The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites

In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative source...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 53; no. 27; pp. 11344 - 11353
Main Authors Liu, Kun, Shoinkhorova, Tuiana, You, Xinyu, Gong, Xuan, Zhang, Xin, Chung, Sang-Ho, Ruiz-Martínez, Javier, Gascon, Jorge, Dutta Chowdhury, Abhishek
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 09.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships. The efficacy of the methanol-to-aromatics process over ZSM-5 was evaluated considering factors such as hierarchy, particle size, and bifunctionality.
AbstractList In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships. The efficacy of the methanol-to-aromatics process over ZSM-5 was evaluated considering factors such as hierarchy, particle size, and bifunctionality.
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the “methanol economy”, have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity—such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties—into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure–reactivity relationships.
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
Author Shoinkhorova, Tuiana
Gong, Xuan
Zhang, Xin
Ruiz-Martínez, Javier
Liu, Kun
You, Xinyu
Gascon, Jorge
Dutta Chowdhury, Abhishek
Chung, Sang-Ho
AuthorAffiliation Wuhan University
King Abdullah University of Science and Technology (KAUST)
College of Chemistry and Molecular Sciences
KAUST Catalysis Center (KCC)
AuthorAffiliation_xml – sequence: 0
  name: Wuhan University
– sequence: 0
  name: King Abdullah University of Science and Technology (KAUST)
– sequence: 0
  name: KAUST Catalysis Center (KCC)
– sequence: 0
  name: College of Chemistry and Molecular Sciences
Author_xml – sequence: 1
  givenname: Kun
  surname: Liu
  fullname: Liu, Kun
– sequence: 2
  givenname: Tuiana
  surname: Shoinkhorova
  fullname: Shoinkhorova, Tuiana
– sequence: 3
  givenname: Xinyu
  surname: You
  fullname: You, Xinyu
– sequence: 4
  givenname: Xuan
  surname: Gong
  fullname: Gong, Xuan
– sequence: 5
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 6
  givenname: Sang-Ho
  surname: Chung
  fullname: Chung, Sang-Ho
– sequence: 7
  givenname: Javier
  surname: Ruiz-Martínez
  fullname: Ruiz-Martínez, Javier
– sequence: 8
  givenname: Jorge
  surname: Gascon
  fullname: Gascon, Jorge
– sequence: 9
  givenname: Abhishek
  surname: Dutta Chowdhury
  fullname: Dutta Chowdhury, Abhishek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38899920$$D View this record in MEDLINE/PubMed
BookMark eNpt0suLFDEQB-AgK-5DL96VgBeRbc1jOo-j7OqqrHhwvHhpynS1k6E7GZOM0HvxXzfjrCMsnhLIVz-KqpySoxADEvKYs5ecSfuqX_SFMW3l-h454QutGyvk4uhwF-qYnOa8ZkwI1ooH5FgaY60V7IT8Wq6Q5jlg-u5z8Y76UDBtRphpHOjKY4LkVvM5dWnOBUaa_Q2eUwg9vYJmk-IUi4-hltFSkyYsKwhxbEpsoD5Cjcy0Moc50_gTE_36-WPT0huMoy-YH5L7A4wZH92eZ-TL2zfLi3fN9aer9xevrxsnpS4N5722QisOTA9ccWmlBtczp9Ex23IcoB2cUla3iEqiAGWYVQOAAKFalGfk-T639vJji7l0k88OxxECxm3uJNPMCGVNW-mzO3QdtynU7nZKGcONMlU9vVXbbxP23Sb5CdLc_R1tBS_2wKWYc8LhQDjrdnvrLheXyz97-1Axu4OdL7CbbEngx_-XPNmXpOwO0f--gvwNxhOkMg
CitedBy_id crossref_primary_10_1039_D4CY01168F
crossref_primary_10_1002_cmtd_202400076
crossref_primary_10_1016_j_ccr_2025_216611
Cites_doi 10.1016/j.mcat.2019.110493
10.1021/acscatal.2c04600
10.1021/jacs.6b09605
10.1016/j.catcom.2009.04.004
10.1039/D0CP05778A
10.1002/anie.200462121
10.1007/s10562-012-0869-2
10.1038/s41929-018-0104-7
10.1016/j.jcat.2014.10.016
10.1134/S0023158418050178
10.1016/j.micromeso.2023.112877
10.1039/C7CY01041A
10.1016/j.fuproc.2016.12.006
10.1038/s41929-018-0078-5
10.1021/acs.chemrev.2c00076
10.1038/s41467-021-26090-5
10.1039/C6TA02721K
10.1016/S1872-2067(22)64123-8
10.1021/acscatal.5b00007
10.1021/acs.accounts.1c00274
10.1002/anie.202114388
10.1016/j.jcat.2020.10.024
10.1002/anie.202006524
10.1021/acscatal.3c00059
10.1021/acs.energyfuels.3c02291
10.1039/D3DT03044J
10.1021/acscatal.7b01497
10.1016/j.cej.2022.140867
10.1016/j.checat.2023.100540
10.1021/acs.iecr.0c06342
10.1039/C2CS35330J
10.1039/C4CS00122B
10.1039/D3QI01526B
10.1016/j.jechem.2020.05.063
10.1016/j.cjsc.2024.100265
10.1021/acscatal.1c01422
10.1039/C6CY02476A
10.1007/s10562-013-1031-5
10.1016/S1872-5813(21)60130-5
10.1038/s41598-019-54089-y
10.1039/C7GC01188A
10.1016/j.cej.2023.142252
10.1021/cen-v081n038.p005
10.1039/C6CS00391E
10.1016/j.cej.2023.141447
10.1021/acs.chemrev.7b00738
10.1021/acs.iecr.9b00726
10.1021/acs.accounts.3c00551
10.1039/C1CY00299F
10.1021/acsami.1c23614
10.1016/S1872-2067(17)62791-8
10.1016/j.jcat.2015.02.013
10.1016/j.jcat.2014.05.004
10.1016/S1872-2067(11)60507-X
10.1002/anie.202009139
10.1021/acs.iecr.9b00502
10.1016/j.jechem.2017.03.014
10.1016/j.apsusc.2023.157811
10.1021/acscatal.0c05133
10.1021/cs3006583
10.1016/j.apcatb.2015.04.052
10.1039/C8CY01734D
10.1016/j.apcata.2019.01.022
10.1016/S1872-2067(15)60979-2
10.1002/ange.201807814
10.1016/j.fuel.2015.01.040
10.1002/anie.201204995
10.1007/s11244-010-9598-1
10.1021/acs.iecr.2c03873
10.1093/nsr/nwad120
10.1002/anie.201103657
10.1039/C5CY02298C
10.1039/C9RA09657D
10.1016/j.mtchem.2022.101061
10.1016/j.cattod.2020.04.021
10.1021/acs.iecr.7b02908
10.1023/A:1019079603279
10.1016/j.cattod.2022.10.007
10.1039/C6CS00135A
10.1021/acscatal.1c05481
10.1016/j.micromeso.2017.02.014
10.1021/acs.iecr.8b00849
10.1002/cssc.202300608
10.1021/acs.accounts.3c00187
10.1098/rsos.211284
10.1016/S1387-1811(98)00329-1
10.1016/j.micromeso.2020.110221
10.1002/aic.16439
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d4dt00793j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 11353
ExternalDocumentID 38899920
10_1039_D4DT00793J
d4dt00793j
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-11d792761a07f1613937acd0c7ec0951efa5fc66975ee63e2a68096faa2a265e3
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 12:20:39 EDT 2025
Mon Jun 30 17:50:49 EDT 2025
Mon Jul 21 06:00:18 EDT 2025
Tue Jul 01 04:27:41 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Tue Dec 17 20:58:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-11d792761a07f1613937acd0c7ec0951efa5fc66975ee63e2a68096faa2a265e3
Notes https://doi.org/10.1039/d4dt00793j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7558-7123
0000-0002-9850-7939
0000-0002-4121-7375
0000-0001-7400-8791
PMID 38899920
PQID 3076881868
PQPubID 2047498
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_D4DT00793J
proquest_journals_3076881868
pubmed_primary_38899920
proquest_miscellaneous_3070826985
rsc_primary_d4dt00793j
crossref_primary_10_1039_D4DT00793J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-09
PublicationDateYYYYMMDD 2024-07-09
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Asghari (D4DT00793J/cit38/1) 2019; 9
Shen (D4DT00793J/cit39/1) 2017; 7
Sun (D4DT00793J/cit91/1) 2016; 45
Schallmoser (D4DT00793J/cit88/1) 2014; 316
Olah (D4DT00793J/cit22/1) 2003; 81
Wu (D4DT00793J/cit54/1) 2019; 58
Chen (D4DT00793J/cit6/1) 2018; 130
Li (D4DT00793J/cit63/1) 2016; 37
Shu (D4DT00793J/cit68/1) 2000; 70
Khare (D4DT00793J/cit80/1) 2015; 321
Chai (D4DT00793J/cit17/1) 2021; 54
Zhang (D4DT00793J/cit15/1) 2023; 10
Qiao (D4DT00793J/cit44/1) 2020; 10
Li (D4DT00793J/cit90/1) 2013; 34
Yarulina (D4DT00793J/cit11/1) 2018; 1
Fang (D4DT00793J/cit72/1) 2017; 26
Müller (D4DT00793J/cit29/1) 2015; 325
Li (D4DT00793J/cit3/1) 2021; 11
Ni (D4DT00793J/cit76/1) 2021; 54
Tian (D4DT00793J/cit42/1) 2018; 59
Olah (D4DT00793J/cit24/1) 2005; 44
Chen (D4DT00793J/cit65/1) 2018; 57
Xin (D4DT00793J/cit43/1) 2013; 143
Ghaedi (D4DT00793J/cit64/1) 2021; 49
Niu (D4DT00793J/cit51/1) 2017; 157
Wang (D4DT00793J/cit48/1) 2017; 7
Wang (D4DT00793J/cit53/1) 2018; 8
Dusselier (D4DT00793J/cit19/1) 2018; 118
Tian (D4DT00793J/cit41/1) 2023; 37
Song (D4DT00793J/cit73/1) 2024; 364
Siddiqui (D4DT00793J/cit87/1) 2010; 53
Borodina (D4DT00793J/cit32/1) 2017; 7
Zhang (D4DT00793J/cit71/1) 2023; 458
Liu (D4DT00793J/cit27/1) 2009; 10
Ramirez (D4DT00793J/cit35/1) 2021; 12
Albahar (D4DT00793J/cit85/1) 2020; 302
Wang (D4DT00793J/cit40/1) 2016; 4
Conte (D4DT00793J/cit50/1) 2012; 2
Zhang (D4DT00793J/cit74/1) 2021; 23
Zhang (D4DT00793J/cit67/1) 2023; 10
Fu (D4DT00793J/cit8/1) 2023; 62
Liutkova (D4DT00793J/cit89/1) 2023; 13
Yang (D4DT00793J/cit46/1) 2017; 38
Li (D4DT00793J/cit12/1) 2018; 1
Chen (D4DT00793J/cit55/1) 2017; 244
Shi (D4DT00793J/cit77/1) 2023; 456
You (D4DT00793J/cit21/1) 2023; 52
Filosa (D4DT00793J/cit26/1) 2023; 56
Mikkelsen (D4DT00793J/cit33/1) 1999; 29
Chen (D4DT00793J/cit36/1) 2019; 58
Zhang (D4DT00793J/cit49/1) 2017; 56
Yang (D4DT00793J/cit20/1) 2019; 31
You (D4DT00793J/cit56/1) 2024; 43
Fu (D4DT00793J/cit34/1) 2022; 61
Gong (D4DT00793J/cit81/1) 2022; 122
Serrano (D4DT00793J/cit84/1) 2013; 42
Xi (D4DT00793J/cit5/1) 2019; 475
Liu (D4DT00793J/cit58/1) 2023; 408
Niu (D4DT00793J/cit52/1) 2022; 9
Fu (D4DT00793J/cit18/1) 2020; 59
Olsbye (D4DT00793J/cit16/1) 2012; 51
Kamaluddin (D4DT00793J/cit57/1) 2022; 26
Gong (D4DT00793J/cit2/1) 2021; 60
Dai (D4DT00793J/cit86/1) 2022; 14
Liu (D4DT00793J/cit10/1) 2022; 12
Cychosz (D4DT00793J/cit62/1) 2017; 46
Martínez-Franco (D4DT00793J/cit66/1) 2016; 6
Gong (D4DT00793J/cit30/1) 2022; 12
Wang (D4DT00793J/cit7/1) 2022; 61
Goeppert (D4DT00793J/cit25/1) 2014; 43
Li (D4DT00793J/cit83/1) 2023; 3
Pinilla-Herrero (D4DT00793J/cit9/1) 2021; 394
Tian (D4DT00793J/cit14/1) 2015; 5
Müller (D4DT00793J/cit79/1) 2016; 138
Li (D4DT00793J/cit4/1) 2017; 19
Yuan (D4DT00793J/cit31/1) 2019; 65
Cheng (D4DT00793J/cit37/1) 2020; 299
Uslamin (D4DT00793J/cit78/1) 2021; 369
Wang (D4DT00793J/cit28/1) 2022; 43
Xing (D4DT00793J/cit61/1) 2015; 148
Lopez-Sanchez (D4DT00793J/cit45/1) 2012; 142
Feng (D4DT00793J/cit75/1) 2023; 236
Konnov (D4DT00793J/cit60/1) 2020; 59
Olah (D4DT00793J/cit23/1) 2013; 52
Ilias (D4DT00793J/cit82/1) 2013; 3
Wu (D4DT00793J/cit13/1) 2023; 56
Vollmer (D4DT00793J/cit70/1) 2019; 574
Shoinkhorova (D4DT00793J/cit1/1) 2021; 11
Tempelman (D4DT00793J/cit69/1) 2015; 176–177
Liu (D4DT00793J/cit59/1) 2023; 16
Ma (D4DT00793J/cit47/1) 2023; 477
References_xml – volume: 475
  start-page: 110493
  year: 2019
  ident: D4DT00793J/cit5/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2019.110493
– volume: 12
  start-page: 15463
  year: 2022
  ident: D4DT00793J/cit30/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04600
– volume: 138
  start-page: 15994
  year: 2016
  ident: D4DT00793J/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09605
– volume: 10
  start-page: 1506
  year: 2009
  ident: D4DT00793J/cit27/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2009.04.004
– volume: 23
  start-page: 10988
  year: 2021
  ident: D4DT00793J/cit74/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05778A
– volume: 44
  start-page: 2636
  year: 2005
  ident: D4DT00793J/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200462121
– volume: 142
  start-page: 1049
  year: 2012
  ident: D4DT00793J/cit45/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-012-0869-2
– volume: 1
  start-page: 547
  year: 2018
  ident: D4DT00793J/cit12/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0104-7
– volume: 321
  start-page: 23
  year: 2015
  ident: D4DT00793J/cit80/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.10.016
– volume: 31
  start-page: 50
  year: 2019
  ident: D4DT00793J/cit20/1
  publication-title: Adv. Mater.
– volume: 59
  start-page: 618
  year: 2018
  ident: D4DT00793J/cit42/1
  publication-title: Kinet. Catal.
  doi: 10.1134/S0023158418050178
– volume: 364
  start-page: 112877
  year: 2024
  ident: D4DT00793J/cit73/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2023.112877
– volume: 7
  start-page: 3598
  year: 2017
  ident: D4DT00793J/cit39/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01041A
– volume: 157
  start-page: 99
  year: 2017
  ident: D4DT00793J/cit51/1
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.12.006
– volume: 1
  start-page: 398
  year: 2018
  ident: D4DT00793J/cit11/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0078-5
– volume: 122
  start-page: 14275
  year: 2022
  ident: D4DT00793J/cit81/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00076
– volume: 12
  start-page: 5914
  year: 2021
  ident: D4DT00793J/cit35/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26090-5
– volume: 4
  start-page: 10834
  year: 2016
  ident: D4DT00793J/cit40/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02721K
– volume: 43
  start-page: 2259
  year: 2022
  ident: D4DT00793J/cit28/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64123-8
– volume: 5
  start-page: 1922
  year: 2015
  ident: D4DT00793J/cit14/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00007
– volume: 54
  start-page: 2894
  year: 2021
  ident: D4DT00793J/cit17/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00274
– volume: 61
  start-page: e202114388
  issue: 5
  year: 2022
  ident: D4DT00793J/cit34/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114388
– volume: 394
  start-page: 416
  year: 2021
  ident: D4DT00793J/cit9/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.10.024
– volume: 59
  start-page: 19553
  year: 2020
  ident: D4DT00793J/cit60/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006524
– volume: 13
  start-page: 3471
  year: 2023
  ident: D4DT00793J/cit89/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00059
– volume: 37
  start-page: 14180
  year: 2023
  ident: D4DT00793J/cit41/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c02291
– volume: 52
  start-page: 15958
  year: 2023
  ident: D4DT00793J/cit21/1
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT03044J
– volume: 7
  start-page: 5268
  year: 2017
  ident: D4DT00793J/cit32/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01497
– volume: 456
  start-page: 140867
  year: 2023
  ident: D4DT00793J/cit77/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140867
– volume: 3
  start-page: 100540
  issue: 6
  year: 2023
  ident: D4DT00793J/cit83/1
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2023.100540
– volume: 60
  start-page: 1633
  year: 2021
  ident: D4DT00793J/cit2/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c06342
– volume: 42
  start-page: 4004
  year: 2013
  ident: D4DT00793J/cit84/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35330J
– volume: 43
  start-page: 7995
  year: 2014
  ident: D4DT00793J/cit25/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00122B
– volume: 10
  start-page: 6632
  year: 2023
  ident: D4DT00793J/cit67/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI01526B
– volume: 54
  start-page: 174
  year: 2021
  ident: D4DT00793J/cit76/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.063
– volume: 43
  start-page: 100265
  year: 2024
  ident: D4DT00793J/cit56/1
  publication-title: Chin. J. Struct. Chem.
  doi: 10.1016/j.cjsc.2024.100265
– volume: 11
  start-page: 7780
  year: 2021
  ident: D4DT00793J/cit3/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01422
– volume: 7
  start-page: 560
  year: 2017
  ident: D4DT00793J/cit48/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02476A
– volume: 143
  start-page: 798
  year: 2013
  ident: D4DT00793J/cit43/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-013-1031-5
– volume: 49
  start-page: 1468
  year: 2021
  ident: D4DT00793J/cit64/1
  publication-title: J. Fuel Chem. Technol.
  doi: 10.1016/S1872-5813(21)60130-5
– volume: 9
  start-page: 1
  year: 2019
  ident: D4DT00793J/cit38/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54089-y
– volume: 19
  start-page: 4344
  year: 2017
  ident: D4DT00793J/cit4/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC01188A
– volume: 477
  start-page: 142252
  year: 2023
  ident: D4DT00793J/cit47/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142252
– volume: 81
  start-page: 5
  year: 2003
  ident: D4DT00793J/cit22/1
  publication-title: Chem. Eng. News
  doi: 10.1021/cen-v081n038.p005
– volume: 46
  start-page: 389
  year: 2017
  ident: D4DT00793J/cit62/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00391E
– volume: 458
  start-page: 141447
  issue: 15
  year: 2023
  ident: D4DT00793J/cit71/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141447
– volume: 118
  start-page: 5265
  year: 2018
  ident: D4DT00793J/cit19/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00738
– volume: 58
  start-page: 7948
  year: 2019
  ident: D4DT00793J/cit36/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00726
– volume: 56
  start-page: 3492
  year: 2023
  ident: D4DT00793J/cit26/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00551
– volume: 2
  start-page: 105
  year: 2012
  ident: D4DT00793J/cit50/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C1CY00299F
– volume: 14
  start-page: 11415
  year: 2022
  ident: D4DT00793J/cit86/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23614
– volume: 38
  start-page: 683
  year: 2017
  ident: D4DT00793J/cit46/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62791-8
– volume: 325
  start-page: 48
  year: 2015
  ident: D4DT00793J/cit29/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.02.013
– volume: 316
  start-page: 93
  year: 2014
  ident: D4DT00793J/cit88/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.05.004
– volume: 34
  start-page: 22
  year: 2013
  ident: D4DT00793J/cit90/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(11)60507-X
– volume: 59
  start-page: 20024
  year: 2020
  ident: D4DT00793J/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009139
– volume: 58
  start-page: 10737
  year: 2019
  ident: D4DT00793J/cit54/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00502
– volume: 26
  start-page: 768
  year: 2017
  ident: D4DT00793J/cit72/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.03.014
– volume: 236
  start-page: 157811
  year: 2023
  ident: D4DT00793J/cit75/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.157811
– volume: 11
  start-page: 3602
  year: 2021
  ident: D4DT00793J/cit1/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05133
– volume: 3
  start-page: 18
  year: 2013
  ident: D4DT00793J/cit82/1
  publication-title: ACS Catal.
  doi: 10.1021/cs3006583
– volume: 176–177
  start-page: 731
  year: 2015
  ident: D4DT00793J/cit69/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.04.052
– volume: 299
  start-page: 110784
  year: 2020
  ident: D4DT00793J/cit37/1
  publication-title: Microporous Mesoporous Mater.
– volume: 8
  start-page: 5646
  year: 2018
  ident: D4DT00793J/cit53/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY01734D
– volume: 574
  start-page: 144
  year: 2019
  ident: D4DT00793J/cit70/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2019.01.022
– volume: 37
  start-page: 308
  year: 2016
  ident: D4DT00793J/cit63/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)60979-2
– volume: 130
  start-page: 12729
  year: 2018
  ident: D4DT00793J/cit6/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201807814
– volume: 148
  start-page: 48
  year: 2015
  ident: D4DT00793J/cit61/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.01.040
– volume: 52
  start-page: 104
  year: 2013
  ident: D4DT00793J/cit23/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204995
– volume: 53
  start-page: 1387
  year: 2010
  ident: D4DT00793J/cit87/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-010-9598-1
– volume: 62
  start-page: 1865
  year: 2023
  ident: D4DT00793J/cit8/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c03873
– volume: 10
  start-page: nwad120
  issue: 9
  year: 2023
  ident: D4DT00793J/cit15/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwad120
– volume: 51
  start-page: 5810
  year: 2012
  ident: D4DT00793J/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201103657
– volume: 6
  start-page: 2796
  year: 2016
  ident: D4DT00793J/cit66/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY02298C
– volume: 10
  start-page: 5961
  year: 2020
  ident: D4DT00793J/cit44/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA09657D
– volume: 26
  start-page: 101061
  year: 2022
  ident: D4DT00793J/cit57/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.101061
– volume: 369
  start-page: 184
  year: 2021
  ident: D4DT00793J/cit78/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.04.021
– volume: 56
  start-page: 12508
  year: 2017
  ident: D4DT00793J/cit49/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02908
– volume: 70
  start-page: 67
  year: 2000
  ident: D4DT00793J/cit68/1
  publication-title: Catal. Lett.
  doi: 10.1023/A:1019079603279
– volume: 61
  start-page: 10
  year: 2022
  ident: D4DT00793J/cit7/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 408
  start-page: 22
  year: 2023
  ident: D4DT00793J/cit58/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2022.10.007
– volume: 45
  start-page: 3479
  year: 2016
  ident: D4DT00793J/cit91/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00135A
– volume: 12
  start-page: 3189
  year: 2022
  ident: D4DT00793J/cit10/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05481
– volume: 244
  start-page: 301
  year: 2017
  ident: D4DT00793J/cit55/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.02.014
– volume: 57
  start-page: 10956
  year: 2018
  ident: D4DT00793J/cit65/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00849
– volume: 16
  start-page: e202300608
  year: 2023
  ident: D4DT00793J/cit59/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300608
– volume: 56
  start-page: 2001
  year: 2023
  ident: D4DT00793J/cit13/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00187
– volume: 9
  start-page: 211284
  year: 2022
  ident: D4DT00793J/cit52/1
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.211284
– volume: 29
  start-page: 173
  year: 1999
  ident: D4DT00793J/cit33/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(98)00329-1
– volume: 302
  start-page: 110221
  year: 2020
  ident: D4DT00793J/cit85/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110221
– volume: 65
  start-page: 662
  year: 2019
  ident: D4DT00793J/cit31/1
  publication-title: AIChE J.
  doi: 10.1002/aic.16439
SSID ssj0022052
Score 2.4646523
Snippet In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11344
SubjectTerms Alkenes
Aromatic hydrocarbons
Crystals
Methanol
Modernization
Zeolites
Title The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites
URI https://www.ncbi.nlm.nih.gov/pubmed/38899920
https://www.proquest.com/docview/3076881868
https://www.proquest.com/docview/3070826985
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4mtQGMgILqgLS-x8Hqd1MCbGZZ1Ucalcx9GKqqRqEqT2wj_JH8R7juNmrIfBJaocu_l4v9jv2T__HiHvEyncjCehI2OVOr4nIkeEMXekq0KVAABSjruRL76FZ1f--SSY9Hq_O6ylupp9lJud-0r-x6pQBnbFXbL_YFn7p1AAv8G-cAQLw_HONi7XuHtPyy1r7YfVciH0qjkmuUYU67coV-sStz2W841qCZufhbNsyHhbuiMmlBZ5sXCqwhFwUmgV52Wzm2CIdM_h98sLJxhuFBLnDAHROLcjgSmqMetEm4K81DMOIm_uzE483pCraPJKyaFsU89ZjtC81t1QbfF7eV1A6HxdrIqf2ucd1wBu0em4sHAyz9e1pRUZxvGkNl-BmeBgvibDJp0-2cdVZsaMYna3zMyDmo68UR02gG0UB0y37Hm8UZk0Y7yH2T52DiAuR_3VkT8auygdeL4dJltqwF-jp-U06tV8nky3be-RPQbBC-uTvePT8ZevdiKAuToTlH2wVjaXJ0fb1jcdpVvRD_hCqzZHjfaFxo_IQxPE0OMGkY9JT-VPyP2T1oBPyS9AJu0gk1pk0iKjFpmH1OCSIi4PKaCSdlEJzSigku5EJTWopIhKqlFJW1Q-I1efTscnZ45J9eFIzqPK8bw0SlgUesKNMghCUKZRyNSVkZIYBKhMBJkMwyQKlAq5YtChQPCdCcEECwPF90k_L3L1glA3iqSfejxlceZLxeMoSV2VipCDez9j0YB8aN_rVBodfEzHspjetuCAvLN1l436y85aB615puYDKqccl7hRLjIekLf2NJgBF-REropa1wEPPEziYECeN2a1l-FxDLEbcwdkH-xsi1M_rfRVf7y80729Ig-239QB6VerWr0GN7qavTGo_AMni8tI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+synergistic+interplay+of+hierarchy%2C+crystal+size%2C+and+Ga-promotion+in+the+methanol-to-aromatics+process+over+ZSM-5+zeolites&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Liu%2C+Kun&rft.au=Shoinkhorova%2C+Tuiana&rft.au=You%2C+Xinyu&rft.au=Gong%2C+Xuan&rft.date=2024-07-09&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=27&rft.spage=11344&rft.epage=11353&rft_id=info:doi/10.1039%2FD4DT00793J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4DT00793J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon