Theoretical models of modulated nematic phases

Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theor...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 19; no. 15; pp. 2675 - 274
Main Author Szmigielski, Micha
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 12.04.2023
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/d2sm01600a

Cover

Loading…
Abstract Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices. This paper presents fundamental information about novel modulated nematic phases, namely twist-bend nematics, splay-bend nematics and splay nematics, and the review of their elasticity models and the deformations occurring in external fields.
AbstractList Novel modulated nematic phases, such as twist–bend nematics, splay–bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist–bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices.
Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices.Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices.
Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of liquid crystals. In this article fundamental information about the discovery, structure and properties of these phases is presented. Various theoretical models of elastic properties are compared, especially the proposed formulae for the free energy density of modulated nematic phases and the conditions for their stability. The emphasis is put on the variety of material parameters and variables in the mathematical description of the structures. The elastic models are classified according to a few criteria. Flexopolarisation is indicated as a main phenomenon responsible for the formation of modulated nematic phases. The elastic models are used for analysing the deformations of the twist-bend nematic structure in external fields. Dielectric, flexoelectric, ferroelectric and magnetic effects are considered. Two types of distortions are distinguished: microscopic (connected with the deformation of the director distribution) and macroscopic (related to the change of the optic axis direction). This review can be a starting point for further studies, for example computer simulations of modulated phases and design of liquid crystalline devices. This paper presents fundamental information about novel modulated nematic phases, namely twist-bend nematics, splay-bend nematics and splay nematics, and the review of their elasticity models and the deformations occurring in external fields.
Author Szmigielski, Micha
AuthorAffiliation Lodz University of Technology
Institute of Physics
AuthorAffiliation_xml – sequence: 0
  name: Institute of Physics
– sequence: 0
  name: Lodz University of Technology
Author_xml – sequence: 1
  givenname: Micha
  surname: Szmigielski
  fullname: Szmigielski, Micha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36974725$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9LwzAUB_AgE_dDL96VghcROvOrTXIc8ydMPDjBW8nSV9bRNjNpD_73Zm5OGJ7y4H3eI3zfEPUa2wBC5wSPCWbqNqe-xiTFWB-hARGcx6nksrev2UcfDb1fYcwkJ-kJ6rNUCS5oMkDj-RKsg7Y0uopqm0PlI1tsqq7SLeRRA7UO3Wi91B78KToudOXhbPeO0PvD_Xz6FM9eH5-nk1lsGBNtTDiVC8o5ZYkWusCFZrnEzCSpUlKLNCmkSFSecCwKQ0gOoUOxlgACS1OkbISut3vXzn524NusLr2BqtIN2M5nVGJMuJKEBnp1QFe2c034XUaFUpwJqlRQlzvVLWrIs7Ura-2-st8kArjZAuOs9w6KPSE428Sc3dG3l5-YJwHjA2zKNsRkm9bpsvp_5GI74rzZr_67HPsGH8iF5g
CitedBy_id crossref_primary_10_3390_cryst15020120
crossref_primary_10_1088_1361_6633_ad627b
crossref_primary_10_1021_acsmaterialslett_3c00665
crossref_primary_10_1080_02678292_2024_2333318
crossref_primary_10_1103_PhysRevE_108_014701
crossref_primary_10_1103_PhysRevE_109_044702
Cites_doi 10.1209/epl/i2001-00513-x
10.1063/1.3671996
10.1007/978-90-481-8829-1
10.1039/c3cp52222a
10.1103/PhysRevLett.22.918
10.1126/sciadv.abb8212
10.1063/1.4769458
10.1103/PhysRevE.81.031704
10.1103/PhysRevE.98.022704
10.1103/PhysRevE.89.052502
10.1039/C6SM01197G
10.1073/pnas.1315740110
10.1039/C6SM00537C
10.1103/PhysRevE.87.052503
10.1039/C9CP03581H
10.1002/cphc.200400182
10.1103/PhysRevE.92.030501
10.1039/C5SM02018B
10.1016/0038-1098(72)90186-X
10.1103/PhysRevE.67.061708
10.1080/026782997209153
10.1103/PhysRevE.80.031709
10.1103/PhysRevLett.38.848
10.1039/C9CP00984A
10.1103/PhysRevLett.111.067801
10.1073/pnas.1314654110
10.1016/j.molliq.2019.111707
10.1126/science.abb4536
10.1080/02678292.2016.1204635
10.1103/PhysRevE.101.052707
10.1073/pnas.2002290117
10.1103/PhysRevE.78.011705
10.1080/02678292.2020.1795944
10.1146/annurev-conmatphys-031620-105712
10.1134/S0021364014140070
10.1039/C6SM00482B
10.1039/C4TC01927J
10.1103/PhysRevE.100.022704
10.1038/s41467-021-25231-0
10.1103/PhysRevLett.123.068001
10.1080/02678290110104586
10.1080/15421406.2017.1303598
10.1209/0295-5075/9/3/010
10.1080/026782997208082
10.1103/PhysRevLett.124.037801
10.1103/PhysRevE.84.031704
10.1103/PhysRevE.101.022704
10.1103/PhysRevE.89.060501
10.1016/j.molliq.2018.01.050
10.1073/pnas.1721786115
10.1103/PhysRevE.93.040701
10.1103/PhysRevE.89.030501
10.1080/02678292.2021.1955417
10.1103/PhysRevLett.82.940
10.1103/PhysRevE.101.012702
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/d2sm01600a
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 274
ExternalDocumentID 36974725
10_1039_D2SM01600A
d2sm01600a
Genre Journal Article
Review
GroupedDBID -JG
0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
L-8
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c337t-1428b244235a7af0fa3d803c56998a765f8759d5407fc11dec5620a8ee708cf63
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 09:50:35 EDT 2025
Mon Jun 30 12:06:42 EDT 2025
Wed Feb 19 02:24:14 EST 2025
Thu Apr 24 23:03:44 EDT 2025
Tue Jul 01 03:13:38 EDT 2025
Tue Dec 17 20:59:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-1428b244235a7af0fa3d803c56998a765f8759d5407fc11dec5620a8ee708cf63
Notes Micha Szmigielski is a PhD student at the Interdisciplinary Doctoral School, Lodz University of Technology, ód , Poland. He obtained his MSc degree in Technical Physics (specialisation Optoelectronics) in 2020. Currently, he is doing theoretical research on the elastic properties of novel modulated nematic phases under the supervision of Professor Mariola Buczkowska at the Liquid Crystals Physics Group, Institute of Physics, Lodz University of Technology.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0965-951X
PMID 36974725
PQID 2799437299
PQPubID 2047495
PageCount 3
ParticipantIDs crossref_citationtrail_10_1039_D2SM01600A
pubmed_primary_36974725
proquest_journals_2799437299
rsc_primary_d2sm01600a
proquest_miscellaneous_2800149812
crossref_primary_10_1039_D2SM01600A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-12
PublicationDateYYYYMMDD 2023-04-12
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Rudquist (D2SM01600A/cit58/1) 1997; 22
Čopič (D2SM01600A/cit3/1) 2013; 110
Pleiner (D2SM01600A/cit32/1) 1989; 9
Vaupotič (D2SM01600A/cit16/1) 2014; 89
Ginzburg (D2SM01600A/cit55/1) 2004; 5
Selinger (D2SM01600A/cit10/1) 2022; 13
Rosseto (D2SM01600A/cit45/1) 2020; 101
Rudquist (D2SM01600A/cit59/1) 1997; 23
Dozov (D2SM01600A/cit1/1) 2001; 56
Virga (D2SM01600A/cit39/1) 2014; 89
Rosseto (D2SM01600A/cit28/1) 2020; 101
Meyer (D2SM01600A/cit40/1) 1969; 22
Tomczyk (D2SM01600A/cit11/1) 2016; 12
Meyer (D2SM01600A/cit62/1) 2013; 111
Dozov (D2SM01600A/cit8/1) 2017; 44
Chen (D2SM01600A/cit2/1) 2013; 110
Meyer (D2SM01600A/cit5/1) 2016; 43
Parsouzi (D2SM01600A/cit6/1) 2016; 6
Challa (D2SM01600A/cit7/1) 2014; 89
Chiappini (D2SM01600A/cit26/1) 2019; 123
Garoff (D2SM01600A/cit61/1) 1977; 38
Sebastián (D2SM01600A/cit30/1) 2020; 124
Lorman (D2SM01600A/cit19/1) 1999; 82
Memmer (D2SM01600A/cit20/1) 2002; 29
Merkel (D2SM01600A/cit22/1) 2018; 98
Castles (D2SM01600A/cit60/1) 2009; 80
Blinov (D2SM01600A/cit42/1) 2011
de Gennes (D2SM01600A/cit54/1) 1972; 10
Barbero (D2SM01600A/cit47/1) 2003; 67
Shiyanovskii (D2SM01600A/cit56/1) 2017; 44
Meyer (D2SM01600A/cit52/1) 2016; 12
Buka (D2SM01600A/cit41/1) 2013
Chaturvedi (D2SM01600A/cit27/1) 2019; 100
Zola (D2SM01600A/cit13/1) 2017; 649
Meyer (D2SM01600A/cit53/1)
Panov (D2SM01600A/cit63/1) 2011; 99
Parsouzi (D2SM01600A/cit14/1) 2019; 21
Longa (D2SM01600A/cit49/1) 2016; 93
Dozov (D2SM01600A/cit18/1) 2020; 47
Mandle (D2SM01600A/cit36/1) 2021; 12
Lelidis (D2SM01600A/cit48/1) 2019; 295
Kats (D2SM01600A/cit51/1) 2014; 100
Meyer (D2SM01600A/cit17/1) 1976
Paterson (D2SM01600A/cit9/1) 2016; 12
Sebastián (D2SM01600A/cit31/1) 2021; 48
Rosseto (D2SM01600A/cit44/1) 2018; 267
Fernández-Rico (D2SM01600A/cit25/1) 2020; 369
Meyer (D2SM01600A/cit23/1) 2020; 6
Shamid (D2SM01600A/cit38/1) 2013; 87
Meyer (D2SM01600A/cit24/1) 2015; 3
Krishnamurthy (D2SM01600A/cit57/1) 2016; 12
Bisi (D2SM01600A/cit37/1) 2008; 78
Panov (D2SM01600A/cit64/1) 2012; 101
Cestari (D2SM01600A/cit21/1) 2011; 84
Mandle (D2SM01600A/cit34/1) 2019; 21
Zola (D2SM01600A/cit46/1) 2017; 44
Mertelj (D2SM01600A/cit29/1) 2018; 8
Greco (D2SM01600A/cit4/1) 2013; 15
Pająk (D2SM01600A/cit12/1) 2018; 115
Chen (D2SM01600A/cit35/1) 2020; 117
Barbero (D2SM01600A/cit43/1) 2015; 92
Čopič (D2SM01600A/cit15/1) 2020; 101
Sec (D2SM01600A/cit50/1)
Dhakal (D2SM01600A/cit33/1) 2010; 81
References_xml – issn: 1976
  end-page: p 271-343
  publication-title: Molecular Fluids
  doi: Meyer
– issn: 2013
  publication-title: Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications
  doi: Buka Éber
– doi: Sec
– issn: 2011
  publication-title: Structure and Properties of Liquid Crystals
  doi: Blinov
– doi: Meyer Dozov Davidson Dokli Knezevic Lesac Luckhurst
– volume: 56
  start-page: 247
  year: 2001
  ident: D2SM01600A/cit1/1
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2001-00513-x
– volume: 99
  start-page: 261903
  year: 2011
  ident: D2SM01600A/cit63/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3671996
– volume-title: Structure and Properties of Liquid Crystals
  year: 2011
  ident: D2SM01600A/cit42/1
  doi: 10.1007/978-90-481-8829-1
– volume: 15
  start-page: 14961
  year: 2013
  ident: D2SM01600A/cit4/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52222a
– volume: 22
  start-page: 918
  year: 1969
  ident: D2SM01600A/cit40/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.22.918
– volume: 6
  start-page: eabb8212
  year: 2020
  ident: D2SM01600A/cit23/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb8212
– volume: 101
  start-page: 234106
  year: 2012
  ident: D2SM01600A/cit64/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4769458
– volume: 81
  start-page: 031704
  year: 2010
  ident: D2SM01600A/cit33/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.81.031704
– volume: 98
  start-page: 022704
  year: 2018
  ident: D2SM01600A/cit22/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.022704
– volume: 89
  start-page: 052502
  year: 2014
  ident: D2SM01600A/cit39/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.89.052502
– volume: 12
  start-page: 7445
  year: 2016
  ident: D2SM01600A/cit11/1
  publication-title: Soft Matter
  doi: 10.1039/C6SM01197G
– volume: 110
  start-page: 15855
  year: 2013
  ident: D2SM01600A/cit3/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1315740110
– volume: 12
  start-page: 6827
  year: 2016
  ident: D2SM01600A/cit9/1
  publication-title: Soft Matter
  doi: 10.1039/C6SM00537C
– volume: 87
  start-page: 052503
  year: 2013
  ident: D2SM01600A/cit38/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.87.052503
– volume: 21
  start-page: 18769
  year: 2019
  ident: D2SM01600A/cit34/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03581H
– volume: 5
  start-page: 930
  year: 2004
  ident: D2SM01600A/cit55/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200400182
– volume: 92
  start-page: 030501
  year: 2015
  ident: D2SM01600A/cit43/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.92.030501
– volume: 12
  start-page: 574
  year: 2016
  ident: D2SM01600A/cit52/1
  publication-title: Soft Matter
  doi: 10.1039/C5SM02018B
– volume: 10
  start-page: 753
  year: 1972
  ident: D2SM01600A/cit54/1
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(72)90186-X
– volume: 67
  start-page: 061708
  year: 2003
  ident: D2SM01600A/cit47/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.67.061708
– volume: 22
  start-page: 445
  year: 1997
  ident: D2SM01600A/cit58/1
  publication-title: Liq. Cryst.
  doi: 10.1080/026782997209153
– volume: 80
  start-page: 031709
  year: 2009
  ident: D2SM01600A/cit60/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.80.031709
– volume: 38
  start-page: 848
  year: 1977
  ident: D2SM01600A/cit61/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.848
– volume: 21
  start-page: 13078
  year: 2019
  ident: D2SM01600A/cit14/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP00984A
– volume: 111
  start-page: 067801
  year: 2013
  ident: D2SM01600A/cit62/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.067801
– volume: 110
  start-page: 15931
  year: 2013
  ident: D2SM01600A/cit2/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1314654110
– volume: 295
  start-page: 111707
  year: 2019
  ident: D2SM01600A/cit48/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111707
– volume: 369
  start-page: 950
  year: 2020
  ident: D2SM01600A/cit25/1
  publication-title: Science
  doi: 10.1126/science.abb4536
– volume: 43
  start-page: 2144
  year: 2016
  ident: D2SM01600A/cit5/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2016.1204635
– volume: 101
  start-page: 052707
  year: 2020
  ident: D2SM01600A/cit28/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.052707
– volume: 117
  start-page: 14021
  year: 2020
  ident: D2SM01600A/cit35/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2002290117
– volume: 78
  start-page: 011705
  year: 2008
  ident: D2SM01600A/cit37/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.78.011705
– volume-title: Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications
  year: 2013
  ident: D2SM01600A/cit41/1
– volume: 47
  start-page: 2098
  year: 2020
  ident: D2SM01600A/cit18/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2020.1795944
– volume: 13
  start-page: 49
  year: 2022
  ident: D2SM01600A/cit10/1
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031620-105712
– ident: D2SM01600A/cit50/1
– volume: 100
  start-page: 110
  year: 2014
  ident: D2SM01600A/cit51/1
  publication-title: JETP Lett.
  doi: 10.1134/S0021364014140070
– volume: 12
  start-page: 4967
  year: 2016
  ident: D2SM01600A/cit57/1
  publication-title: Soft Matter
  doi: 10.1039/C6SM00482B
– volume: 3
  start-page: 318
  year: 2015
  ident: D2SM01600A/cit24/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01927J
– volume: 100
  start-page: 022704
  year: 2019
  ident: D2SM01600A/cit27/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.022704
– volume: 12
  start-page: 4962
  year: 2021
  ident: D2SM01600A/cit36/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25231-0
– volume: 123
  start-page: 068001
  year: 2019
  ident: D2SM01600A/cit26/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.068001
– volume: 29
  start-page: 483
  year: 2002
  ident: D2SM01600A/cit20/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290110104586
– volume: 44
  start-page: 31
  year: 2017
  ident: D2SM01600A/cit56/1
  publication-title: Liq. Cryst.
– volume: 649
  start-page: 71
  year: 2017
  ident: D2SM01600A/cit13/1
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2017.1303598
– volume: 44
  start-page: 4
  year: 2017
  ident: D2SM01600A/cit8/1
  publication-title: Liq. Cryst.
– volume: 9
  start-page: 243
  year: 1989
  ident: D2SM01600A/cit32/1
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/9/3/010
– volume: 23
  start-page: 503
  year: 1997
  ident: D2SM01600A/cit59/1
  publication-title: Liq. Cryst.
  doi: 10.1080/026782997208082
– volume: 6
  start-page: 021041
  year: 2016
  ident: D2SM01600A/cit6/1
  publication-title: Phys. Rev. X
– start-page: 271
  volume-title: Molecular Fluids
  year: 1976
  ident: D2SM01600A/cit17/1
– volume: 124
  start-page: 037801
  year: 2020
  ident: D2SM01600A/cit30/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.037801
– volume: 84
  start-page: 031704
  year: 2011
  ident: D2SM01600A/cit21/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.84.031704
– volume: 101
  start-page: 022704
  year: 2020
  ident: D2SM01600A/cit15/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.022704
– volume: 8
  start-page: 041025
  year: 2018
  ident: D2SM01600A/cit29/1
  publication-title: Phys. Rev. X
– volume: 44
  start-page: 24
  year: 2017
  ident: D2SM01600A/cit46/1
  publication-title: Liq. Cryst.
– volume: 89
  start-page: 060501
  year: 2014
  ident: D2SM01600A/cit7/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.89.060501
– volume: 267
  start-page: 266
  year: 2018
  ident: D2SM01600A/cit44/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.01.050
– volume: 115
  start-page: E10303
  year: 2018
  ident: D2SM01600A/cit12/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1721786115
– volume: 93
  start-page: 040701
  year: 2016
  ident: D2SM01600A/cit49/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.040701
– volume: 89
  start-page: 030501
  year: 2014
  ident: D2SM01600A/cit16/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.89.030501
– volume: 48
  start-page: 2055
  year: 2021
  ident: D2SM01600A/cit31/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2021.1955417
– volume: 82
  start-page: 940
  year: 1999
  ident: D2SM01600A/cit19/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.940
– ident: D2SM01600A/cit53/1
– volume: 101
  start-page: 012702
  year: 2020
  ident: D2SM01600A/cit45/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.012702
SSID ssj0038416
Score 2.4448364
SecondaryResourceType review_article
Snippet Novel modulated nematic phases, such as twist-bend nematics, splay-bend nematics and splay nematics, are an important subject of research in the field of...
Novel modulated nematic phases, such as twist–bend nematics, splay–bend nematics and splay nematics, are an important subject of research in the field of...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2675
SubjectTerms Crystals
Elastic deformation
Elastic properties
Ferroelectricity
Free energy
Liquid crystals
Magnetic effects
Mathematical models
Phases
Title Theoretical models of modulated nematic phases
URI https://www.ncbi.nlm.nih.gov/pubmed/36974725
https://www.proquest.com/docview/2799437299
https://www.proquest.com/docview/2800149812
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLWgExKXiV-DjDEFwQ4IZUvs2I6P0zY0EHBpJ-0W2Y69TaLttGaX_fV8thMn0B0GlyhynKT1Sz4_x5_fQ-ijMtwIRnFWqMZmJdYyUwWjmeJYcym4KbRPkP3JTs_Kb-f0fLC89KtLWrWv7-5dV_I_qEIZ4OpWyf4DsvGiUAD7gC9sAWHYPhTjuArRW9r4vAzYc55cbl6_E2S9voS-ajXmoVOIvp_nsh0l507v5lcXV3CNYGTt8-n3juhecO3pvwxgknkJwlEw42WZscr77UKsH5cFdcsYAcUYaTqOZyz4mnR9I-bBK3gt7ubEyZYe4-kPp1iXR-XSQdz6r04npgL6SXAi6uHcx2gDA-fPJ2jj8GT29XvfsRI3QxrWt4a_1avNEnEwnP0nv1gbNACFuOmtXTyFmD1Dmx33Tw8DkM_RI7N4gZ74HFy9eon2R3CmAc50adMIZ9rBmQY4X6GzLyezo9Oss7PINCG8zZy2nQI2hQmVXNrcStJUOdGUwZBXckYtjB1F4xQRrS6KxsARnMvKGJ5X2jKyhSaL5cK8QSlRojKVhIBrgO9aLBRwDIIVvGaMltIm6FPfCLXutN6d5civer25E_Qh1r0OCif31trp27Lu3oBVjbkQft5XJOh9PAzxyU06yYVZ3kKdyo_CgUcm6HXAIN6GMDeaxTRBWwBKLG7wau7vKrcf9NveoqfD47-DJu3NrXkHVLFVu90j9Bs3aGI9
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+models+of+modulated+nematic+phases&rft.jtitle=Soft+matter&rft.au=Szmigielski%2C+Micha%C5%82&rft.date=2023-04-12&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=19&rft.issue=15&rft.spage=2675&rft.epage=2704&rft_id=info:doi/10.1039%2FD2SM01600A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2SM01600A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon