The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative source...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 53; no. 27; pp. 11344 - 11353 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
09.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
The efficacy of the methanol-to-aromatics process over ZSM-5 was evaluated considering factors such as hierarchy, particle size, and bifunctionality. |
---|---|
AbstractList | In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
The efficacy of the methanol-to-aromatics process over ZSM-5 was evaluated considering factors such as hierarchy, particle size, and bifunctionality. In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the “methanol economy”, have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity—such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties—into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure–reactivity relationships. In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships. |
Author | Shoinkhorova, Tuiana Gong, Xuan Zhang, Xin Ruiz-Martínez, Javier Liu, Kun You, Xinyu Gascon, Jorge Dutta Chowdhury, Abhishek Chung, Sang-Ho |
AuthorAffiliation | Wuhan University King Abdullah University of Science and Technology (KAUST) College of Chemistry and Molecular Sciences KAUST Catalysis Center (KCC) |
AuthorAffiliation_xml | – sequence: 0 name: Wuhan University – sequence: 0 name: King Abdullah University of Science and Technology (KAUST) – sequence: 0 name: KAUST Catalysis Center (KCC) – sequence: 0 name: College of Chemistry and Molecular Sciences |
Author_xml | – sequence: 1 givenname: Kun surname: Liu fullname: Liu, Kun – sequence: 2 givenname: Tuiana surname: Shoinkhorova fullname: Shoinkhorova, Tuiana – sequence: 3 givenname: Xinyu surname: You fullname: You, Xinyu – sequence: 4 givenname: Xuan surname: Gong fullname: Gong, Xuan – sequence: 5 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 6 givenname: Sang-Ho surname: Chung fullname: Chung, Sang-Ho – sequence: 7 givenname: Javier surname: Ruiz-Martínez fullname: Ruiz-Martínez, Javier – sequence: 8 givenname: Jorge surname: Gascon fullname: Gascon, Jorge – sequence: 9 givenname: Abhishek surname: Dutta Chowdhury fullname: Dutta Chowdhury, Abhishek |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38899920$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0suLFDEQB-AgK-5DL96VgBeRbc1jOo-j7OqqrHhwvHhpynS1k6E7GZOM0HvxXzfjrCMsnhLIVz-KqpySoxADEvKYs5ecSfuqX_SFMW3l-h454QutGyvk4uhwF-qYnOa8ZkwI1ooH5FgaY60V7IT8Wq6Q5jlg-u5z8Y76UDBtRphpHOjKY4LkVvM5dWnOBUaa_Q2eUwg9vYJmk-IUi4-hltFSkyYsKwhxbEpsoD5Cjcy0Moc50_gTE_36-WPT0huMoy-YH5L7A4wZH92eZ-TL2zfLi3fN9aer9xevrxsnpS4N5722QisOTA9ccWmlBtczp9Ex23IcoB2cUla3iEqiAGWYVQOAAKFalGfk-T639vJji7l0k88OxxECxm3uJNPMCGVNW-mzO3QdtynU7nZKGcONMlU9vVXbbxP23Sb5CdLc_R1tBS_2wKWYc8LhQDjrdnvrLheXyz97-1Axu4OdL7CbbEngx_-XPNmXpOwO0f--gvwNxhOkMg |
CitedBy_id | crossref_primary_10_1039_D4CY01168F crossref_primary_10_1002_cmtd_202400076 crossref_primary_10_1016_j_ccr_2025_216611 |
Cites_doi | 10.1016/j.mcat.2019.110493 10.1021/acscatal.2c04600 10.1021/jacs.6b09605 10.1016/j.catcom.2009.04.004 10.1039/D0CP05778A 10.1002/anie.200462121 10.1007/s10562-012-0869-2 10.1038/s41929-018-0104-7 10.1016/j.jcat.2014.10.016 10.1134/S0023158418050178 10.1016/j.micromeso.2023.112877 10.1039/C7CY01041A 10.1016/j.fuproc.2016.12.006 10.1038/s41929-018-0078-5 10.1021/acs.chemrev.2c00076 10.1038/s41467-021-26090-5 10.1039/C6TA02721K 10.1016/S1872-2067(22)64123-8 10.1021/acscatal.5b00007 10.1021/acs.accounts.1c00274 10.1002/anie.202114388 10.1016/j.jcat.2020.10.024 10.1002/anie.202006524 10.1021/acscatal.3c00059 10.1021/acs.energyfuels.3c02291 10.1039/D3DT03044J 10.1021/acscatal.7b01497 10.1016/j.cej.2022.140867 10.1016/j.checat.2023.100540 10.1021/acs.iecr.0c06342 10.1039/C2CS35330J 10.1039/C4CS00122B 10.1039/D3QI01526B 10.1016/j.jechem.2020.05.063 10.1016/j.cjsc.2024.100265 10.1021/acscatal.1c01422 10.1039/C6CY02476A 10.1007/s10562-013-1031-5 10.1016/S1872-5813(21)60130-5 10.1038/s41598-019-54089-y 10.1039/C7GC01188A 10.1016/j.cej.2023.142252 10.1021/cen-v081n038.p005 10.1039/C6CS00391E 10.1016/j.cej.2023.141447 10.1021/acs.chemrev.7b00738 10.1021/acs.iecr.9b00726 10.1021/acs.accounts.3c00551 10.1039/C1CY00299F 10.1021/acsami.1c23614 10.1016/S1872-2067(17)62791-8 10.1016/j.jcat.2015.02.013 10.1016/j.jcat.2014.05.004 10.1016/S1872-2067(11)60507-X 10.1002/anie.202009139 10.1021/acs.iecr.9b00502 10.1016/j.jechem.2017.03.014 10.1016/j.apsusc.2023.157811 10.1021/acscatal.0c05133 10.1021/cs3006583 10.1016/j.apcatb.2015.04.052 10.1039/C8CY01734D 10.1016/j.apcata.2019.01.022 10.1016/S1872-2067(15)60979-2 10.1002/ange.201807814 10.1016/j.fuel.2015.01.040 10.1002/anie.201204995 10.1007/s11244-010-9598-1 10.1021/acs.iecr.2c03873 10.1093/nsr/nwad120 10.1002/anie.201103657 10.1039/C5CY02298C 10.1039/C9RA09657D 10.1016/j.mtchem.2022.101061 10.1016/j.cattod.2020.04.021 10.1021/acs.iecr.7b02908 10.1023/A:1019079603279 10.1016/j.cattod.2022.10.007 10.1039/C6CS00135A 10.1021/acscatal.1c05481 10.1016/j.micromeso.2017.02.014 10.1021/acs.iecr.8b00849 10.1002/cssc.202300608 10.1021/acs.accounts.3c00187 10.1098/rsos.211284 10.1016/S1387-1811(98)00329-1 10.1016/j.micromeso.2020.110221 10.1002/aic.16439 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4dt00793j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 11353 |
ExternalDocumentID | 38899920 10_1039_D4DT00793J d4dt00793j |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-11d792761a07f1613937acd0c7ec0951efa5fc66975ee63e2a68096faa2a265e3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 12:20:39 EDT 2025 Mon Jun 30 17:50:49 EDT 2025 Mon Jul 21 06:00:18 EDT 2025 Tue Jul 01 04:27:41 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Tue Dec 17 20:58:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-11d792761a07f1613937acd0c7ec0951efa5fc66975ee63e2a68096faa2a265e3 |
Notes | https://doi.org/10.1039/d4dt00793j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7558-7123 0000-0002-9850-7939 0000-0002-4121-7375 0000-0001-7400-8791 |
PMID | 38899920 |
PQID | 3076881868 |
PQPubID | 2047498 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1039_D4DT00793J proquest_journals_3076881868 pubmed_primary_38899920 proquest_miscellaneous_3070826985 rsc_primary_d4dt00793j crossref_primary_10_1039_D4DT00793J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-09 |
PublicationDateYYYYMMDD | 2024-07-09 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Asghari (D4DT00793J/cit38/1) 2019; 9 Shen (D4DT00793J/cit39/1) 2017; 7 Sun (D4DT00793J/cit91/1) 2016; 45 Schallmoser (D4DT00793J/cit88/1) 2014; 316 Olah (D4DT00793J/cit22/1) 2003; 81 Wu (D4DT00793J/cit54/1) 2019; 58 Chen (D4DT00793J/cit6/1) 2018; 130 Li (D4DT00793J/cit63/1) 2016; 37 Shu (D4DT00793J/cit68/1) 2000; 70 Khare (D4DT00793J/cit80/1) 2015; 321 Chai (D4DT00793J/cit17/1) 2021; 54 Zhang (D4DT00793J/cit15/1) 2023; 10 Qiao (D4DT00793J/cit44/1) 2020; 10 Li (D4DT00793J/cit90/1) 2013; 34 Yarulina (D4DT00793J/cit11/1) 2018; 1 Fang (D4DT00793J/cit72/1) 2017; 26 Müller (D4DT00793J/cit29/1) 2015; 325 Li (D4DT00793J/cit3/1) 2021; 11 Ni (D4DT00793J/cit76/1) 2021; 54 Tian (D4DT00793J/cit42/1) 2018; 59 Olah (D4DT00793J/cit24/1) 2005; 44 Chen (D4DT00793J/cit65/1) 2018; 57 Xin (D4DT00793J/cit43/1) 2013; 143 Ghaedi (D4DT00793J/cit64/1) 2021; 49 Niu (D4DT00793J/cit51/1) 2017; 157 Wang (D4DT00793J/cit48/1) 2017; 7 Wang (D4DT00793J/cit53/1) 2018; 8 Dusselier (D4DT00793J/cit19/1) 2018; 118 Tian (D4DT00793J/cit41/1) 2023; 37 Song (D4DT00793J/cit73/1) 2024; 364 Siddiqui (D4DT00793J/cit87/1) 2010; 53 Borodina (D4DT00793J/cit32/1) 2017; 7 Zhang (D4DT00793J/cit71/1) 2023; 458 Liu (D4DT00793J/cit27/1) 2009; 10 Ramirez (D4DT00793J/cit35/1) 2021; 12 Albahar (D4DT00793J/cit85/1) 2020; 302 Wang (D4DT00793J/cit40/1) 2016; 4 Conte (D4DT00793J/cit50/1) 2012; 2 Zhang (D4DT00793J/cit74/1) 2021; 23 Zhang (D4DT00793J/cit67/1) 2023; 10 Fu (D4DT00793J/cit8/1) 2023; 62 Liutkova (D4DT00793J/cit89/1) 2023; 13 Yang (D4DT00793J/cit46/1) 2017; 38 Li (D4DT00793J/cit12/1) 2018; 1 Chen (D4DT00793J/cit55/1) 2017; 244 Shi (D4DT00793J/cit77/1) 2023; 456 You (D4DT00793J/cit21/1) 2023; 52 Filosa (D4DT00793J/cit26/1) 2023; 56 Mikkelsen (D4DT00793J/cit33/1) 1999; 29 Chen (D4DT00793J/cit36/1) 2019; 58 Zhang (D4DT00793J/cit49/1) 2017; 56 Yang (D4DT00793J/cit20/1) 2019; 31 You (D4DT00793J/cit56/1) 2024; 43 Fu (D4DT00793J/cit34/1) 2022; 61 Gong (D4DT00793J/cit81/1) 2022; 122 Serrano (D4DT00793J/cit84/1) 2013; 42 Xi (D4DT00793J/cit5/1) 2019; 475 Liu (D4DT00793J/cit58/1) 2023; 408 Niu (D4DT00793J/cit52/1) 2022; 9 Fu (D4DT00793J/cit18/1) 2020; 59 Olsbye (D4DT00793J/cit16/1) 2012; 51 Kamaluddin (D4DT00793J/cit57/1) 2022; 26 Gong (D4DT00793J/cit2/1) 2021; 60 Dai (D4DT00793J/cit86/1) 2022; 14 Liu (D4DT00793J/cit10/1) 2022; 12 Cychosz (D4DT00793J/cit62/1) 2017; 46 Martínez-Franco (D4DT00793J/cit66/1) 2016; 6 Gong (D4DT00793J/cit30/1) 2022; 12 Wang (D4DT00793J/cit7/1) 2022; 61 Goeppert (D4DT00793J/cit25/1) 2014; 43 Li (D4DT00793J/cit83/1) 2023; 3 Pinilla-Herrero (D4DT00793J/cit9/1) 2021; 394 Tian (D4DT00793J/cit14/1) 2015; 5 Müller (D4DT00793J/cit79/1) 2016; 138 Li (D4DT00793J/cit4/1) 2017; 19 Yuan (D4DT00793J/cit31/1) 2019; 65 Cheng (D4DT00793J/cit37/1) 2020; 299 Uslamin (D4DT00793J/cit78/1) 2021; 369 Wang (D4DT00793J/cit28/1) 2022; 43 Xing (D4DT00793J/cit61/1) 2015; 148 Lopez-Sanchez (D4DT00793J/cit45/1) 2012; 142 Feng (D4DT00793J/cit75/1) 2023; 236 Konnov (D4DT00793J/cit60/1) 2020; 59 Olah (D4DT00793J/cit23/1) 2013; 52 Ilias (D4DT00793J/cit82/1) 2013; 3 Wu (D4DT00793J/cit13/1) 2023; 56 Vollmer (D4DT00793J/cit70/1) 2019; 574 Shoinkhorova (D4DT00793J/cit1/1) 2021; 11 Tempelman (D4DT00793J/cit69/1) 2015; 176–177 Liu (D4DT00793J/cit59/1) 2023; 16 Ma (D4DT00793J/cit47/1) 2023; 477 |
References_xml | – volume: 475 start-page: 110493 year: 2019 ident: D4DT00793J/cit5/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2019.110493 – volume: 12 start-page: 15463 year: 2022 ident: D4DT00793J/cit30/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c04600 – volume: 138 start-page: 15994 year: 2016 ident: D4DT00793J/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09605 – volume: 10 start-page: 1506 year: 2009 ident: D4DT00793J/cit27/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2009.04.004 – volume: 23 start-page: 10988 year: 2021 ident: D4DT00793J/cit74/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05778A – volume: 44 start-page: 2636 year: 2005 ident: D4DT00793J/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200462121 – volume: 142 start-page: 1049 year: 2012 ident: D4DT00793J/cit45/1 publication-title: Catal. Lett. doi: 10.1007/s10562-012-0869-2 – volume: 1 start-page: 547 year: 2018 ident: D4DT00793J/cit12/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0104-7 – volume: 321 start-page: 23 year: 2015 ident: D4DT00793J/cit80/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.10.016 – volume: 31 start-page: 50 year: 2019 ident: D4DT00793J/cit20/1 publication-title: Adv. Mater. – volume: 59 start-page: 618 year: 2018 ident: D4DT00793J/cit42/1 publication-title: Kinet. Catal. doi: 10.1134/S0023158418050178 – volume: 364 start-page: 112877 year: 2024 ident: D4DT00793J/cit73/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2023.112877 – volume: 7 start-page: 3598 year: 2017 ident: D4DT00793J/cit39/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01041A – volume: 157 start-page: 99 year: 2017 ident: D4DT00793J/cit51/1 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.12.006 – volume: 1 start-page: 398 year: 2018 ident: D4DT00793J/cit11/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0078-5 – volume: 122 start-page: 14275 year: 2022 ident: D4DT00793J/cit81/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00076 – volume: 12 start-page: 5914 year: 2021 ident: D4DT00793J/cit35/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26090-5 – volume: 4 start-page: 10834 year: 2016 ident: D4DT00793J/cit40/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02721K – volume: 43 start-page: 2259 year: 2022 ident: D4DT00793J/cit28/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64123-8 – volume: 5 start-page: 1922 year: 2015 ident: D4DT00793J/cit14/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00007 – volume: 54 start-page: 2894 year: 2021 ident: D4DT00793J/cit17/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00274 – volume: 61 start-page: e202114388 issue: 5 year: 2022 ident: D4DT00793J/cit34/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202114388 – volume: 394 start-page: 416 year: 2021 ident: D4DT00793J/cit9/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.10.024 – volume: 59 start-page: 19553 year: 2020 ident: D4DT00793J/cit60/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006524 – volume: 13 start-page: 3471 year: 2023 ident: D4DT00793J/cit89/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c00059 – volume: 37 start-page: 14180 year: 2023 ident: D4DT00793J/cit41/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c02291 – volume: 52 start-page: 15958 year: 2023 ident: D4DT00793J/cit21/1 publication-title: Dalton Trans. doi: 10.1039/D3DT03044J – volume: 7 start-page: 5268 year: 2017 ident: D4DT00793J/cit32/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01497 – volume: 456 start-page: 140867 year: 2023 ident: D4DT00793J/cit77/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140867 – volume: 3 start-page: 100540 issue: 6 year: 2023 ident: D4DT00793J/cit83/1 publication-title: Chem. Catal. doi: 10.1016/j.checat.2023.100540 – volume: 60 start-page: 1633 year: 2021 ident: D4DT00793J/cit2/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c06342 – volume: 42 start-page: 4004 year: 2013 ident: D4DT00793J/cit84/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35330J – volume: 43 start-page: 7995 year: 2014 ident: D4DT00793J/cit25/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00122B – volume: 10 start-page: 6632 year: 2023 ident: D4DT00793J/cit67/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI01526B – volume: 54 start-page: 174 year: 2021 ident: D4DT00793J/cit76/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.063 – volume: 43 start-page: 100265 year: 2024 ident: D4DT00793J/cit56/1 publication-title: Chin. J. Struct. Chem. doi: 10.1016/j.cjsc.2024.100265 – volume: 11 start-page: 7780 year: 2021 ident: D4DT00793J/cit3/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01422 – volume: 7 start-page: 560 year: 2017 ident: D4DT00793J/cit48/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02476A – volume: 143 start-page: 798 year: 2013 ident: D4DT00793J/cit43/1 publication-title: Catal. Lett. doi: 10.1007/s10562-013-1031-5 – volume: 49 start-page: 1468 year: 2021 ident: D4DT00793J/cit64/1 publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(21)60130-5 – volume: 9 start-page: 1 year: 2019 ident: D4DT00793J/cit38/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54089-y – volume: 19 start-page: 4344 year: 2017 ident: D4DT00793J/cit4/1 publication-title: Green Chem. doi: 10.1039/C7GC01188A – volume: 477 start-page: 142252 year: 2023 ident: D4DT00793J/cit47/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142252 – volume: 81 start-page: 5 year: 2003 ident: D4DT00793J/cit22/1 publication-title: Chem. Eng. News doi: 10.1021/cen-v081n038.p005 – volume: 46 start-page: 389 year: 2017 ident: D4DT00793J/cit62/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00391E – volume: 458 start-page: 141447 issue: 15 year: 2023 ident: D4DT00793J/cit71/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141447 – volume: 118 start-page: 5265 year: 2018 ident: D4DT00793J/cit19/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00738 – volume: 58 start-page: 7948 year: 2019 ident: D4DT00793J/cit36/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00726 – volume: 56 start-page: 3492 year: 2023 ident: D4DT00793J/cit26/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00551 – volume: 2 start-page: 105 year: 2012 ident: D4DT00793J/cit50/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C1CY00299F – volume: 14 start-page: 11415 year: 2022 ident: D4DT00793J/cit86/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23614 – volume: 38 start-page: 683 year: 2017 ident: D4DT00793J/cit46/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62791-8 – volume: 325 start-page: 48 year: 2015 ident: D4DT00793J/cit29/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.02.013 – volume: 316 start-page: 93 year: 2014 ident: D4DT00793J/cit88/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.05.004 – volume: 34 start-page: 22 year: 2013 ident: D4DT00793J/cit90/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(11)60507-X – volume: 59 start-page: 20024 year: 2020 ident: D4DT00793J/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009139 – volume: 58 start-page: 10737 year: 2019 ident: D4DT00793J/cit54/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00502 – volume: 26 start-page: 768 year: 2017 ident: D4DT00793J/cit72/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.03.014 – volume: 236 start-page: 157811 year: 2023 ident: D4DT00793J/cit75/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.157811 – volume: 11 start-page: 3602 year: 2021 ident: D4DT00793J/cit1/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c05133 – volume: 3 start-page: 18 year: 2013 ident: D4DT00793J/cit82/1 publication-title: ACS Catal. doi: 10.1021/cs3006583 – volume: 176–177 start-page: 731 year: 2015 ident: D4DT00793J/cit69/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.04.052 – volume: 299 start-page: 110784 year: 2020 ident: D4DT00793J/cit37/1 publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 5646 year: 2018 ident: D4DT00793J/cit53/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY01734D – volume: 574 start-page: 144 year: 2019 ident: D4DT00793J/cit70/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2019.01.022 – volume: 37 start-page: 308 year: 2016 ident: D4DT00793J/cit63/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)60979-2 – volume: 130 start-page: 12729 year: 2018 ident: D4DT00793J/cit6/1 publication-title: Angew. Chem. doi: 10.1002/ange.201807814 – volume: 148 start-page: 48 year: 2015 ident: D4DT00793J/cit61/1 publication-title: Fuel doi: 10.1016/j.fuel.2015.01.040 – volume: 52 start-page: 104 year: 2013 ident: D4DT00793J/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204995 – volume: 53 start-page: 1387 year: 2010 ident: D4DT00793J/cit87/1 publication-title: Top. Catal. doi: 10.1007/s11244-010-9598-1 – volume: 62 start-page: 1865 year: 2023 ident: D4DT00793J/cit8/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c03873 – volume: 10 start-page: nwad120 issue: 9 year: 2023 ident: D4DT00793J/cit15/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwad120 – volume: 51 start-page: 5810 year: 2012 ident: D4DT00793J/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201103657 – volume: 6 start-page: 2796 year: 2016 ident: D4DT00793J/cit66/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02298C – volume: 10 start-page: 5961 year: 2020 ident: D4DT00793J/cit44/1 publication-title: RSC Adv. doi: 10.1039/C9RA09657D – volume: 26 start-page: 101061 year: 2022 ident: D4DT00793J/cit57/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101061 – volume: 369 start-page: 184 year: 2021 ident: D4DT00793J/cit78/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.04.021 – volume: 56 start-page: 12508 year: 2017 ident: D4DT00793J/cit49/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02908 – volume: 70 start-page: 67 year: 2000 ident: D4DT00793J/cit68/1 publication-title: Catal. Lett. doi: 10.1023/A:1019079603279 – volume: 61 start-page: 10 year: 2022 ident: D4DT00793J/cit7/1 publication-title: Angew. Chem., Int. Ed. – volume: 408 start-page: 22 year: 2023 ident: D4DT00793J/cit58/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2022.10.007 – volume: 45 start-page: 3479 year: 2016 ident: D4DT00793J/cit91/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00135A – volume: 12 start-page: 3189 year: 2022 ident: D4DT00793J/cit10/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05481 – volume: 244 start-page: 301 year: 2017 ident: D4DT00793J/cit55/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.02.014 – volume: 57 start-page: 10956 year: 2018 ident: D4DT00793J/cit65/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00849 – volume: 16 start-page: e202300608 year: 2023 ident: D4DT00793J/cit59/1 publication-title: ChemSusChem doi: 10.1002/cssc.202300608 – volume: 56 start-page: 2001 year: 2023 ident: D4DT00793J/cit13/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00187 – volume: 9 start-page: 211284 year: 2022 ident: D4DT00793J/cit52/1 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.211284 – volume: 29 start-page: 173 year: 1999 ident: D4DT00793J/cit33/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(98)00329-1 – volume: 302 start-page: 110221 year: 2020 ident: D4DT00793J/cit85/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110221 – volume: 65 start-page: 662 year: 2019 ident: D4DT00793J/cit31/1 publication-title: AIChE J. doi: 10.1002/aic.16439 |
SSID | ssj0022052 |
Score | 2.4646523 |
Snippet | In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11344 |
SubjectTerms | Alkenes Aromatic hydrocarbons Crystals Methanol Modernization Zeolites |
Title | The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38899920 https://www.proquest.com/docview/3076881868 https://www.proquest.com/docview/3070826985 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4mtQGMgILqgLS-x8Hqd1MCbGZZ1Ucalcx9GKqqRqEqT2wj_JH8R7juNmrIfBJaocu_l4v9jv2T__HiHvEyncjCehI2OVOr4nIkeEMXekq0KVAABSjruRL76FZ1f--SSY9Hq_O6ylupp9lJud-0r-x6pQBnbFXbL_YFn7p1AAv8G-cAQLw_HONi7XuHtPyy1r7YfVciH0qjkmuUYU67coV-sStz2W841qCZufhbNsyHhbuiMmlBZ5sXCqwhFwUmgV52Wzm2CIdM_h98sLJxhuFBLnDAHROLcjgSmqMetEm4K81DMOIm_uzE483pCraPJKyaFsU89ZjtC81t1QbfF7eV1A6HxdrIqf2ucd1wBu0em4sHAyz9e1pRUZxvGkNl-BmeBgvibDJp0-2cdVZsaMYna3zMyDmo68UR02gG0UB0y37Hm8UZk0Y7yH2T52DiAuR_3VkT8auygdeL4dJltqwF-jp-U06tV8nky3be-RPQbBC-uTvePT8ZevdiKAuToTlH2wVjaXJ0fb1jcdpVvRD_hCqzZHjfaFxo_IQxPE0OMGkY9JT-VPyP2T1oBPyS9AJu0gk1pk0iKjFpmH1OCSIi4PKaCSdlEJzSigku5EJTWopIhKqlFJW1Q-I1efTscnZ45J9eFIzqPK8bw0SlgUesKNMghCUKZRyNSVkZIYBKhMBJkMwyQKlAq5YtChQPCdCcEECwPF90k_L3L1glA3iqSfejxlceZLxeMoSV2VipCDez9j0YB8aN_rVBodfEzHspjetuCAvLN1l436y85aB615puYDKqccl7hRLjIekLf2NJgBF-REropa1wEPPEziYECeN2a1l-FxDLEbcwdkH-xsi1M_rfRVf7y80729Ig-239QB6VerWr0GN7qavTGo_AMni8tI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+synergistic+interplay+of+hierarchy%2C+crystal+size%2C+and+Ga-promotion+in+the+methanol-to-aromatics+process+over+ZSM-5+zeolites&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Liu%2C+Kun&rft.au=Shoinkhorova%2C+Tuiana&rft.au=You%2C+Xinyu&rft.au=Gong%2C+Xuan&rft.date=2024-07-09&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=27&rft.spage=11344&rft.epage=11353&rft_id=info:doi/10.1039%2FD4DT00793J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4DT00793J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |