Elucidating the role of graphene and porous carbon coating on nanostructured Sb2S3 for superior lithium and sodium storage
•A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior electrochemical performance in LIBs due to mesoporous carbon coating facilitates fast Li-ion migration and low charge transfer resistance.•Sb...
Saved in:
Published in | Journal of alloys and compounds Vol. 883; p. 160906 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior electrochemical performance in LIBs due to mesoporous carbon coating facilitates fast Li-ion migration and low charge transfer resistance.•Sb2S3/rGO exhibits excellent rate capability in SIBs owing to low SEI resistance.•Selection of Sb2S3/C composite architecture is important for alloy anode design.
[Display omitted]
Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion and alloying reactions with lithium/sodium. However, volume variance during (de)lithiation/(de)sodiation complemented with sluggish reaction kinetics leads to severe capacity decay and cycle instability. Carbon in various forms has been explored with Sb2S3 to absorb the volumetric strain by rationale materials and electrode design. However, identifying the suitable carbon composite structure for improved electrochemical performance in lithium-ion and sodium-ion batteries remains a subject of investigation. The present work sheds light on the difference between lithium and sodium storage behavior in Sb2S3/carbon composite by designing two different structures. Therefore, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell (~100 nm thick) and Sb2S3 nanoparticles reinforced with planar graphene sheets were synthesized, followed by binder-free electrode fabrication by electrophoretic deposition. The electrochemical results demonstrate that core-shell Sb2S3@C shows improved electrochemical performance in lithium-ion batteries with rate capacity reaching ~215 mAh.g−1 at ~4 Ag−1 current rate and long cycle life (~283 mAh.g−1 at ~1Ag−1 over 500 cycles with ~99.6% Coulombic efficiency). On the contrary, Sb2S3/RGO showed favorable results in sodium-ion batteries with an average specific capacity of ~300 mAh.g−1 at ~0.1 Ag−1 current rate up to 100 cycles and good rate capability (~210 mAh.g−1 at ~1 Ag−1 current rate with ~99% Coulombic efficiency). The difference electrochemical performance of Sb2S3@C and Sb2S3/RGO in lithium-ion and sodium-ion batteries attributed to the difference in charge transfer resistance, SEI resistance, and phase evolution as confirmed by electrochemical impedance spectroscopy, ex situ XANES, and XRD study of cycled electrodes. Also, superior Na-ion and Li-ion reaction kinetics in Sb2S3/RGO and Sb2S3@C was verified by diffusion coefficient (DNa and DLi) measurements. These results demonstrate that Sb2S3/carbon composite architecture selection is an important factor for designing conversion-cum-alloy anodes in lithium and sodium batteries. |
---|---|
AbstractList | Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion and alloying reactions with lithium/sodium. However, volume variance during (de)lithiation/(de)sodiation complemented with sluggish reaction kinetics leads to severe capacity decay and cycle instability. Carbon in various forms has been explored with Sb2S3 to absorb the volumetric strain by rationale materials and electrode design. However, identifying the suitable carbon composite structure for improved electrochemical performance in lithium-ion and sodium-ion batteries remains a subject of investigation. The present work sheds light on the difference between lithium and sodium storage behavior in Sb2S3/carbon composite by designing two different structures. Therefore, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell (~100 nm thick) and Sb2S3 nanoparticles reinforced with planar graphene sheets were synthesized, followed by binder-free electrode fabrication by electrophoretic deposition. The electrochemical results demonstrate that core-shell Sb2S3@C shows improved electrochemical performance in lithium-ion batteries with rate capacity reaching ~215 mAh.g−1 at ~4 Ag−1 current rate and long cycle life (~283 mAh.g−1 at ~1Ag−1 over 500 cycles with ~99.6% Coulombic efficiency). On the contrary, Sb2S3/RGO showed favorable results in sodium-ion batteries with an average specific capacity of ~300 mAh.g−1 at ~0.1 Ag−1 current rate up to 100 cycles and good rate capability (~210 mAh.g−1 at ~1 Ag−1 current rate with ~99% Coulombic efficiency). The difference electrochemical performance of Sb2S3@C and Sb2S3/RGO in lithium-ion and sodium-ion batteries attributed to the difference in charge transfer resistance, SEI resistance, and phase evolution as confirmed by electrochemical impedance spectroscopy, ex situ XANES, and XRD study of cycled electrodes. Also, superior Na-ion and Li-ion reaction kinetics in Sb2S3/RGO and Sb2S3@C was verified by diffusion coefficient (DNa and DLi) measurements. These results demonstrate that Sb2S3/carbon composite architecture selection is an important factor for designing conversion-cum-alloy anodes in lithium and sodium batteries. •A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior electrochemical performance in LIBs due to mesoporous carbon coating facilitates fast Li-ion migration and low charge transfer resistance.•Sb2S3/rGO exhibits excellent rate capability in SIBs owing to low SEI resistance.•Selection of Sb2S3/C composite architecture is important for alloy anode design. [Display omitted] Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion and alloying reactions with lithium/sodium. However, volume variance during (de)lithiation/(de)sodiation complemented with sluggish reaction kinetics leads to severe capacity decay and cycle instability. Carbon in various forms has been explored with Sb2S3 to absorb the volumetric strain by rationale materials and electrode design. However, identifying the suitable carbon composite structure for improved electrochemical performance in lithium-ion and sodium-ion batteries remains a subject of investigation. The present work sheds light on the difference between lithium and sodium storage behavior in Sb2S3/carbon composite by designing two different structures. Therefore, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell (~100 nm thick) and Sb2S3 nanoparticles reinforced with planar graphene sheets were synthesized, followed by binder-free electrode fabrication by electrophoretic deposition. The electrochemical results demonstrate that core-shell Sb2S3@C shows improved electrochemical performance in lithium-ion batteries with rate capacity reaching ~215 mAh.g−1 at ~4 Ag−1 current rate and long cycle life (~283 mAh.g−1 at ~1Ag−1 over 500 cycles with ~99.6% Coulombic efficiency). On the contrary, Sb2S3/RGO showed favorable results in sodium-ion batteries with an average specific capacity of ~300 mAh.g−1 at ~0.1 Ag−1 current rate up to 100 cycles and good rate capability (~210 mAh.g−1 at ~1 Ag−1 current rate with ~99% Coulombic efficiency). The difference electrochemical performance of Sb2S3@C and Sb2S3/RGO in lithium-ion and sodium-ion batteries attributed to the difference in charge transfer resistance, SEI resistance, and phase evolution as confirmed by electrochemical impedance spectroscopy, ex situ XANES, and XRD study of cycled electrodes. Also, superior Na-ion and Li-ion reaction kinetics in Sb2S3/RGO and Sb2S3@C was verified by diffusion coefficient (DNa and DLi) measurements. These results demonstrate that Sb2S3/carbon composite architecture selection is an important factor for designing conversion-cum-alloy anodes in lithium and sodium batteries. |
ArticleNumber | 160906 |
Author | Saha, Partha Das, Debasish Dashairya, Love |
Author_xml | – sequence: 1 givenname: Love surname: Dashairya fullname: Dashairya, Love organization: Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India – sequence: 2 givenname: Debasish surname: Das fullname: Das, Debasish organization: School of Nano Science and Technology, Indian Institute of Technology, Kharagpur 721302, India – sequence: 3 givenname: Partha surname: Saha fullname: Saha, Partha email: sahap@nitrkl.ac.in organization: Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India |
BookMark | eNqFkE1r3DAURUVJoJM0PyEg6NpTfVi2RRelhKQtBLpIsxay9Dwj45HcJ7nQ_vp66qy6yUp3cc996FyRi5giEHLL2Z4z3nwY96OdJpdOe8EE3_OGada8ITvetbKqm0ZfkB3TQlWd7Lq35CrnkTHGteQ78ud-WlzwtoR4oOUIFNMENA30gHY-QgRqo6dzwrRk6iz2KVKXtvoao40pF1xcWRA8ferFk6RDQpqXGTCsYQrlGJbTv5mc_DnmktAe4B25HOyU4eblvSbPD_c_7r5Wj9-_fLv7_Fg5KdtScTFoJXxreac7CV6wxtW1420vXTvYWvVM1ooNA-e6B8G9qrXVdS9c7XunQF6T99vujOnnArmYMS0Y15NGqFauylTD19bHreUw5YwwGBfK-s8UC9owGc7MWbYZzYtsc5ZtNtkrrf6jZwwni79f5T5tHKwCfgVAk12A6MAHBFeMT-GVhb8z5Z_8 |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2022_156111 crossref_primary_10_1021_acsami_4c02318 crossref_primary_10_1002_cnma_202100515 crossref_primary_10_1021_acsaem_3c02188 crossref_primary_10_1080_00084433_2022_2034710 crossref_primary_10_1039_D2NA00695B crossref_primary_10_1016_j_jallcom_2022_167576 crossref_primary_10_1016_j_jssc_2022_123637 crossref_primary_10_1016_j_ssi_2023_116243 crossref_primary_10_1007_s12598_023_02582_9 crossref_primary_10_1002_app_51947 crossref_primary_10_1016_j_est_2023_108932 crossref_primary_10_2139_ssrn_3985329 crossref_primary_10_1016_j_jallcom_2021_161885 crossref_primary_10_1002_adfm_202406116 crossref_primary_10_1039_D2DT01898E crossref_primary_10_3390_ma14247521 crossref_primary_10_1016_j_optmat_2022_113028 crossref_primary_10_1016_j_surfin_2023_103630 crossref_primary_10_1021_acs_energyfuels_3c00106 crossref_primary_10_3390_coatings11101233 crossref_primary_10_1038_s41598_022_19552_3 crossref_primary_10_3389_fchem_2022_870564 crossref_primary_10_1007_s10800_024_02078_z crossref_primary_10_1016_j_jelechem_2024_118593 crossref_primary_10_1002_adfm_202204231 crossref_primary_10_1007_s12598_023_02550_3 crossref_primary_10_1016_j_jpowsour_2024_235739 |
Cites_doi | 10.1002/smll.201703576 10.1039/C7QM00480J 10.1016/j.jpowsour.2019.226762 10.1002/chem.201402511 10.1039/c3cc41456f 10.1039/C4TA00106K 10.1002/adfm.201200691 10.1038/35104644 10.1002/celc.201700173 10.1016/j.ensm.2019.11.029 10.1007/s10853-018-03275-w 10.1002/ejic.201701364 10.1016/j.jpowsour.2018.03.031 10.1039/c3ta14643j 10.1016/j.matchemphys.2017.10.003 10.1149/1.1870612 10.1144/1467-7873/11-RA-077 10.1016/j.jcis.2019.11.118 10.1039/C6CS00776G 10.1021/cm3031818 10.1002/admi.201701481 10.1021/cm901452z 10.1021/acssuschemeng.5b01211 10.1039/C4TA01324G 10.1002/aenm.201601329 10.1021/acsami.5b05509 10.1038/srep10160 10.1016/j.jallcom.2021.159961 10.1016/j.carbon.2006.07.010 10.1021/acssuschemeng.7b00469 10.1016/j.jallcom.2021.159742 10.1039/c3ta11568b 10.1021/acssuschemeng.8b04332 10.1002/adma.201700622 10.1016/j.electacta.2017.01.114 10.1016/j.electacta.2015.01.186 10.1016/j.nanoen.2017.01.033 10.1016/j.carbon.2019.12.060 10.1016/j.jallcom.2017.11.063 10.1021/acsnano.6b05653 10.1021/acs.chemmater.8b05272 10.1021/jp509057w 10.1002/ppsc.201500227 10.1002/aenm.201870082 10.1039/c2cc32552g 10.1039/C4NR05242K 10.1016/j.electacta.2017.01.036 10.1039/C8RA04421J 10.1016/j.jpowsour.2016.12.094 10.1002/anie.201901840 10.1039/C6TA07838A 10.1016/j.jallcom.2015.10.212 10.1016/j.jechem.2018.09.001 10.1007/s40820-017-0165-1 10.1016/j.electacta.2020.136948 10.1021/jp501032d 10.1016/j.mtcomm.2020.101189 10.1021/ja310347x 10.1016/j.electacta.2017.04.112 10.1007/s12598-017-0899-4 10.1016/j.electacta.2014.11.013 10.1016/j.electacta.2015.12.150 10.1016/j.jallcom.2018.10.008 10.1021/acsnano.7b04078 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Nov 25, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Nov 25, 2021 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2021.160906 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2021_160906 S092583882102315X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-12f952d7a18983ed206c44c17b3c7fa45b03450ff119be21d549a94b2c4dbc5e3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 25 04:38:58 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Tue Jul 01 03:33:28 EDT 2025 Fri Feb 23 02:40:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Antimony Anode Core-shell Sodium-ion batteries |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-12f952d7a18983ed206c44c17b3c7fa45b03450ff119be21d549a94b2c4dbc5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2573021561 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2573021561 crossref_citationtrail_10_1016_j_jallcom_2021_160906 crossref_primary_10_1016_j_jallcom_2021_160906 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_160906 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-25 |
PublicationDateYYYYMMDD | 2021-11-25 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Alcántara, Lavela, Ortiz, Tirado (bib39) 2005; 8 Tang, Yan, Lu, Pan (bib50) 2017; 241 Hameed, Reddy, Chen, Chowdari, Vittal (bib17) 2016; 4 Fuertes, Valle-Vigón, Sevilla (bib45) 2012; 48 Li, Yan, Zhang, Hou, Li, Lu, Yao, Pan (bib8) 2017; 228 Shen, Wang, Wu, Moudrakovski, van Aken, Maier, Yu (bib16) 2019; 58 Hou, Jing, Huang, Yang, Zhang, Chen, Wu, Ji (bib23) 2015; 7 Xin, Whittingham (bib3) 2020 Das, Mitra, Jena, Majumder, Basu (bib48) 2018; 6 Kim, Ha, Oh, Lee (bib11) 2014; 20 Ramakrishnan, Nithya, Kundoly Purushothaman, Kumar, Gopukumar (bib54) 2017; 5 Xie, Xia, Yuan, Liu, Zhang, Nie, Yan, Wang (bib26) 2019; 435 Nithya, Gopukumar (bib32) 2014; 2 Uceda, Chiu, Gauvin, Zaghib, Demopoulos (bib41) 2020; 26 Liang, Ni, Li (bib18) 2017; 33 Yi, Han, Cheng, Wang, Wu, Wang (bib64) 2016; 190 Zhang, Hasa, Passerini (bib5) 2018; 8 Jing, Wang, Wang, Gao, Zhang, Wu (bib22) 2020; 159 Dashairya, Saha (bib24) 2020; 21 Abdolhosseinzadeh, Asgharzadeh, Kim (bib52) 2015; 5 Hwang, Kim, Kim, Kim (bib43) 2016; 4 Pan, Yan, Cui, Xie, Zhang, Mu, Hao (bib55) 2018; 5 Baggetto, Carroll, Hah, Johnson, Mullins, Unocic, Johnson, Meng, Veith (bib70) 2014; 118 Xiong, Wang, Lin, Wang, Ou, Zheng, Yang, Wang, Liu (bib33) 2016; 10 Wen, Pei, Liu, Su, Yang, Wang, Zhang, Dai, Feng, Wu (bib4) 2021 Slater, Kim, Lee, Johnson (bib7) 2013; 23 Denis, Prikhodchenko, Mason, Batabyal, Gun, Sladkevich, Medvedev, Lev (bib61) 2013; 4 Zhang, Xiang, Mu, Wen, Yuan, Zhao, Xu, Su, Liu (bib19) 2017; 227 Dashairya, Das, Saha (bib42) 2020; 358 Dashairya, Sharma, Basu, Saha (bib46) 2018; 735 Dou, Shi, Chen, Zhang (bib31) 2019; 2 Li, Zhang, Liu, Joo, Lee, Gan, Yin (bib44) 2013; 49 Dashairya, Sharma, Basu, Saha (bib49) 2019; 774 Kim, Ha, Oh, Lee (bib58) 2014; 20 Hwang, Myung, Sun (bib6) 2017; 46 Tao, Liu, Ren, Jiang, Wei, Zhai, Wang, Stock, Wen, Ren (bib34) 2021 Xiao, Lee, Sun (bib15) 2017; 7 Goodenough, Kim (bib1) 2010; 22 Zhu, Hu, Li, Zhang (bib38) 2007; 45 Luo, Gaumet, Mai (bib13) 2017; 36 Dashairya, Das, Jena, Mitra, Saha (bib51) 2020 Duan, Zhu, Li, Hu, Zhang, Cheng, Chen (bib67) 2014; 2 Ramireddy, Rahman, Xing, Chen, Glushenkov (bib68) 2014; 2 Wang, Yuan, Yin, Zhu, Zhang, Yan (bib30) 2016; 33 Ruan, Wang, Song, Han, Cheng (bib66) 2015; 160 Lao, Zhang, Luo, Yan, Sun, Dou (bib9) 2017; 29 Prikhodchenko, Gun, Sladkevich, Mikhaylov, Lev, Tay, Batabyal, Yu (bib14) 2012; 24 Wang, Yang, Lee, Rogach, Yu (bib27) 2019; 31 Elizabeth, Singh, Gopukumar (bib25) 2019; 54 He, Wei, Zhai, Li (bib12) 2018; 2 Wu, Yang, Pu, Gao, Meng, Yang, Zhao (bib21) 2020 Baggetto, Ganesh, Sun, Meisner, Zawodzinski, Veith (bib57) 2013; 1 Dashairya, Mehta, Saha, Basu (bib47) 2020; 561 Li, Sun, Ni, Li (bib69) 2019; 9 Yu, Jin, Huang, Yang, Huang, Brock, Sung, Abruña (bib71) 2018; 8 Xie, Liu, Xia, Zhang, Li, Ouyang, Nie, Wang (bib28) 2018; 10 Tarascon, Armand (bib2) 2001; 414 Zheng, Li, Zhao, Shen (bib60) 2018; 2018 Xie, Tong, Su, Xu, Wang, Wang (bib35) 2017; 342 Saha, Jampani, Datta, Hong, Okoli, Manivannan, Kumta (bib63) 2015; 119 Zhu, Nie, Shen, Dong, Sheng, Li, Luo, Zhang (bib59) 2015; 7 Dashairya, Das, Saha (bib40) 2020 Bommier, Ji (bib10) 2018; 14 Ma, Gao, Chen, Wu (bib36) 2017; 4 Adelman, Beauchemin, Hendershot, Kwong (bib72) 2012; 12 Ge, Hou, Ji, Huang, Li, Huang (bib29) 2018; 203 Darwiche, Marino, Sougrati, Fraisse, Stievano, Monconduit (bib56) 2012; 134 Cheng, Huang, Li, Xu, Cao, Ouyang, Yan, Qi (bib65) 2016; 658 Huang, Wei, Liao, Ni, Wang, Ma (bib20) 2019; 33 Zhang, Zhao, Wu, Li, Shen, Ni, Yan, Diao, Chen (bib37) 2017; 11 Li, Qian, Qin, Liu, Shi, Ran, Han, He, Kang, Li (bib53) 2018; 385 Lv, Qiu, Lu, Fu, Li, Hu, Liu (bib62) 2015; 151 Dou (10.1016/j.jallcom.2021.160906_bib31) 2019; 2 He (10.1016/j.jallcom.2021.160906_bib12) 2018; 2 Elizabeth (10.1016/j.jallcom.2021.160906_bib25) 2019; 54 Xie (10.1016/j.jallcom.2021.160906_bib28) 2018; 10 Tao (10.1016/j.jallcom.2021.160906_bib34) 2021 Darwiche (10.1016/j.jallcom.2021.160906_bib56) 2012; 134 Ma (10.1016/j.jallcom.2021.160906_bib36) 2017; 4 Zhang (10.1016/j.jallcom.2021.160906_bib19) 2017; 227 Li (10.1016/j.jallcom.2021.160906_bib44) 2013; 49 Denis (10.1016/j.jallcom.2021.160906_bib61) 2013; 4 Dashairya (10.1016/j.jallcom.2021.160906_bib49) 2019; 774 Wu (10.1016/j.jallcom.2021.160906_bib21) 2020 Dashairya (10.1016/j.jallcom.2021.160906_bib51) 2020 Bommier (10.1016/j.jallcom.2021.160906_bib10) 2018; 14 Uceda (10.1016/j.jallcom.2021.160906_bib41) 2020; 26 Xie (10.1016/j.jallcom.2021.160906_bib26) 2019; 435 Ge (10.1016/j.jallcom.2021.160906_bib29) 2018; 203 Dashairya (10.1016/j.jallcom.2021.160906_bib46) 2018; 735 Huang (10.1016/j.jallcom.2021.160906_bib20) 2019; 33 Tang (10.1016/j.jallcom.2021.160906_bib50) 2017; 241 Jing (10.1016/j.jallcom.2021.160906_bib22) 2020; 159 Li (10.1016/j.jallcom.2021.160906_bib53) 2018; 385 Xie (10.1016/j.jallcom.2021.160906_bib35) 2017; 342 Ramireddy (10.1016/j.jallcom.2021.160906_bib68) 2014; 2 Wen (10.1016/j.jallcom.2021.160906_bib4) 2021 Ramakrishnan (10.1016/j.jallcom.2021.160906_bib54) 2017; 5 Zhu (10.1016/j.jallcom.2021.160906_bib38) 2007; 45 Kim (10.1016/j.jallcom.2021.160906_bib58) 2014; 20 Liang (10.1016/j.jallcom.2021.160906_bib18) 2017; 33 Pan (10.1016/j.jallcom.2021.160906_bib55) 2018; 5 Hameed (10.1016/j.jallcom.2021.160906_bib17) 2016; 4 Cheng (10.1016/j.jallcom.2021.160906_bib65) 2016; 658 Wang (10.1016/j.jallcom.2021.160906_bib27) 2019; 31 Adelman (10.1016/j.jallcom.2021.160906_bib72) 2012; 12 Shen (10.1016/j.jallcom.2021.160906_bib16) 2019; 58 Baggetto (10.1016/j.jallcom.2021.160906_bib57) 2013; 1 Hou (10.1016/j.jallcom.2021.160906_bib23) 2015; 7 Luo (10.1016/j.jallcom.2021.160906_bib13) 2017; 36 Nithya (10.1016/j.jallcom.2021.160906_bib32) 2014; 2 Goodenough (10.1016/j.jallcom.2021.160906_bib1) 2010; 22 Tarascon (10.1016/j.jallcom.2021.160906_bib2) 2001; 414 Dashairya (10.1016/j.jallcom.2021.160906_bib42) 2020; 358 Baggetto (10.1016/j.jallcom.2021.160906_bib70) 2014; 118 Dashairya (10.1016/j.jallcom.2021.160906_bib47) 2020; 561 Hwang (10.1016/j.jallcom.2021.160906_bib43) 2016; 4 Lv (10.1016/j.jallcom.2021.160906_bib62) 2015; 151 Xiong (10.1016/j.jallcom.2021.160906_bib33) 2016; 10 Lao (10.1016/j.jallcom.2021.160906_bib9) 2017; 29 Dashairya (10.1016/j.jallcom.2021.160906_bib24) 2020; 21 Xin (10.1016/j.jallcom.2021.160906_bib3) 2020 Prikhodchenko (10.1016/j.jallcom.2021.160906_bib14) 2012; 24 Li (10.1016/j.jallcom.2021.160906_bib8) 2017; 228 Hwang (10.1016/j.jallcom.2021.160906_bib6) 2017; 46 Zhu (10.1016/j.jallcom.2021.160906_bib59) 2015; 7 Zhang (10.1016/j.jallcom.2021.160906_bib37) 2017; 11 Yu (10.1016/j.jallcom.2021.160906_bib71) 2018; 8 Fuertes (10.1016/j.jallcom.2021.160906_bib45) 2012; 48 Abdolhosseinzadeh (10.1016/j.jallcom.2021.160906_bib52) 2015; 5 Dashairya (10.1016/j.jallcom.2021.160906_bib40) 2020 Saha (10.1016/j.jallcom.2021.160906_bib63) 2015; 119 Kim (10.1016/j.jallcom.2021.160906_bib11) 2014; 20 Yi (10.1016/j.jallcom.2021.160906_bib64) 2016; 190 Zhang (10.1016/j.jallcom.2021.160906_bib5) 2018; 8 Alcántara (10.1016/j.jallcom.2021.160906_bib39) 2005; 8 Das (10.1016/j.jallcom.2021.160906_bib48) 2018; 6 Wang (10.1016/j.jallcom.2021.160906_bib30) 2016; 33 Xiao (10.1016/j.jallcom.2021.160906_bib15) 2017; 7 Li (10.1016/j.jallcom.2021.160906_bib69) 2019; 9 Zheng (10.1016/j.jallcom.2021.160906_bib60) 2018; 2018 Duan (10.1016/j.jallcom.2021.160906_bib67) 2014; 2 Ruan (10.1016/j.jallcom.2021.160906_bib66) 2015; 160 Slater (10.1016/j.jallcom.2021.160906_bib7) 2013; 23 |
References_xml | – volume: 8 year: 2018 ident: bib5 article-title: Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials publication-title: Adv. Energy Mater. – year: 2020 ident: bib40 article-title: Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: a stable anode for lithium-ion batteries publication-title: Mater. Today Comm. – volume: 24 start-page: 4750 year: 2012 end-page: 4757 ident: bib14 article-title: Conversion of hydroperoxoantimonate coated graphenes to Sb publication-title: Chem. Mater. – volume: 20 start-page: 11980 year: 2014 end-page: 11992 ident: bib58 article-title: High‐capacity anode materials for sodium‐ion batteries publication-title: Chem. Eur. J. – volume: 12 start-page: 227 year: 2012 end-page: 239 ident: bib72 article-title: Change in the oxidation rate of stibnite as affected by pyrite in an oxygenated flow-through system publication-title: Geochem. Explor. Environ. Anal. – volume: 10 start-page: 10953 year: 2016 end-page: 10959 ident: bib33 article-title: Enhancing sodium ion battery performance by strongly binding nanostructured Sb publication-title: ACS Nano – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: bib2 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature – volume: 6 start-page: 17000 year: 2018 end-page: 17010 ident: bib48 article-title: Electrophoretically deposited ZnFe publication-title: ACS Sustain. Chem. Eng. – volume: 22 start-page: 587 year: 2010 end-page: 603 ident: bib1 article-title: Challenges for rechargeable Li publication-title: Batter., Chem. Mater. – volume: 20 start-page: 11980 year: 2014 end-page: 11992 ident: bib11 article-title: High-capacity anode materials for sodium-ion batteries publication-title: Chem. A Eur. J. – volume: 561 start-page: 71 year: 2020 end-page: 82 ident: bib47 article-title: Visible-light-induced enhanced photocatalytic degradation of Rhodamine-B dye using Bi publication-title: J. Colloid Interf. Sci. – volume: 227 start-page: 203 year: 2017 end-page: 209 ident: bib19 article-title: SnS publication-title: Electrochim. Acta – volume: 774 start-page: 625 year: 2019 end-page: 636 ident: bib49 article-title: SnS publication-title: J. Alloy. Compd. – volume: 4 start-page: 1 year: 2013 end-page: 7 ident: bib61 article-title: High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries publication-title: Nat. Comm. – volume: 36 start-page: 321 year: 2017 end-page: 338 ident: bib13 article-title: Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application publication-title: Rare Met. – volume: 11 start-page: 8429 year: 2017 end-page: 8436 ident: bib37 article-title: Petal-like MoS publication-title: ACS Nano – volume: 342 start-page: 529 year: 2017 end-page: 536 ident: bib35 article-title: Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance publication-title: J. Power Sources – volume: 435 year: 2019 ident: bib26 article-title: Sb publication-title: J. Power Sources – volume: 658 start-page: 234 year: 2016 end-page: 240 ident: bib65 article-title: SnO publication-title: J. Alloy. Compd. – volume: 7 start-page: 3309 year: 2015 end-page: 3315 ident: bib59 article-title: High rate capability and superior cycle stability of a flower-like Sb publication-title: Nanoscale – volume: 33 start-page: 213 year: 2017 end-page: 220 ident: bib18 article-title: Bio-inspired engineering of Bi publication-title: Nano Energy – volume: 31 start-page: 2469 year: 2019 end-page: 2475 ident: bib27 article-title: Reversible interaction of Sb with an active se matrix enhances the cycle stability of electrodes for lithium-ion publication-title: Batter., Chem. Mater. – volume: 134 start-page: 20805 year: 2012 end-page: 20811 ident: bib56 article-title: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism publication-title: J. Am. Chem. Soc. – volume: 160 start-page: 330 year: 2015 end-page: 336 ident: bib66 article-title: Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries publication-title: Electrochim. Acta – volume: 2 start-page: 149 year: 2019 end-page: 198 ident: bib31 article-title: Silicon/carbon composite anode materials for lithium-ion batteries, Electrochem publication-title: Energy Rev. – volume: 5 year: 2018 ident: bib55 article-title: Ionic liquid‐assisted preparation of Sb publication-title: Adv. Mater. Interf. – volume: 241 start-page: 63 year: 2017 end-page: 72 ident: bib50 article-title: Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries publication-title: Electrochim. Acta – year: 2020 ident: bib51 article-title: Controlled scalable synthesis of yolk-shell antimony with porous carbon anode for superior Na-ion storage publication-title: Nano Sel. – volume: 54 start-page: 7110 year: 2019 end-page: 7118 ident: bib25 article-title: Electrochemical performance of Sb publication-title: J. Mater. Sci. – volume: 735 start-page: 234 year: 2018 end-page: 245 ident: bib46 article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb publication-title: J. Alloy. Compd. – volume: 5 start-page: 5090 year: 2017 end-page: 5098 ident: bib54 article-title: Sb publication-title: ACS Sustain. Chem. Eng. – year: 2021 ident: bib4 article-title: Fully encapsulated Sb publication-title: J. Alloy. Comp. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 ident: bib6 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. – volume: 190 start-page: 804 year: 2016 end-page: 810 ident: bib64 article-title: A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries publication-title: Electrochim. Acta – volume: 2 start-page: 10516 year: 2014 end-page: 10525 ident: bib32 article-title: rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling publication-title: J. Mater. Chem. A – volume: 4 start-page: 17946 year: 2016 end-page: 17951 ident: bib43 article-title: Na-ion storage performance of amorphous Sb publication-title: J. Mater. Chem. A – volume: 5 start-page: 10160 year: 2015 ident: bib52 article-title: Fast and fully-scalable synthesis of reduced graphene oxide publication-title: Sci. Rep. – volume: 2 start-page: 4282 year: 2014 end-page: 4291 ident: bib68 article-title: Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation publication-title: J. Mater. Chem. A – volume: 151 start-page: 214 year: 2015 end-page: 221 ident: bib62 article-title: Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery publication-title: Electrochim. Acta – volume: 8 start-page: 23847 year: 2018 end-page: 23853 ident: bib71 article-title: SnS/C nanocomposites for high-performance sodium ion battery anodes publication-title: RSC Adv. – year: 2020 ident: bib21 article-title: SnS publication-title: J. Alloy. Compd. – volume: 203 start-page: 185 year: 2018 end-page: 192 ident: bib29 article-title: Enhanced stability of sodium storage exhibited by carbon coated Sb publication-title: Mater. Chem. Phys. – volume: 385 start-page: 114 year: 2018 end-page: 121 ident: bib53 article-title: The different Li/Na ion storage mechanisms of nano Sb publication-title: J. Power Sources – volume: 21 start-page: 1899 year: 2020 end-page: 1904 ident: bib24 article-title: Antimony sulphide nanorods decorated onto reduced graphene oxide based anodes for sodium-ion battery publication-title: Mater. Today.: Proc. – volume: 8 start-page: A222 year: 2005 end-page: A225 ident: bib39 article-title: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries publication-title: Electrochem. Solid State Lett. – volume: 118 start-page: 7856 year: 2014 end-page: 7864 ident: bib70 article-title: Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes publication-title: J. Phys. Chem. C – volume: 7 start-page: 19362 year: 2015 end-page: 19369 ident: bib23 article-title: One-dimensional rod-like Sb publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 12 year: 2018 ident: bib28 article-title: Template-free synthesis of Sb publication-title: Nano Micro Lett. – volume: 45 start-page: 160 year: 2007 end-page: 165 ident: bib38 article-title: Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors publication-title: Carbon – volume: 26 start-page: 560 year: 2020 end-page: 569 ident: bib41 article-title: Electrophoretically co-deposited Li publication-title: Energy Storage Mater. – volume: 358 year: 2020 ident: bib42 article-title: Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries publication-title: Electrochim. Acta – start-page: 1 year: 2020 end-page: 13 ident: bib3 article-title: Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries publication-title: Electrochem. Energy Rev. – volume: 33 start-page: 100 year: 2019 end-page: 124 ident: bib20 article-title: Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS publication-title: J. Energy Chem. – volume: 48 start-page: 6124 year: 2012 end-page: 6126 ident: bib45 article-title: One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules publication-title: Chem. Comm. – volume: 119 start-page: 5771 year: 2015 end-page: 5782 ident: bib63 article-title: Electrochemical performance of chemically and solid state-derived chevrel phase Mo publication-title: Batter., J. Phys. Chem. C – volume: 2018 start-page: 1224 year: 2018 end-page: 1228 ident: bib60 article-title: Flowerlike Sb publication-title: Eur. J. Inorg. Chem. – volume: 49 start-page: 5135 year: 2013 end-page: 5137 ident: bib44 article-title: Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin publication-title: Chem. Comm. – volume: 58 start-page: 7238 year: 2019 end-page: 7243 ident: bib16 article-title: Hierarchical metal sulfide/carbon spheres: a generalized synthesis and high sodium-storage performance publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 7985 year: 2013 end-page: 7994 ident: bib57 article-title: Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory publication-title: J. Mater. Chem. A – volume: 9 year: 2019 ident: bib69 article-title: Template‐free construction of self‐supported sb prisms with stable sodium storage publication-title: Adv. Energy Mater. – volume: 14 year: 2018 ident: bib10 article-title: Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes publication-title: Small – volume: 4 start-page: 2479 year: 2016 end-page: 2486 ident: bib17 article-title: RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries publication-title: ACS Sustain. Chem. Eng. – volume: 2 start-page: 8668 year: 2014 end-page: 8675 ident: bib67 article-title: Na publication-title: J. Mater. Chem. A – volume: 159 start-page: 366 year: 2020 end-page: 377 ident: bib22 article-title: Encapsulating yolk-shell FeS publication-title: Carbon – volume: 23 start-page: 947 year: 2013 end-page: 958 ident: bib7 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1463 year: 2017 end-page: 1469 ident: bib36 article-title: Synthesis of robust silicon nanoparticles@void@ graphitic carbon spheres for high‐performance lithium‐ion‐battery anodes publication-title: ChemElectroChem – volume: 228 start-page: 436 year: 2017 end-page: 446 ident: bib8 article-title: In situ growth of Sb publication-title: Electrochim. Acta – volume: 33 start-page: 493 year: 2016 end-page: 499 ident: bib30 article-title: Green and Facile Fabrication of MWNTs@Sb publication-title: Part. Part. Syst. Charact. – volume: 2 start-page: 437 year: 2018 end-page: 455 ident: bib12 article-title: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries publication-title: Mater. Chem. Front. – volume: 7 year: 2017 ident: bib15 article-title: The application of metal sulfides in sodium ion batteries publication-title: Adv. Energy Mater. – year: 2021 ident: bib34 article-title: Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives publication-title: J. Alloy. Comp. – volume: 29 year: 2017 ident: bib9 article-title: Alloy-based anode materials toward advanced sodium-ion batteries publication-title: Adv. Mater. – volume: 14 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib10 article-title: Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes publication-title: Small doi: 10.1002/smll.201703576 – volume: 2 start-page: 437 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib12 article-title: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00480J – volume: 435 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib26 article-title: Sb2S3 embedded in carbon–silicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226762 – volume: 20 start-page: 11980 year: 2014 ident: 10.1016/j.jallcom.2021.160906_bib11 article-title: High-capacity anode materials for sodium-ion batteries publication-title: Chem. A Eur. J. doi: 10.1002/chem.201402511 – volume: 49 start-page: 5135 year: 2013 ident: 10.1016/j.jallcom.2021.160906_bib44 article-title: Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin publication-title: Chem. Comm. doi: 10.1039/c3cc41456f – volume: 2 start-page: 8668 year: 2014 ident: 10.1016/j.jallcom.2021.160906_bib67 article-title: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00106K – volume: 23 start-page: 947 year: 2013 ident: 10.1016/j.jallcom.2021.160906_bib7 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200691 – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.jallcom.2021.160906_bib2 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature doi: 10.1038/35104644 – volume: 4 start-page: 1463 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib36 article-title: Synthesis of robust silicon nanoparticles@void@ graphitic carbon spheres for high‐performance lithium‐ion‐battery anodes publication-title: ChemElectroChem doi: 10.1002/celc.201700173 – volume: 26 start-page: 560 year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib41 article-title: Electrophoretically co-deposited Li4Ti5O12/reduced graphene oxide nanolayered composites for high-performance battery application publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.11.029 – volume: 54 start-page: 7110 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib25 article-title: Electrochemical performance of Sb2S3/CNT free-standing flexible anode for Li-ion batteries publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-03275-w – volume: 2018 start-page: 1224 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib60 article-title: Flowerlike Sb2S3/PPy microspheres used as anode material for high‐performance sodium‐ion batteries publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201701364 – volume: 385 start-page: 114 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib53 article-title: The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.031 – volume: 2 start-page: 4282 year: 2014 ident: 10.1016/j.jallcom.2021.160906_bib68 article-title: Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14643j – start-page: 1 year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib3 article-title: Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries publication-title: Electrochem. Energy Rev. – volume: 203 start-page: 185 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib29 article-title: Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.10.003 – volume: 8 start-page: A222 year: 2005 ident: 10.1016/j.jallcom.2021.160906_bib39 article-title: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1870612 – year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib21 article-title: SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage publication-title: J. Alloy. Compd. – volume: 12 start-page: 227 year: 2012 ident: 10.1016/j.jallcom.2021.160906_bib72 article-title: Change in the oxidation rate of stibnite as affected by pyrite in an oxygenated flow-through system publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/11-RA-077 – volume: 561 start-page: 71 year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib47 article-title: Visible-light-induced enhanced photocatalytic degradation of Rhodamine-B dye using BixSb2−xS3 solid-solution photocatalysts publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.11.118 – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib6 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 24 start-page: 4750 year: 2012 ident: 10.1016/j.jallcom.2021.160906_bib14 article-title: Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@ graphene for a superior lithium battery anode publication-title: Chem. Mater. doi: 10.1021/cm3031818 – volume: 5 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib55 article-title: Ionic liquid‐assisted preparation of Sb2S3/reduced graphene oxide nanocomposite for sodium‐ion batteries publication-title: Adv. Mater. Interf. doi: 10.1002/admi.201701481 – volume: 22 start-page: 587 year: 2010 ident: 10.1016/j.jallcom.2021.160906_bib1 article-title: Challenges for rechargeable Li publication-title: Batter., Chem. Mater. doi: 10.1021/cm901452z – volume: 4 start-page: 2479 year: 2016 ident: 10.1016/j.jallcom.2021.160906_bib17 article-title: RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01211 – volume: 2 start-page: 10516 year: 2014 ident: 10.1016/j.jallcom.2021.160906_bib32 article-title: rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01324G – volume: 7 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib15 article-title: The application of metal sulfides in sodium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601329 – volume: 7 start-page: 19362 year: 2015 ident: 10.1016/j.jallcom.2021.160906_bib23 article-title: One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05509 – volume: 5 start-page: 10160 year: 2015 ident: 10.1016/j.jallcom.2021.160906_bib52 article-title: Fast and fully-scalable synthesis of reduced graphene oxide publication-title: Sci. Rep. doi: 10.1038/srep10160 – volume: 21 start-page: 1899 year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib24 article-title: Antimony sulphide nanorods decorated onto reduced graphene oxide based anodes for sodium-ion battery publication-title: Mater. Today.: Proc. – year: 2021 ident: 10.1016/j.jallcom.2021.160906_bib4 article-title: Fully encapsulated Sb2Se3/Sb/C nanofibers: towards high-rate, ultralong-lifespan lithium-ion batteries publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2021.159961 – volume: 45 start-page: 160 year: 2007 ident: 10.1016/j.jallcom.2021.160906_bib38 article-title: Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2006.07.010 – volume: 5 start-page: 5090 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib54 article-title: Sb2O4@ rGO nanocomposite anode for high performance sodium-ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00469 – year: 2021 ident: 10.1016/j.jallcom.2021.160906_bib34 article-title: Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2021.159742 – volume: 1 start-page: 7985 year: 2013 ident: 10.1016/j.jallcom.2021.160906_bib57 article-title: Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11568b – volume: 20 start-page: 11980 year: 2014 ident: 10.1016/j.jallcom.2021.160906_bib58 article-title: High‐capacity anode materials for sodium‐ion batteries publication-title: Chem. Eur. J. doi: 10.1002/chem.201402511 – volume: 6 start-page: 17000 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib48 article-title: Electrophoretically deposited ZnFe2O4-carbon black porous film as a superior negative electrode for lithium-ion battery publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04332 – volume: 29 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib9 article-title: Alloy-based anode materials toward advanced sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201700622 – volume: 228 start-page: 436 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib8 article-title: In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.114 – volume: 160 start-page: 330 year: 2015 ident: 10.1016/j.jallcom.2021.160906_bib66 article-title: Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.186 – volume: 33 start-page: 213 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib18 article-title: Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.033 – volume: 2 start-page: 149 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib31 article-title: Silicon/carbon composite anode materials for lithium-ion batteries, Electrochem publication-title: Energy Rev. – volume: 159 start-page: 366 year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib22 article-title: Encapsulating yolk-shell FeS2@ carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage publication-title: Carbon doi: 10.1016/j.carbon.2019.12.060 – volume: 4 start-page: 1 year: 2013 ident: 10.1016/j.jallcom.2021.160906_bib61 article-title: High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries publication-title: Nat. Comm. – volume: 735 start-page: 234 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib46 article-title: Enhanced dye degradation using hydrothermally synthesized nanostructured Sb2S3/rGO under visible light irradiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.11.063 – volume: 10 start-page: 10953 year: 2016 ident: 10.1016/j.jallcom.2021.160906_bib33 article-title: Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets publication-title: ACS Nano doi: 10.1021/acsnano.6b05653 – year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib51 article-title: Controlled scalable synthesis of yolk-shell antimony with porous carbon anode for superior Na-ion storage publication-title: Nano Sel. – volume: 9 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib69 article-title: Template‐free construction of self‐supported sb prisms with stable sodium storage publication-title: Adv. Energy Mater. – volume: 31 start-page: 2469 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib27 article-title: Reversible interaction of Sb with an active se matrix enhances the cycle stability of electrodes for lithium-ion publication-title: Batter., Chem. Mater. doi: 10.1021/acs.chemmater.8b05272 – volume: 119 start-page: 5771 year: 2015 ident: 10.1016/j.jallcom.2021.160906_bib63 article-title: Electrochemical performance of chemically and solid state-derived chevrel phase Mo6T8 (T = S, Se) positive electrodes for sodium-ion publication-title: Batter., J. Phys. Chem. C doi: 10.1021/jp509057w – volume: 33 start-page: 493 year: 2016 ident: 10.1016/j.jallcom.2021.160906_bib30 article-title: Green and Facile Fabrication of MWNTs@Sb2S3@PPy Coaxial Nanocables for High‐Performance Na‐Ion Batteries publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201500227 – volume: 8 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib5 article-title: Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201870082 – volume: 48 start-page: 6124 year: 2012 ident: 10.1016/j.jallcom.2021.160906_bib45 article-title: One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules publication-title: Chem. Comm. doi: 10.1039/c2cc32552g – volume: 7 start-page: 3309 year: 2015 ident: 10.1016/j.jallcom.2021.160906_bib59 article-title: High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries publication-title: Nanoscale doi: 10.1039/C4NR05242K – volume: 227 start-page: 203 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib19 article-title: SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.036 – volume: 8 start-page: 23847 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib71 article-title: SnS/C nanocomposites for high-performance sodium ion battery anodes publication-title: RSC Adv. doi: 10.1039/C8RA04421J – volume: 342 start-page: 529 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib35 article-title: Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.094 – volume: 58 start-page: 7238 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib16 article-title: Hierarchical metal sulfide/carbon spheres: a generalized synthesis and high sodium-storage performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901840 – volume: 4 start-page: 17946 year: 2016 ident: 10.1016/j.jallcom.2021.160906_bib43 article-title: Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07838A – volume: 658 start-page: 234 year: 2016 ident: 10.1016/j.jallcom.2021.160906_bib65 article-title: SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.10.212 – volume: 33 start-page: 100 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib20 article-title: Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.09.001 – volume: 10 start-page: 12 year: 2018 ident: 10.1016/j.jallcom.2021.160906_bib28 article-title: Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries publication-title: Nano Micro Lett. doi: 10.1007/s40820-017-0165-1 – volume: 358 year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib42 article-title: Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136948 – volume: 118 start-page: 7856 year: 2014 ident: 10.1016/j.jallcom.2021.160906_bib70 article-title: Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes publication-title: J. Phys. Chem. C doi: 10.1021/jp501032d – year: 2020 ident: 10.1016/j.jallcom.2021.160906_bib40 article-title: Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: a stable anode for lithium-ion batteries publication-title: Mater. Today Comm. doi: 10.1016/j.mtcomm.2020.101189 – volume: 134 start-page: 20805 year: 2012 ident: 10.1016/j.jallcom.2021.160906_bib56 article-title: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310347x – volume: 241 start-page: 63 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib50 article-title: Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.04.112 – volume: 36 start-page: 321 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib13 article-title: Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application publication-title: Rare Met. doi: 10.1007/s12598-017-0899-4 – volume: 151 start-page: 214 year: 2015 ident: 10.1016/j.jallcom.2021.160906_bib62 article-title: Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.013 – volume: 190 start-page: 804 year: 2016 ident: 10.1016/j.jallcom.2021.160906_bib64 article-title: A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.150 – volume: 774 start-page: 625 year: 2019 ident: 10.1016/j.jallcom.2021.160906_bib49 article-title: SnS2/RGO based nanocomposite for efficient photocatalytic degradation of toxic industrial dyes under visible-light irradiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.10.008 – volume: 11 start-page: 8429 year: 2017 ident: 10.1016/j.jallcom.2021.160906_bib37 article-title: Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance publication-title: ACS Nano doi: 10.1021/acsnano.7b04078 |
SSID | ssj0001931 |
Score | 2.4923446 |
Snippet | •A systematic investigation of Sb2S3-NPs, Sb2S3/rGO, and core-shell Sb2S3@carbon binder-free anodes fabricated by EPD in LIBs and SIBs.•Sb2S3@C shows superior... Antimony sulfide (Sb2S3) is a promising anode for alkali metal ion batteries owing to its high theoretical specific capacity derived from sequential conversion... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 160906 |
SubjectTerms | Alkali metals Anode Anodes Antimony Carbon Charge transfer Composite structures Conversion Core-shell Core-shell structure Diffusion coefficient Electrochemical analysis Electrochemical impedance spectroscopy Electrophoretic deposition Graphene Lithium Lithium-ion batteries Nanoparticles Reaction kinetics Rechargeable batteries Sodium Sodium-ion batteries Volumetric strain |
Title | Elucidating the role of graphene and porous carbon coating on nanostructured Sb2S3 for superior lithium and sodium storage |
URI | https://dx.doi.org/10.1016/j.jallcom.2021.160906 https://www.proquest.com/docview/2573021561 |
Volume | 883 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaIcKti2gpYiH7hmN35knRzRCrSlKpcFaW-Wn3RXS4IIufTQ396ZPApFlZB6cyI7ijz2N5-Tb2YIOU0jtzEqlmC9jURmXiTGW5Fwb2JgQuVWYTTy96vp_EZeLrPlFpkNsTAoq-yxv8P0Fq37O5N-Nif3q9VkkRYc__nleGgRLFtiBLtUuMrHv55kHkBQ2qp50DnB3k9RPJP1eG02GxSNcPB0-J2lwMJH__ZPL5C6dT8X--RdzxvpWfdqB2QrlCOyOxvKtY3I3rPMgiOy0yo7Xf2e_DzfNG6FQQzlLQW2R1FPSKtI21TVgHTUlJ4CC6-amjrzYKuSuqrrDs3SlFWXY7Z5CJ4uLF8ICkSX1g3mSIYG8Pgfq-aufUxdeWyi4hJw6gO5uTi_ns2TvuBC4oRQjwnjsci4V4blRS6C5-nUSemYssKpaGRmUyGzNEbGChs483C4NIW03ElvXRbER7JdVmU4JDSowjoRpUmdkbDH7TRIFYKE0wyQttQdETlMs3Z9NnIsirHRg-xsrXvraLSO7qxzRMZ_ht136TheG5APNtR_rSsNLuO1oceDzXW_sWsNCCeQJk3Zp_9_8mfyFq8wpJFnx2QbrBi-ALd5tCft4j0hb86-fptf_QZXKPq_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQ4IFhAFAr4wDW78SOb5IhWrRZoe9lW2pvlJ-xqSaqmuXDgtzOTBwWEVImbldhR5LG_-Zx8MwPwPo3CxpjzhOptJCrzMjHeykR4EwOXeWFzikY-O58vL9Wndbbeg8UYC0OyygH7e0zv0Hq4Mhtmc3a12cxWaSnon19BhxbJs_U9uK9w-1IZg-mPW50HMpSubB72Tqj7bRjPbDvdmt2OVCMCXR19aCmp8tG_HdRfUN35n5Mn8HggjuxD_25PYS9UEzhYjPXaJvDot9SCE3jQSTtd8wy-H-9at6EohuoLQ7rHSFDI6si6XNUIdcxUniENr9uGOXNt64q5uu-OzcpUdZ9ktr0Onq2sWEmGTJc1LSVJxgYS-a-b9lv3mKb21CTJJQLVc7g8Ob5YLJOh4kLipMxvEi5imQmfG16UhQxepHOnlOO5lS6PRmU2lSpLY-S8tEFwj6dLUyornPLWZUG-gP2qrsJLYCEvrZNRmdQZhZvczoPKQ1B4nEHWlrpDUOM0azekI6eqGDs96s62erCOJuvo3jqHMP017KrPx3HXgGK0of5jYWn0GXcNPRptroed3WiEOEk8ac5f_f-T38HB8uLsVJ9-PP_8Gh7SHYpvFNkR7KNFwxskOjf2bbeQfwIJY_xN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+role+of+graphene+and+porous+carbon+coating+on+nanostructured+Sb2S3+for+superior+lithium+and+sodium+storage&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Dashairya%2C+Love&rft.au=Das%2C+Debasish&rft.au=Saha%2C+Partha&rft.date=2021-11-25&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=883&rft_id=info:doi/10.1016%2Fj.jallcom.2021.160906&rft.externalDocID=S092583882102315X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |