SM01600A/cit33/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.81.031704 – volume: 98 start-page: 022704 year: 2018 ident: D2SM01600A/cit22/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.022704 – volume: 89 start-page: 052502 year: 2014 ident: D2SM01600A/cit39/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.89.052502 – volume: 12 start-page: 7445 year: 2016 ident: D2SM01600A/cit11/1 publication-title: Soft Matter doi: 10.1039/C6SM01197G – volume: 110 start-page: 15855 year: 2013 ident: D2SM01600A/cit3/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1315740110 – volume: 12 start-page: 6827 year: 2016 ident: D2SM01600A/cit9/1 publication-title: Soft Matter doi: 10.1039/C6SM00537C – volume: 87 start-page: 052503 year: 2013 ident: D2SM01600A/cit38/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.87.052503 – volume: 21 start-page: 18769 year: 2019 ident: D2SM01600A/cit34/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03581H – volume: 5 start-page: 930 year: 2004 ident: D2SM01600A/cit55/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200400182 – volume: 92 start-page: 030501 year: 2015 ident: D2SM01600A/cit43/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.92.030501 – volume: 12 start-page: 574 year: 2016 ident: D2SM01600A/cit52/1 publication-title: Soft Matter doi: 10.1039/C5SM02018B – volume: 10 start-page: 753 year: 1972 ident: D2SM01600A/cit54/1 publication-title: Solid State Commun. doi: 10.1016/0038-1098(72)90186-X – volume: 67 start-page: 061708 year: 2003 ident: D2SM01600A/cit47/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.67.061708 – volume: 22 start-page: 445 year: 1997 ident: D2SM01600A/cit58/1 publication-title: Liq. Cryst. doi: 10.1080/026782997209153 – volume: 80 start-page: 031709 year: 2009 ident: D2SM01600A/cit60/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.80.031709 – volume: 38 start-page: 848 year: 1977 ident: D2SM01600A/cit61/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.38.848 – volume: 21 start-page: 13078 year: 2019 ident: D2SM01600A/cit14/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP00984A – volume: 111 start-page: 067801 year: 2013 ident: D2SM01600A/cit62/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.067801 – volume: 110 start-page: 15931 year: 2013 ident: D2SM01600A/cit2/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1314654110 – volume: 295 start-page: 111707 year: 2019 ident: D2SM01600A/cit48/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111707 – volume: 369 start-page: 950 year: 2020 ident: D2SM01600A/cit25/1 publication-title: Science doi: 10.1126/science.abb4536 – volume: 43 start-page: 2144 year: 2016 ident: D2SM01600A/cit5/1 publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1204635 – volume: 101 start-page: 052707 year: 2020 ident: D2SM01600A/cit28/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.052707 – volume: 117 start-page: 14021 year: 2020 ident: D2SM01600A/cit35/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2002290117 – volume: 78 start-page: 011705 year: 2008 ident: D2SM01600A/cit37/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.78.011705 – volume-title: Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications year: 2013 ident: D2SM01600A/cit41/1 – volume: 47 start-page: 2098 year: 2020 ident: D2SM01600A/cit18/1 publication-title: Liq. Cryst. doi: 10.1080/02678292.2020.1795944 – volume: 13 start-page: 49 year: 2022 ident: D2SM01600A/cit10/1 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031620-105712 – ident: D2SM01600A/cit50/1 – volume: 100 start-page: 110 year: 2014 ident: D2SM01600A/cit51/1 publication-title: JETP Lett. doi: 10.1134/S0021364014140070 – volume: 12 start-page: 4967 year: 2016 ident: D2SM01600A/cit57/1 publication-title: Soft Matter doi: 10.1039/C6SM00482B – volume: 3 start-page: 318 year: 2015 ident: D2SM01600A/cit24/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01927J – volume: 100 start-page: 022704 year: 2019 ident: D2SM01600A/cit27/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.022704 – volume: 12 start-page: 4962 year: 2021 ident: D2SM01600A/cit36/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25231-0 – volume: 123 start-page: 068001 year: 2019 ident: D2SM01600A/cit26/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.068001 – volume: 29 start-page: 483 year: 2002 ident: D2SM01600A/cit20/1 publication-title: Liq. Cryst. doi: 10.1080/02678290110104586 – volume: 44 start-page: 31 year: 2017 ident: D2SM01600A/cit56/1 publication-title: Liq. Cryst. – volume: 649 start-page: 71 year: 2017 ident: D2SM01600A/cit13/1 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2017.1303598 – volume: 44 start-page: 4 year: 2017 ident: D2SM01600A/cit8/1 publication-title: Liq. Cryst. – volume: 9 start-page: 243 year: 1989 ident: D2SM01600A/cit32/1 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/9/3/010 – volume: 23 start-page: 503 year: 1997 ident: D2SM01600A/cit59/1 publication-title: Liq. Cryst. doi: 10.1080/026782997208082 – volume: 6 start-page: 021041 year: 2016 ident: D2SM01600A/cit6/1 publication-title: Phys. Rev. X – start-page: 271 volume-title: Molecular Fluids year: 1976 ident: D2SM01600A/cit17/1 – volume: 124 start-page: 037801 year: 2020 ident: D2SM01600A/cit30/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.037801 – volume: 84 start-page: 031704 year: 2011 ident: D2SM01600A/cit21/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.84.031704 – volume: 101 start-page: 022704 year: 2020 ident: D2SM01600A/cit15/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.022704 – volume: 8 start-page: 041025 year: 2018 ident: D2SM01600A/cit29/1 publication-title: Phys. Rev. X – volume: 44 start-page: 24 year: 2017 ident: D2SM01600A/cit46/1 publication-title: Liq. Cryst. – volume: 89 start-page: 060501 year: 2014 ident: D2SM01600A/cit7/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.89.060501 – volume: 267 start-page: 266 year: 2018 ident: D2SM01600A/cit44/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.01.050 – volume: 115 start-page: E10303 year: 2018 ident: D2SM01600A/cit12/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1721786115 – volume: 93 start-page: 040701 year: 2016 ident: D2SM01600A/cit49/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.040701 – volume: 89 start-page: 030501 year: 2014 ident: D2SM01600A/cit16/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.89.030501 – volume: 48 start-page: 2055 year: 2021 ident: D2SM01600A/cit31/1 publication-title: Liq. Cryst. doi: 10.1080/02678292.2021.1955417 – volume: 82 start-page: 940 year: 1999 ident: D2SM01600A/cit19/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.940 – ident: D2SM01600A/cit53/1 – volume: 101 start-page: 012702 year: 2020 ident: D2SM01600A/cit45/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.012702 |
SSID | ssj0038416 |
Score | 2.4448364 |
SecondaryResourceType | review_article |
Snippet | Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of... Novel modulated nematic phases, such as twist–bend nematics, splay–bend nematics and splay nematics, are an important subject of research in the field of... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2675 |
SubjectTerms | Crystals Elastic deformation Elastic properties Ferroelectricity Free energy Liquid crystals Magnetic effects Mathematical models Phases |
Title | Theoretical models of modulated nematic phases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36974725 https://www.proquest.com/docview/2799437299 https://www.proquest.com/docview/2800149812 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLWgExKXiV-DjDEFwQ4IZUvs2I6P0zY0EHBpJ-0W2Y69TaLttGaX_fV8thMn0B0GlyhynKT1Sz4_x5_fQ-ijMtwIRnFWqMZmJdYyUwWjmeJYcym4KbRPkP3JTs_Kb-f0fLC89KtLWrWv7-5dV_I_qEIZ4OpWyf4DsvGiUAD7gC9sAWHYPhTjuArRW9r4vAzYc55cbl6_E2S9voS-ajXmoVOIvp_nsh0l507v5lcXV3CNYGTt8-n3juhecO3pvwxgknkJwlEw42WZscr77UKsH5cFdcsYAcUYaTqOZyz4mnR9I-bBK3gt7ubEyZYe4-kPp1iXR-XSQdz6r04npgL6SXAi6uHcx2gDA-fPJ2jj8GT29XvfsRI3QxrWt4a_1avNEnEwnP0nv1gbNACFuOmtXTyFmD1Dmx33Tw8DkM_RI7N4gZ74HFy9eon2R3CmAc50adMIZ9rBmQY4X6GzLyezo9Oss7PINCG8zZy2nQI2hQmVXNrcStJUOdGUwZBXckYtjB1F4xQRrS6KxsARnMvKGJ5X2jKyhSaL5cK8QSlRojKVhIBrgO9aLBRwDIIVvGaMltIm6FPfCLXutN6d5civer25E_Qh1r0OCif31trp27Lu3oBVjbkQft5XJOh9PAzxyU06yYVZ3kKdyo_CgUcm6HXAIN6GMDeaxTRBWwBKLG7wau7vKrcf9NveoqfD47-DJu3NrXkHVLFVu90j9Bs3aGI9 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+models+of+modulated+nematic+phases&rft.jtitle=Soft+matter&rft.au=Szmigielski%2C+Micha%C5%82&rft.date=2023-04-12&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=19&rft.issue=15&rft.spage=2675&rft.epage=2704&rft_id=info:doi/10.1039%2FD2SM01600A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2SM01600A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |