Elucidating the role of graphene and porous carbon coating on nanostructured Sb2S3 for superior lithium and sodium storage

•A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior electrochemical performance in LIBs due to mesoporous carbon coating facilitates fast Li-ion migration and low charge transfer resistance.•Sb...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 883; p. 160906
Main Authors Dashairya, Love, Das, Debasish, Saha, Partha
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior electrochemical performance in LIBs due to mesoporous carbon coating facilitates fast Li-ion migration and low charge transfer resistance.•Sb2S3/rGO exhibits excellent rate capability in SIBs owing to low SEI resistance.•Selection of Sb2S3/C composite architecture is important for alloy anode design. [Display omitted] Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion and alloying reactions with lithium/sodium. However, volume variance during (de)lithiation/(de)sodiation complemented with sluggish reaction kinetics leads to severe capacity decay and cycle instability. Carbon in various forms has been explored with Sb2S3 to absorb the volumetric strain by rationale materials and electrode design. However, identifying the suitable carbon composite structure for improved electrochemical performance in lithium-ion and sodium-ion batteries remains a subject of investigation. The present work sheds light on the difference between lithium and sodium storage behavior in Sb2S3/carbon composite by designing two different structures. Therefore, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell (~100 nm thick) and Sb2S3 nanoparticles reinforced with planar graphene sheets were synthesized, followed by binder-free electrode fabrication by electrophoretic deposition. The electrochemical results demonstrate that core-shell Sb2S3@C shows improved electrochemical performance in lithium-ion batteries with rate capacity reaching ~215 mAh.g−1 at ~4 Ag−1 current rate and long cycle life (~283 mAh.g−1 at ~1Ag−1 over 500 cycles with ~99.6% Coulombic efficiency). On the contrary, Sb2S3/RGO showed favorable results in sodium-ion batteries with an average specific capacity of ~300 mAh.g−1 at ~0.1 Ag−1 current rate up to 100 cycles and good rate capability (~210 mAh.g−1 at ~1 Ag−1 current rate with ~99% Coulombic efficiency). The difference electrochemical performance of Sb2S3@C and Sb2S3/RGO in lithium-ion and sodium-ion batteries attributed to the difference in charge transfer resistance, SEI resistance, and phase evolution as confirmed by electrochemical impedance spectroscopy, ex situ XANES, and XRD study of cycled electrodes. Also, superior Na-ion and Li-ion reaction kinetics in Sb2S3/RGO and Sb2S3@C was verified by diffusion coefficient (DNa and DLi) measurements. These results demonstrate that Sb2S3/carbon composite architecture selection is an important factor for designing conversion-cum-alloy anodes in lithium and sodium batteries.
AbstractList Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion and alloying reactions with lithium/sodium. However, volume variance during (de)lithiation/(de)sodiation complemented with sluggish reaction kinetics leads to severe capacity decay and cycle instability. Carbon in various forms has been explored with Sb2S3 to absorb the volumetric strain by rationale materials and electrode design. However, identifying the suitable carbon composite structure for improved electrochemical performance in lithium-ion and sodium-ion batteries remains a subject of investigation. The present work sheds light on the difference between lithium and sodium storage behavior in Sb2S3/carbon composite by designing two different structures. Therefore, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell (~100 nm thick) and Sb2S3 nanoparticles reinforced with planar graphene sheets were synthesized, followed by binder-free electrode fabrication by electrophoretic deposition. The electrochemical results demonstrate that core-shell Sb2S3@C shows improved electrochemical performance in lithium-ion batteries with rate capacity reaching ~215 mAh.g−1 at ~4 Ag−1 current rate and long cycle life (~283 mAh.g−1 at ~1Ag−1 over 500 cycles with ~99.6% Coulombic efficiency). On the contrary, Sb2S3/RGO showed favorable results in sodium-ion batteries with an average specific capacity of ~300 mAh.g−1 at ~0.1 Ag−1 current rate up to 100 cycles and good rate capability (~210 mAh.g−1 at ~1 Ag−1 current rate with ~99% Coulombic efficiency). The difference electrochemical performance of Sb2S3@C and Sb2S3/RGO in lithium-ion and sodium-ion batteries attributed to the difference in charge transfer resistance, SEI resistance, and phase evolution as confirmed by electrochemical impedance spectroscopy, ex situ XANES, and XRD study of cycled electrodes. Also, superior Na-ion and Li-ion reaction kinetics in Sb2S3/RGO and Sb2S3@C was verified by diffusion coefficient (DNa and DLi) measurements. These results demonstrate that Sb2S3/carbon composite architecture selection is an important factor for designing conversion-cum-alloy anodes in lithium and sodium batteries.
•A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior electrochemical performance in LIBs due to mesoporous carbon coating facilitates fast Li-ion migration and low charge transfer resistance.•Sb2S3/rGO exhibits excellent rate capability in SIBs owing to low SEI resistance.•Selection of Sb2S3/C composite architecture is important for alloy anode design. [Display omitted] Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion and alloying reactions with lithium/sodium. However, volume variance during (de)lithiation/(de)sodiation complemented with sluggish reaction kinetics leads to severe capacity decay and cycle instability. Carbon in various forms has been explored with Sb2S3 to absorb the volumetric strain by rationale materials and electrode design. However, identifying the suitable carbon composite structure for improved electrochemical performance in lithium-ion and sodium-ion batteries remains a subject of investigation. The present work sheds light on the difference between lithium and sodium storage behavior in Sb2S3/carbon composite by designing two different structures. Therefore, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell (~100 nm thick) and Sb2S3 nanoparticles reinforced with planar graphene sheets were synthesized, followed by binder-free electrode fabrication by electrophoretic deposition. The electrochemical results demonstrate that core-shell Sb2S3@C shows improved electrochemical performance in lithium-ion batteries with rate capacity reaching ~215 mAh.g−1 at ~4 Ag−1 current rate and long cycle life (~283 mAh.g−1 at ~1Ag−1 over 500 cycles with ~99.6% Coulombic efficiency). On the contrary, Sb2S3/RGO showed favorable results in sodium-ion batteries with an average specific capacity of ~300 mAh.g−1 at ~0.1 Ag−1 current rate up to 100 cycles and good rate capability (~210 mAh.g−1 at ~1 Ag−1 current rate with ~99% Coulombic efficiency). The difference electrochemical performance of Sb2S3@C and Sb2S3/RGO in lithium-ion and sodium-ion batteries attributed to the difference in charge transfer resistance, SEI resistance, and phase evolution as confirmed by electrochemical impedance spectroscopy, ex situ XANES, and XRD study of cycled electrodes. Also, superior Na-ion and Li-ion reaction kinetics in Sb2S3/RGO and Sb2S3@C was verified by diffusion coefficient (DNa and DLi) measurements. These results demonstrate that Sb2S3/carbon composite architecture selection is an important factor for designing conversion-cum-alloy anodes in lithium and sodium batteries.
ArticleNumber 160906
Author Saha, Partha
Das, Debasish
Dashairya, Love
Author_xml – sequence: 1
  givenname: Love
  surname: Dashairya
  fullname: Dashairya, Love
  organization: Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
– sequence: 2
  givenname: Debasish
  surname: Das
  fullname: Das, Debasish
  organization: School of Nano Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
– sequence: 3
  givenname: Partha
  surname: Saha
  fullname: Saha, Partha
  email: sahap@nitrkl.ac.in
  organization: Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
BookMark eNqFkE1r3DAURUVJoJM0PyEg6NpTfVi2RRelhKQtBLpIsxay9Dwj45HcJ7nQ_vp66qy6yUp3cc996FyRi5giEHLL2Z4z3nwY96OdJpdOe8EE3_OGada8ITvetbKqm0ZfkB3TQlWd7Lq35CrnkTHGteQ78ud-WlzwtoR4oOUIFNMENA30gHY-QgRqo6dzwrRk6iz2KVKXtvoao40pF1xcWRA8ferFk6RDQpqXGTCsYQrlGJbTv5mc_DnmktAe4B25HOyU4eblvSbPD_c_7r5Wj9-_fLv7_Fg5KdtScTFoJXxreac7CV6wxtW1420vXTvYWvVM1ooNA-e6B8G9qrXVdS9c7XunQF6T99vujOnnArmYMS0Y15NGqFauylTD19bHreUw5YwwGBfK-s8UC9owGc7MWbYZzYtsc5ZtNtkrrf6jZwwni79f5T5tHKwCfgVAk12A6MAHBFeMT-GVhb8z5Z_8
CitedBy_id crossref_primary_10_1016_j_apsusc_2022_156111
crossref_primary_10_1021_acsami_4c02318
crossref_primary_10_1002_cnma_202100515
crossref_primary_10_1021_acsaem_3c02188
crossref_primary_10_1080_00084433_2022_2034710
crossref_primary_10_1039_D2NA00695B
crossref_primary_10_1016_j_jallcom_2022_167576
crossref_primary_10_1016_j_jssc_2022_123637
crossref_primary_10_1016_j_ssi_2023_116243
crossref_primary_10_1007_s12598_023_02582_9
crossref_primary_10_1002_app_51947
crossref_primary_10_1016_j_est_2023_108932
crossref_primary_10_2139_ssrn_3985329
crossref_primary_10_1016_j_jallcom_2021_161885
crossref_primary_10_1002_adfm_202406116
crossref_primary_10_1039_D2DT01898E
crossref_primary_10_3390_ma14247521
crossref_primary_10_1016_j_optmat_2022_113028
crossref_primary_10_1016_j_surfin_2023_103630
crossref_primary_10_1021_acs_energyfuels_3c00106
crossref_primary_10_3390_coatings11101233
crossref_primary_10_1038_s41598_022_19552_3
crossref_primary_10_3389_fchem_2022_870564
crossref_primary_10_1007_s10800_024_02078_z
crossref_primary_10_1016_j_jelechem_2024_118593
crossref_primary_10_1002_adfm_202204231
crossref_primary_10_1007_s12598_023_02550_3
crossref_primary_10_1016_j_jpowsour_2024_235739
Cites_doi 10.1002/smll.201703576
10.1039/C7QM00480J
10.1016/j.jpowsour.2019.226762
10.1002/chem.201402511
10.1039/c3cc41456f
10.1039/C4TA00106K
10.1002/adfm.201200691
10.1038/35104644
10.1002/celc.201700173
10.1016/j.ensm.2019.11.029
10.1007/s10853-018-03275-w
10.1002/ejic.201701364
10.1016/j.jpowsour.2018.03.031
10.1039/c3ta14643j
10.1016/j.matchemphys.2017.10.003
10.1149/1.1870612
10.1144/1467-7873/11-RA-077
10.1016/j.jcis.2019.11.118
10.1039/C6CS00776G
10.1021/cm3031818
10.1002/admi.201701481
10.1021/cm901452z
10.1021/acssuschemeng.5b01211
10.1039/C4TA01324G
10.1002/aenm.201601329
10.1021/acsami.5b05509
10.1038/srep10160
10.1016/j.jallcom.2021.159961
10.1016/j.carbon.2006.07.010
10.1021/acssuschemeng.7b00469
10.1016/j.jallcom.2021.159742
10.1039/c3ta11568b
10.1021/acssuschemeng.8b04332
10.1002/adma.201700622
10.1016/j.electacta.2017.01.114
10.1016/j.electacta.2015.01.186
10.1016/j.nanoen.2017.01.033
10.1016/j.carbon.2019.12.060
10.1016/j.jallcom.2017.11.063
10.1021/acsnano.6b05653
10.1021/acs.chemmater.8b05272
10.1021/jp509057w
10.1002/ppsc.201500227
10.1002/aenm.201870082
10.1039/c2cc32552g
10.1039/C4NR05242K
10.1016/j.electacta.2017.01.036
10.1039/C8RA04421J
10.1016/j.jpowsour.2016.12.094
10.1002/anie.201901840
10.1039/C6TA07838A
10.1016/j.jallcom.2015.10.212
10.1016/j.jechem.2018.09.001
10.1007/s40820-017-0165-1
10.1016/j.electacta.2020.136948
10.1021/jp501032d
10.1016/j.mtcomm.2020.101189
10.1021/ja310347x
10.1016/j.electacta.2017.04.112
10.1007/s12598-017-0899-4
10.1016/j.electacta.2014.11.013
10.1016/j.electacta.2015.12.150
10.1016/j.jallcom.2018.10.008
10.1021/acsnano.7b04078
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Nov 25, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 25, 2021
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2021.160906
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2021_160906
S092583882102315X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-12f952d7a18983ed206c44c17b3c7fa45b03450ff119be21d549a94b2c4dbc5e3
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 04:38:58 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Tue Jul 01 03:33:28 EDT 2025
Fri Feb 23 02:40:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Antimony
Anode
Core-shell
Sodium-ion batteries
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-12f952d7a18983ed206c44c17b3c7fa45b03450ff119be21d549a94b2c4dbc5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2573021561
PQPubID 2045454
ParticipantIDs proquest_journals_2573021561
crossref_citationtrail_10_1016_j_jallcom_2021_160906
crossref_primary_10_1016_j_jallcom_2021_160906
elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_160906
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-25
PublicationDateYYYYMMDD 2021-11-25
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Alcántara, Lavela, Ortiz, Tirado (bib39) 2005; 8
Tang, Yan, Lu, Pan (bib50) 2017; 241
Hameed, Reddy, Chen, Chowdari, Vittal (bib17) 2016; 4
Fuertes, Valle-Vigón, Sevilla (bib45) 2012; 48
Li, Yan, Zhang, Hou, Li, Lu, Yao, Pan (bib8) 2017; 228
Shen, Wang, Wu, Moudrakovski, van Aken, Maier, Yu (bib16) 2019; 58
Hou, Jing, Huang, Yang, Zhang, Chen, Wu, Ji (bib23) 2015; 7
Xin, Whittingham (bib3) 2020
Das, Mitra, Jena, Majumder, Basu (bib48) 2018; 6
Kim, Ha, Oh, Lee (bib11) 2014; 20
Ramakrishnan, Nithya, Kundoly Purushothaman, Kumar, Gopukumar (bib54) 2017; 5
Xie, Xia, Yuan, Liu, Zhang, Nie, Yan, Wang (bib26) 2019; 435
Nithya, Gopukumar (bib32) 2014; 2
Uceda, Chiu, Gauvin, Zaghib, Demopoulos (bib41) 2020; 26
Liang, Ni, Li (bib18) 2017; 33
Yi, Han, Cheng, Wang, Wu, Wang (bib64) 2016; 190
Zhang, Hasa, Passerini (bib5) 2018; 8
Jing, Wang, Wang, Gao, Zhang, Wu (bib22) 2020; 159
Dashairya, Saha (bib24) 2020; 21
Abdolhosseinzadeh, Asgharzadeh, Kim (bib52) 2015; 5
Hwang, Kim, Kim, Kim (bib43) 2016; 4
Pan, Yan, Cui, Xie, Zhang, Mu, Hao (bib55) 2018; 5
Baggetto, Carroll, Hah, Johnson, Mullins, Unocic, Johnson, Meng, Veith (bib70) 2014; 118
Xiong, Wang, Lin, Wang, Ou, Zheng, Yang, Wang, Liu (bib33) 2016; 10
Wen, Pei, Liu, Su, Yang, Wang, Zhang, Dai, Feng, Wu (bib4) 2021
Slater, Kim, Lee, Johnson (bib7) 2013; 23
Denis, Prikhodchenko, Mason, Batabyal, Gun, Sladkevich, Medvedev, Lev (bib61) 2013; 4
Zhang, Xiang, Mu, Wen, Yuan, Zhao, Xu, Su, Liu (bib19) 2017; 227
Dashairya, Das, Saha (bib42) 2020; 358
Dashairya, Sharma, Basu, Saha (bib46) 2018; 735
Dou, Shi, Chen, Zhang (bib31) 2019; 2
Li, Zhang, Liu, Joo, Lee, Gan, Yin (bib44) 2013; 49
Dashairya, Sharma, Basu, Saha (bib49) 2019; 774
Kim, Ha, Oh, Lee (bib58) 2014; 20
Hwang, Myung, Sun (bib6) 2017; 46
Tao, Liu, Ren, Jiang, Wei, Zhai, Wang, Stock, Wen, Ren (bib34) 2021
Xiao, Lee, Sun (bib15) 2017; 7
Goodenough, Kim (bib1) 2010; 22
Zhu, Hu, Li, Zhang (bib38) 2007; 45
Luo, Gaumet, Mai (bib13) 2017; 36
Dashairya, Das, Jena, Mitra, Saha (bib51) 2020
Duan, Zhu, Li, Hu, Zhang, Cheng, Chen (bib67) 2014; 2
Ramireddy, Rahman, Xing, Chen, Glushenkov (bib68) 2014; 2
Wang, Yuan, Yin, Zhu, Zhang, Yan (bib30) 2016; 33
Ruan, Wang, Song, Han, Cheng (bib66) 2015; 160
Lao, Zhang, Luo, Yan, Sun, Dou (bib9) 2017; 29
Prikhodchenko, Gun, Sladkevich, Mikhaylov, Lev, Tay, Batabyal, Yu (bib14) 2012; 24
Wang, Yang, Lee, Rogach, Yu (bib27) 2019; 31
Elizabeth, Singh, Gopukumar (bib25) 2019; 54
He, Wei, Zhai, Li (bib12) 2018; 2
Wu, Yang, Pu, Gao, Meng, Yang, Zhao (bib21) 2020
Baggetto, Ganesh, Sun, Meisner, Zawodzinski, Veith (bib57) 2013; 1
Dashairya, Mehta, Saha, Basu (bib47) 2020; 561
Li, Sun, Ni, Li (bib69) 2019; 9
Yu, Jin, Huang, Yang, Huang, Brock, Sung, Abruña (bib71) 2018; 8
Xie, Liu, Xia, Zhang, Li, Ouyang, Nie, Wang (bib28) 2018; 10
Tarascon, Armand (bib2) 2001; 414
Zheng, Li, Zhao, Shen (bib60) 2018; 2018
Xie, Tong, Su, Xu, Wang, Wang (bib35) 2017; 342
Saha, Jampani, Datta, Hong, Okoli, Manivannan, Kumta (bib63) 2015; 119
Zhu, Nie, Shen, Dong, Sheng, Li, Luo, Zhang (bib59) 2015; 7
Dashairya, Das, Saha (bib40) 2020
Bommier, Ji (bib10) 2018; 14
Ma, Gao, Chen, Wu (bib36) 2017; 4
Adelman, Beauchemin, Hendershot, Kwong (bib72) 2012; 12
Ge, Hou, Ji, Huang, Li, Huang (bib29) 2018; 203
Darwiche, Marino, Sougrati, Fraisse, Stievano, Monconduit (bib56) 2012; 134
Cheng, Huang, Li, Xu, Cao, Ouyang, Yan, Qi (bib65) 2016; 658
Huang, Wei, Liao, Ni, Wang, Ma (bib20) 2019; 33
Zhang, Zhao, Wu, Li, Shen, Ni, Yan, Diao, Chen (bib37) 2017; 11
Li, Qian, Qin, Liu, Shi, Ran, Han, He, Kang, Li (bib53) 2018; 385
Lv, Qiu, Lu, Fu, Li, Hu, Liu (bib62) 2015; 151
Dou (10.1016/j.jallcom.2021.160906_bib31) 2019; 2
He (10.1016/j.jallcom.2021.160906_bib12) 2018; 2
Elizabeth (10.1016/j.jallcom.2021.160906_bib25) 2019; 54
Xie (10.1016/j.jallcom.2021.160906_bib28) 2018; 10
Tao (10.1016/j.jallcom.2021.160906_bib34) 2021
Darwiche (10.1016/j.jallcom.2021.160906_bib56) 2012; 134
Ma (10.1016/j.jallcom.2021.160906_bib36) 2017; 4
Zhang (10.1016/j.jallcom.2021.160906_bib19) 2017; 227
Li (10.1016/j.jallcom.2021.160906_bib44) 2013; 49
Denis (10.1016/j.jallcom.2021.160906_bib61) 2013; 4
Dashairya (10.1016/j.jallcom.2021.160906_bib49) 2019; 774
Wu (10.1016/j.jallcom.2021.160906_bib21) 2020
Dashairya (10.1016/j.jallcom.2021.160906_bib51) 2020
Bommier (10.1016/j.jallcom.2021.160906_bib10) 2018; 14
Uceda (10.1016/j.jallcom.2021.160906_bib41) 2020; 26
Xie (10.1016/j.jallcom.2021.160906_bib26) 2019; 435
Ge (10.1016/j.jallcom.2021.160906_bib29) 2018; 203
Dashairya (10.1016/j.jallcom.2021.160906_bib46) 2018; 735
Huang (10.1016/j.jallcom.2021.160906_bib20) 2019; 33
Tang (10.1016/j.jallcom.2021.160906_bib50) 2017; 241
Jing (10.1016/j.jallcom.2021.160906_bib22) 2020; 159
Li (10.1016/j.jallcom.2021.160906_bib53) 2018; 385
Xie (10.1016/j.jallcom.2021.160906_bib35) 2017; 342
Ramireddy (10.1016/j.jallcom.2021.160906_bib68) 2014; 2
Wen (10.1016/j.jallcom.2021.160906_bib4) 2021
Ramakrishnan (10.1016/j.jallcom.2021.160906_bib54) 2017; 5
Zhu (10.1016/j.jallcom.2021.160906_bib38) 2007; 45
Kim (10.1016/j.jallcom.2021.160906_bib58) 2014; 20
Liang (10.1016/j.jallcom.2021.160906_bib18) 2017; 33
Pan (10.1016/j.jallcom.2021.160906_bib55) 2018; 5
Hameed (10.1016/j.jallcom.2021.160906_bib17) 2016; 4
Cheng (10.1016/j.jallcom.2021.160906_bib65) 2016; 658
Wang (10.1016/j.jallcom.2021.160906_bib27) 2019; 31
Adelman (10.1016/j.jallcom.2021.160906_bib72) 2012; 12
Shen (10.1016/j.jallcom.2021.160906_bib16) 2019; 58
Baggetto (10.1016/j.jallcom.2021.160906_bib57) 2013; 1
Hou (10.1016/j.jallcom.2021.160906_bib23) 2015; 7
Luo (10.1016/j.jallcom.2021.160906_bib13) 2017; 36
Nithya (10.1016/j.jallcom.2021.160906_bib32) 2014; 2
Goodenough (10.1016/j.jallcom.2021.160906_bib1) 2010; 22
Tarascon (10.1016/j.jallcom.2021.160906_bib2) 2001; 414
Dashairya (10.1016/j.jallcom.2021.160906_bib42) 2020; 358
Baggetto (10.1016/j.jallcom.2021.160906_bib70) 2014; 118
Dashairya (10.1016/j.jallcom.2021.160906_bib47) 2020; 561
Hwang (10.1016/j.jallcom.2021.160906_bib43) 2016; 4
Lv (10.1016/j.jallcom.2021.160906_bib62) 2015; 151
Xiong (10.1016/j.jallcom.2021.160906_bib33) 2016; 10
Lao (10.1016/j.jallcom.2021.160906_bib9) 2017; 29
Dashairya (10.1016/j.jallcom.2021.160906_bib24) 2020; 21
Xin (10.1016/j.jallcom.2021.160906_bib3) 2020
Prikhodchenko (10.1016/j.jallcom.2021.160906_bib14) 2012; 24
Li (10.1016/j.jallcom.2021.160906_bib8) 2017; 228
Hwang (10.1016/j.jallcom.2021.160906_bib6) 2017; 46
Zhu (10.1016/j.jallcom.2021.160906_bib59) 2015; 7
Zhang (10.1016/j.jallcom.2021.160906_bib37) 2017; 11
Yu (10.1016/j.jallcom.2021.160906_bib71) 2018; 8
Fuertes (10.1016/j.jallcom.2021.160906_bib45) 2012; 48
Abdolhosseinzadeh (10.1016/j.jallcom.2021.160906_bib52) 2015; 5
Dashairya (10.1016/j.jallcom.2021.160906_bib40) 2020
Saha (10.1016/j.jallcom.2021.160906_bib63) 2015; 119
Kim (10.1016/j.jallcom.2021.160906_bib11) 2014; 20
Yi (10.1016/j.jallcom.2021.160906_bib64) 2016; 190
Zhang (10.1016/j.jallcom.2021.160906_bib5) 2018; 8
Alcántara (10.1016/j.jallcom.2021.160906_bib39) 2005; 8
Das (10.1016/j.jallcom.2021.160906_bib48) 2018; 6
Wang (10.1016/j.jallcom.2021.160906_bib30) 2016; 33
Xiao (10.1016/j.jallcom.2021.160906_bib15) 2017; 7
Li (10.1016/j.jallcom.2021.160906_bib69) 2019; 9
Zheng (10.1016/j.jallcom.2021.160906_bib60) 2018; 2018
Duan (10.1016/j.jallcom.2021.160906_bib67) 2014; 2
Ruan (10.1016/j.jallcom.2021.160906_bib66) 2015; 160
Slater (10.1016/j.jallcom.2021.160906_bib7) 2013; 23
References_xml – volume: 8
  year: 2018
  ident: bib5
  article-title: Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials
  publication-title: Adv. Energy Mater.
– year: 2020
  ident: bib40
  article-title: Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: a stable anode for lithium-ion batteries
  publication-title: Mater. Today Comm.
– volume: 24
  start-page: 4750
  year: 2012
  end-page: 4757
  ident: bib14
  article-title: Conversion of hydroperoxoantimonate coated graphenes to Sb
  publication-title: Chem. Mater.
– volume: 20
  start-page: 11980
  year: 2014
  end-page: 11992
  ident: bib58
  article-title: High‐capacity anode materials for sodium‐ion batteries
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 227
  year: 2012
  end-page: 239
  ident: bib72
  article-title: Change in the oxidation rate of stibnite as affected by pyrite in an oxygenated flow-through system
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 10
  start-page: 10953
  year: 2016
  end-page: 10959
  ident: bib33
  article-title: Enhancing sodium ion battery performance by strongly binding nanostructured Sb
  publication-title: ACS Nano
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: bib2
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
– volume: 6
  start-page: 17000
  year: 2018
  end-page: 17010
  ident: bib48
  article-title: Electrophoretically deposited ZnFe
  publication-title: ACS Sustain. Chem. Eng.
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  ident: bib1
  article-title: Challenges for rechargeable Li
  publication-title: Batter., Chem. Mater.
– volume: 20
  start-page: 11980
  year: 2014
  end-page: 11992
  ident: bib11
  article-title: High-capacity anode materials for sodium-ion batteries
  publication-title: Chem. A Eur. J.
– volume: 561
  start-page: 71
  year: 2020
  end-page: 82
  ident: bib47
  article-title: Visible-light-induced enhanced photocatalytic degradation of Rhodamine-B dye using Bi
  publication-title: J. Colloid Interf. Sci.
– volume: 227
  start-page: 203
  year: 2017
  end-page: 209
  ident: bib19
  article-title: SnS
  publication-title: Electrochim. Acta
– volume: 774
  start-page: 625
  year: 2019
  end-page: 636
  ident: bib49
  article-title: SnS
  publication-title: J. Alloy. Compd.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib61
  article-title: High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
  publication-title: Nat. Comm.
– volume: 36
  start-page: 321
  year: 2017
  end-page: 338
  ident: bib13
  article-title: Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application
  publication-title: Rare Met.
– volume: 11
  start-page: 8429
  year: 2017
  end-page: 8436
  ident: bib37
  article-title: Petal-like MoS
  publication-title: ACS Nano
– volume: 342
  start-page: 529
  year: 2017
  end-page: 536
  ident: bib35
  article-title: Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance
  publication-title: J. Power Sources
– volume: 435
  year: 2019
  ident: bib26
  article-title: Sb
  publication-title: J. Power Sources
– volume: 658
  start-page: 234
  year: 2016
  end-page: 240
  ident: bib65
  article-title: SnO
  publication-title: J. Alloy. Compd.
– volume: 7
  start-page: 3309
  year: 2015
  end-page: 3315
  ident: bib59
  article-title: High rate capability and superior cycle stability of a flower-like Sb
  publication-title: Nanoscale
– volume: 33
  start-page: 213
  year: 2017
  end-page: 220
  ident: bib18
  article-title: Bio-inspired engineering of Bi
  publication-title: Nano Energy
– volume: 31
  start-page: 2469
  year: 2019
  end-page: 2475
  ident: bib27
  article-title: Reversible interaction of Sb with an active se matrix enhances the cycle stability of electrodes for lithium-ion
  publication-title: Batter., Chem. Mater.
– volume: 134
  start-page: 20805
  year: 2012
  end-page: 20811
  ident: bib56
  article-title: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism
  publication-title: J. Am. Chem. Soc.
– volume: 160
  start-page: 330
  year: 2015
  end-page: 336
  ident: bib66
  article-title: Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 149
  year: 2019
  end-page: 198
  ident: bib31
  article-title: Silicon/carbon composite anode materials for lithium-ion batteries, Electrochem
  publication-title: Energy Rev.
– volume: 5
  year: 2018
  ident: bib55
  article-title: Ionic liquid‐assisted preparation of Sb
  publication-title: Adv. Mater. Interf.
– volume: 241
  start-page: 63
  year: 2017
  end-page: 72
  ident: bib50
  article-title: Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries
  publication-title: Electrochim. Acta
– year: 2020
  ident: bib51
  article-title: Controlled scalable synthesis of yolk-shell antimony with porous carbon anode for superior Na-ion storage
  publication-title: Nano Sel.
– volume: 54
  start-page: 7110
  year: 2019
  end-page: 7118
  ident: bib25
  article-title: Electrochemical performance of Sb
  publication-title: J. Mater. Sci.
– volume: 735
  start-page: 234
  year: 2018
  end-page: 245
  ident: bib46
  article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb
  publication-title: J. Alloy. Compd.
– volume: 5
  start-page: 5090
  year: 2017
  end-page: 5098
  ident: bib54
  article-title: Sb
  publication-title: ACS Sustain. Chem. Eng.
– year: 2021
  ident: bib4
  article-title: Fully encapsulated Sb
  publication-title: J. Alloy. Comp.
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  ident: bib6
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
– volume: 190
  start-page: 804
  year: 2016
  end-page: 810
  ident: bib64
  article-title: A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 10516
  year: 2014
  end-page: 10525
  ident: bib32
  article-title: rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 17946
  year: 2016
  end-page: 17951
  ident: bib43
  article-title: Na-ion storage performance of amorphous Sb
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 10160
  year: 2015
  ident: bib52
  article-title: Fast and fully-scalable synthesis of reduced graphene oxide
  publication-title: Sci. Rep.
– volume: 2
  start-page: 4282
  year: 2014
  end-page: 4291
  ident: bib68
  article-title: Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation
  publication-title: J. Mater. Chem. A
– volume: 151
  start-page: 214
  year: 2015
  end-page: 221
  ident: bib62
  article-title: Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 23847
  year: 2018
  end-page: 23853
  ident: bib71
  article-title: SnS/C nanocomposites for high-performance sodium ion battery anodes
  publication-title: RSC Adv.
– year: 2020
  ident: bib21
  article-title: SnS
  publication-title: J. Alloy. Compd.
– volume: 203
  start-page: 185
  year: 2018
  end-page: 192
  ident: bib29
  article-title: Enhanced stability of sodium storage exhibited by carbon coated Sb
  publication-title: Mater. Chem. Phys.
– volume: 385
  start-page: 114
  year: 2018
  end-page: 121
  ident: bib53
  article-title: The different Li/Na ion storage mechanisms of nano Sb
  publication-title: J. Power Sources
– volume: 21
  start-page: 1899
  year: 2020
  end-page: 1904
  ident: bib24
  article-title: Antimony sulphide nanorods decorated onto reduced graphene oxide based anodes for sodium-ion battery
  publication-title: Mater. Today.: Proc.
– volume: 8
  start-page: A222
  year: 2005
  end-page: A225
  ident: bib39
  article-title: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries
  publication-title: Electrochem. Solid State Lett.
– volume: 118
  start-page: 7856
  year: 2014
  end-page: 7864
  ident: bib70
  article-title: Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 19362
  year: 2015
  end-page: 19369
  ident: bib23
  article-title: One-dimensional rod-like Sb
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 12
  year: 2018
  ident: bib28
  article-title: Template-free synthesis of Sb
  publication-title: Nano Micro Lett.
– volume: 45
  start-page: 160
  year: 2007
  end-page: 165
  ident: bib38
  article-title: Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors
  publication-title: Carbon
– volume: 26
  start-page: 560
  year: 2020
  end-page: 569
  ident: bib41
  article-title: Electrophoretically co-deposited Li
  publication-title: Energy Storage Mater.
– volume: 358
  year: 2020
  ident: bib42
  article-title: Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries
  publication-title: Electrochim. Acta
– start-page: 1
  year: 2020
  end-page: 13
  ident: bib3
  article-title: Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries
  publication-title: Electrochem. Energy Rev.
– volume: 33
  start-page: 100
  year: 2019
  end-page: 124
  ident: bib20
  article-title: Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS
  publication-title: J. Energy Chem.
– volume: 48
  start-page: 6124
  year: 2012
  end-page: 6126
  ident: bib45
  article-title: One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules
  publication-title: Chem. Comm.
– volume: 119
  start-page: 5771
  year: 2015
  end-page: 5782
  ident: bib63
  article-title: Electrochemical performance of chemically and solid state-derived chevrel phase Mo
  publication-title: Batter., J. Phys. Chem. C
– volume: 2018
  start-page: 1224
  year: 2018
  end-page: 1228
  ident: bib60
  article-title: Flowerlike Sb
  publication-title: Eur. J. Inorg. Chem.
– volume: 49
  start-page: 5135
  year: 2013
  end-page: 5137
  ident: bib44
  article-title: Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin
  publication-title: Chem. Comm.
– volume: 58
  start-page: 7238
  year: 2019
  end-page: 7243
  ident: bib16
  article-title: Hierarchical metal sulfide/carbon spheres: a generalized synthesis and high sodium-storage performance
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 7985
  year: 2013
  end-page: 7994
  ident: bib57
  article-title: Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2019
  ident: bib69
  article-title: Template‐free construction of self‐supported sb prisms with stable sodium storage
  publication-title: Adv. Energy Mater.
– volume: 14
  year: 2018
  ident: bib10
  article-title: Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes
  publication-title: Small
– volume: 4
  start-page: 2479
  year: 2016
  end-page: 2486
  ident: bib17
  article-title: RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 2
  start-page: 8668
  year: 2014
  end-page: 8675
  ident: bib67
  article-title: Na
  publication-title: J. Mater. Chem. A
– volume: 159
  start-page: 366
  year: 2020
  end-page: 377
  ident: bib22
  article-title: Encapsulating yolk-shell FeS
  publication-title: Carbon
– volume: 23
  start-page: 947
  year: 2013
  end-page: 958
  ident: bib7
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1463
  year: 2017
  end-page: 1469
  ident: bib36
  article-title: Synthesis of robust silicon nanoparticles@void@ graphitic carbon spheres for high‐performance lithium‐ion‐battery anodes
  publication-title: ChemElectroChem
– volume: 228
  start-page: 436
  year: 2017
  end-page: 446
  ident: bib8
  article-title: In situ growth of Sb
  publication-title: Electrochim. Acta
– volume: 33
  start-page: 493
  year: 2016
  end-page: 499
  ident: bib30
  article-title: Green and Facile Fabrication of MWNTs@Sb
  publication-title: Part. Part. Syst. Charact.
– volume: 2
  start-page: 437
  year: 2018
  end-page: 455
  ident: bib12
  article-title: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries
  publication-title: Mater. Chem. Front.
– volume: 7
  year: 2017
  ident: bib15
  article-title: The application of metal sulfides in sodium ion batteries
  publication-title: Adv. Energy Mater.
– year: 2021
  ident: bib34
  article-title: Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives
  publication-title: J. Alloy. Comp.
– volume: 29
  year: 2017
  ident: bib9
  article-title: Alloy-based anode materials toward advanced sodium-ion batteries
  publication-title: Adv. Mater.
– volume: 14
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib10
  article-title: Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes
  publication-title: Small
  doi: 10.1002/smll.201703576
– volume: 2
  start-page: 437
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib12
  article-title: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00480J
– volume: 435
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib26
  article-title: Sb2S3 embedded in carbon–silicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226762
– volume: 20
  start-page: 11980
  year: 2014
  ident: 10.1016/j.jallcom.2021.160906_bib11
  article-title: High-capacity anode materials for sodium-ion batteries
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201402511
– volume: 49
  start-page: 5135
  year: 2013
  ident: 10.1016/j.jallcom.2021.160906_bib44
  article-title: Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin
  publication-title: Chem. Comm.
  doi: 10.1039/c3cc41456f
– volume: 2
  start-page: 8668
  year: 2014
  ident: 10.1016/j.jallcom.2021.160906_bib67
  article-title: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00106K
– volume: 23
  start-page: 947
  year: 2013
  ident: 10.1016/j.jallcom.2021.160906_bib7
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200691
– volume: 414
  start-page: 359
  year: 2001
  ident: 10.1016/j.jallcom.2021.160906_bib2
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 4
  start-page: 1463
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib36
  article-title: Synthesis of robust silicon nanoparticles@void@ graphitic carbon spheres for high‐performance lithium‐ion‐battery anodes
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700173
– volume: 26
  start-page: 560
  year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib41
  article-title: Electrophoretically co-deposited Li4Ti5O12/reduced graphene oxide nanolayered composites for high-performance battery application
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.11.029
– volume: 54
  start-page: 7110
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib25
  article-title: Electrochemical performance of Sb2S3/CNT free-standing flexible anode for Li-ion batteries
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-03275-w
– volume: 2018
  start-page: 1224
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib60
  article-title: Flowerlike Sb2S3/PPy microspheres used as anode material for high‐performance sodium‐ion batteries
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201701364
– volume: 385
  start-page: 114
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib53
  article-title: The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.031
– volume: 2
  start-page: 4282
  year: 2014
  ident: 10.1016/j.jallcom.2021.160906_bib68
  article-title: Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14643j
– start-page: 1
  year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib3
  article-title: Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries
  publication-title: Electrochem. Energy Rev.
– volume: 203
  start-page: 185
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib29
  article-title: Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.10.003
– volume: 8
  start-page: A222
  year: 2005
  ident: 10.1016/j.jallcom.2021.160906_bib39
  article-title: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1870612
– year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib21
  article-title: SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage
  publication-title: J. Alloy. Compd.
– volume: 12
  start-page: 227
  year: 2012
  ident: 10.1016/j.jallcom.2021.160906_bib72
  article-title: Change in the oxidation rate of stibnite as affected by pyrite in an oxygenated flow-through system
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/11-RA-077
– volume: 561
  start-page: 71
  year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib47
  article-title: Visible-light-induced enhanced photocatalytic degradation of Rhodamine-B dye using BixSb2−xS3 solid-solution photocatalysts
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.11.118
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib6
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 24
  start-page: 4750
  year: 2012
  ident: 10.1016/j.jallcom.2021.160906_bib14
  article-title: Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@ graphene for a superior lithium battery anode
  publication-title: Chem. Mater.
  doi: 10.1021/cm3031818
– volume: 5
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib55
  article-title: Ionic liquid‐assisted preparation of Sb2S3/reduced graphene oxide nanocomposite for sodium‐ion batteries
  publication-title: Adv. Mater. Interf.
  doi: 10.1002/admi.201701481
– volume: 22
  start-page: 587
  year: 2010
  ident: 10.1016/j.jallcom.2021.160906_bib1
  article-title: Challenges for rechargeable Li
  publication-title: Batter., Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 4
  start-page: 2479
  year: 2016
  ident: 10.1016/j.jallcom.2021.160906_bib17
  article-title: RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01211
– volume: 2
  start-page: 10516
  year: 2014
  ident: 10.1016/j.jallcom.2021.160906_bib32
  article-title: rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01324G
– volume: 7
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib15
  article-title: The application of metal sulfides in sodium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601329
– volume: 7
  start-page: 19362
  year: 2015
  ident: 10.1016/j.jallcom.2021.160906_bib23
  article-title: One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05509
– volume: 5
  start-page: 10160
  year: 2015
  ident: 10.1016/j.jallcom.2021.160906_bib52
  article-title: Fast and fully-scalable synthesis of reduced graphene oxide
  publication-title: Sci. Rep.
  doi: 10.1038/srep10160
– volume: 21
  start-page: 1899
  year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib24
  article-title: Antimony sulphide nanorods decorated onto reduced graphene oxide based anodes for sodium-ion battery
  publication-title: Mater. Today.: Proc.
– year: 2021
  ident: 10.1016/j.jallcom.2021.160906_bib4
  article-title: Fully encapsulated Sb2Se3/Sb/C nanofibers: towards high-rate, ultralong-lifespan lithium-ion batteries
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2021.159961
– volume: 45
  start-page: 160
  year: 2007
  ident: 10.1016/j.jallcom.2021.160906_bib38
  article-title: Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.07.010
– volume: 5
  start-page: 5090
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib54
  article-title: Sb2O4@ rGO nanocomposite anode for high performance sodium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00469
– year: 2021
  ident: 10.1016/j.jallcom.2021.160906_bib34
  article-title: Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2021.159742
– volume: 1
  start-page: 7985
  year: 2013
  ident: 10.1016/j.jallcom.2021.160906_bib57
  article-title: Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11568b
– volume: 20
  start-page: 11980
  year: 2014
  ident: 10.1016/j.jallcom.2021.160906_bib58
  article-title: High‐capacity anode materials for sodium‐ion batteries
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201402511
– volume: 6
  start-page: 17000
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib48
  article-title: Electrophoretically deposited ZnFe2O4-carbon black porous film as a superior negative electrode for lithium-ion battery
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04332
– volume: 29
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib9
  article-title: Alloy-based anode materials toward advanced sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700622
– volume: 228
  start-page: 436
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib8
  article-title: In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.114
– volume: 160
  start-page: 330
  year: 2015
  ident: 10.1016/j.jallcom.2021.160906_bib66
  article-title: Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.186
– volume: 33
  start-page: 213
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib18
  article-title: Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.033
– volume: 2
  start-page: 149
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib31
  article-title: Silicon/carbon composite anode materials for lithium-ion batteries, Electrochem
  publication-title: Energy Rev.
– volume: 159
  start-page: 366
  year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib22
  article-title: Encapsulating yolk-shell FeS2@ carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.12.060
– volume: 4
  start-page: 1
  year: 2013
  ident: 10.1016/j.jallcom.2021.160906_bib61
  article-title: High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
  publication-title: Nat. Comm.
– volume: 735
  start-page: 234
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib46
  article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb2S3/rGO under visible light irradiation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.11.063
– volume: 10
  start-page: 10953
  year: 2016
  ident: 10.1016/j.jallcom.2021.160906_bib33
  article-title: Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05653
– year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib51
  article-title: Controlled scalable synthesis of yolk-shell antimony with porous carbon anode for superior Na-ion storage
  publication-title: Nano Sel.
– volume: 9
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib69
  article-title: Template‐free construction of self‐supported sb prisms with stable sodium storage
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 2469
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib27
  article-title: Reversible interaction of Sb with an active se matrix enhances the cycle stability of electrodes for lithium-ion
  publication-title: Batter., Chem. Mater.
  doi: 10.1021/acs.chemmater.8b05272
– volume: 119
  start-page: 5771
  year: 2015
  ident: 10.1016/j.jallcom.2021.160906_bib63
  article-title: Electrochemical performance of chemically and solid state-derived chevrel phase Mo6T8 (T = S, Se) positive electrodes for sodium-ion
  publication-title: Batter., J. Phys. Chem. C
  doi: 10.1021/jp509057w
– volume: 33
  start-page: 493
  year: 2016
  ident: 10.1016/j.jallcom.2021.160906_bib30
  article-title: Green and Facile Fabrication of MWNTs@Sb2S3@PPy Coaxial Nanocables for High‐Performance Na‐Ion Batteries
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201500227
– volume: 8
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib5
  article-title: Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201870082
– volume: 48
  start-page: 6124
  year: 2012
  ident: 10.1016/j.jallcom.2021.160906_bib45
  article-title: One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules
  publication-title: Chem. Comm.
  doi: 10.1039/c2cc32552g
– volume: 7
  start-page: 3309
  year: 2015
  ident: 10.1016/j.jallcom.2021.160906_bib59
  article-title: High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C4NR05242K
– volume: 227
  start-page: 203
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib19
  article-title: SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.036
– volume: 8
  start-page: 23847
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib71
  article-title: SnS/C nanocomposites for high-performance sodium ion battery anodes
  publication-title: RSC Adv.
  doi: 10.1039/C8RA04421J
– volume: 342
  start-page: 529
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib35
  article-title: Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.094
– volume: 58
  start-page: 7238
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib16
  article-title: Hierarchical metal sulfide/carbon spheres: a generalized synthesis and high sodium-storage performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901840
– volume: 4
  start-page: 17946
  year: 2016
  ident: 10.1016/j.jallcom.2021.160906_bib43
  article-title: Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07838A
– volume: 658
  start-page: 234
  year: 2016
  ident: 10.1016/j.jallcom.2021.160906_bib65
  article-title: SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.10.212
– volume: 33
  start-page: 100
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib20
  article-title: Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.09.001
– volume: 10
  start-page: 12
  year: 2018
  ident: 10.1016/j.jallcom.2021.160906_bib28
  article-title: Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-017-0165-1
– volume: 358
  year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib42
  article-title: Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136948
– volume: 118
  start-page: 7856
  year: 2014
  ident: 10.1016/j.jallcom.2021.160906_bib70
  article-title: Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp501032d
– year: 2020
  ident: 10.1016/j.jallcom.2021.160906_bib40
  article-title: Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: a stable anode for lithium-ion batteries
  publication-title: Mater. Today Comm.
  doi: 10.1016/j.mtcomm.2020.101189
– volume: 134
  start-page: 20805
  year: 2012
  ident: 10.1016/j.jallcom.2021.160906_bib56
  article-title: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310347x
– volume: 241
  start-page: 63
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib50
  article-title: Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.04.112
– volume: 36
  start-page: 321
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib13
  article-title: Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application
  publication-title: Rare Met.
  doi: 10.1007/s12598-017-0899-4
– volume: 151
  start-page: 214
  year: 2015
  ident: 10.1016/j.jallcom.2021.160906_bib62
  article-title: Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.013
– volume: 190
  start-page: 804
  year: 2016
  ident: 10.1016/j.jallcom.2021.160906_bib64
  article-title: A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.150
– volume: 774
  start-page: 625
  year: 2019
  ident: 10.1016/j.jallcom.2021.160906_bib49
  article-title: SnS2/RGO based nanocomposite for efficient photocatalytic degradation of toxic industrial dyes under visible-light irradiation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.10.008
– volume: 11
  start-page: 8429
  year: 2017
  ident: 10.1016/j.jallcom.2021.160906_bib37
  article-title: Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04078
SSID ssj0001931
Score 2.4923446
Snippet •A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior...
Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 160906
SubjectTerms Alkali metals
Anode
Anodes
Antimony
Carbon
Charge transfer
Composite structures
Conversion
Core-shell
Core-shell structure
Diffusion coefficient
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrophoretic deposition
Graphene
Lithium
Lithium-ion batteries
Nanoparticles
Reaction kinetics
Rechargeable batteries
Sodium
Sodium-ion batteries
Volumetric strain
Title Elucidating the role of graphene and porous carbon coating on nanostructured Sb2S3 for superior lithium and sodium storage
URI https://dx.doi.org/10.1016/j.jallcom.2021.160906
https://www.proquest.com/docview/2573021561
Volume 883
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaIcKti2gpYiH7hmN35knRzRCrSlKpcFaW-Wn3RXS4IIufTQ396ZPApFlZB6cyI7ijz2N5-Tb2YIOU0jtzEqlmC9jURmXiTGW5Fwb2JgQuVWYTTy96vp_EZeLrPlFpkNsTAoq-yxv8P0Fq37O5N-Nif3q9VkkRYc__nleGgRLFtiBLtUuMrHv55kHkBQ2qp50DnB3k9RPJP1eG02GxSNcPB0-J2lwMJH__ZPL5C6dT8X--RdzxvpWfdqB2QrlCOyOxvKtY3I3rPMgiOy0yo7Xf2e_DzfNG6FQQzlLQW2R1FPSKtI21TVgHTUlJ4CC6-amjrzYKuSuqrrDs3SlFWXY7Z5CJ4uLF8ICkSX1g3mSIYG8Pgfq-aufUxdeWyi4hJw6gO5uTi_ns2TvuBC4oRQjwnjsci4V4blRS6C5-nUSemYssKpaGRmUyGzNEbGChs483C4NIW03ElvXRbER7JdVmU4JDSowjoRpUmdkbDH7TRIFYKE0wyQttQdETlMs3Z9NnIsirHRg-xsrXvraLSO7qxzRMZ_ht136TheG5APNtR_rSsNLuO1oceDzXW_sWsNCCeQJk3Zp_9_8mfyFq8wpJFnx2QbrBi-ALd5tCft4j0hb86-fptf_QZXKPq_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQ4IFhAFAr4wDW78SOb5IhWrRZoe9lW2pvlJ-xqSaqmuXDgtzOTBwWEVImbldhR5LG_-Zx8MwPwPo3CxpjzhOptJCrzMjHeykR4EwOXeWFzikY-O58vL9Wndbbeg8UYC0OyygH7e0zv0Hq4Mhtmc3a12cxWaSnon19BhxbJs_U9uK9w-1IZg-mPW50HMpSubB72Tqj7bRjPbDvdmt2OVCMCXR19aCmp8tG_HdRfUN35n5Mn8HggjuxD_25PYS9UEzhYjPXaJvDot9SCE3jQSTtd8wy-H-9at6EohuoLQ7rHSFDI6si6XNUIdcxUniENr9uGOXNt64q5uu-OzcpUdZ9ktr0Onq2sWEmGTJc1LSVJxgYS-a-b9lv3mKb21CTJJQLVc7g8Ob5YLJOh4kLipMxvEi5imQmfG16UhQxepHOnlOO5lS6PRmU2lSpLY-S8tEFwj6dLUyornPLWZUG-gP2qrsJLYCEvrZNRmdQZhZvczoPKQ1B4nEHWlrpDUOM0azekI6eqGDs96s62erCOJuvo3jqHMP017KrPx3HXgGK0of5jYWn0GXcNPRptroed3WiEOEk8ac5f_f-T38HB8uLsVJ9-PP_8Gh7SHYpvFNkR7KNFwxskOjf2bbeQfwIJY_xN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+role+of+graphene+and+porous+carbon+coating+on+nanostructured+Sb2S3+for+superior+lithium+and+sodium+storage&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Dashairya%2C+Love&rft.au=Das%2C+Debasish&rft.au=Saha%2C+Partha&rft.date=2021-11-25&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=883&rft_id=info:doi/10.1016%2Fj.jallcom.2021.160906&rft.externalDocID=S092583882102315X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon