Assist Control of Lifting Motion of Lumbar-Powered Exoskeleton Using IMU Sensors

According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and hygiene. Such pain is primarily caused by performing tasks involving heavy lifting and carrying in various fields, including caregiving, transpo...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced computational intelligence and intelligent informatics Vol. 29; no. 3; pp. 559 - 573
Main Authors Fujii, Ryosuke, Takahashi, Yasutake, Tsuichihara, Satoki, Yamada, Takayoshi
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Co. Ltd 20.05.2025
Subjects
Online AccessGet full text
ISSN1343-0130
1883-8014
DOI10.20965/jaciii.2025.p0559

Cover

Loading…
Abstract According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and hygiene. Such pain is primarily caused by performing tasks involving heavy lifting and carrying in various fields, including caregiving, transportation, and agriculture. This study proposes a lumbar-powered exoskeleton to assist lifting movements. Passive exoskeletons use springs or rubber belts for assistive force, thus rendering them lightweight but unable to provide controlled assistance based on the wearer’s movements. Active exoskeletons, such as the Hybrid Assistive Limb robot suit, use surface electromyography (sEMG) to detect movement characteristics. However, sEMG is susceptible to noise owing to factors such as sweating and skin contamination. This study proposes a lumbar exoskeleton control method using a nine-axis inertial measurement unit (IMU) that is easy to attach and less affected by the wearer’s state. Convolutional neural networks and long short-term memory models are adopted for posture classification. Tests involving 10 subjects show that integrated electromyographic activity decreased significantly.
AbstractList According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and hygiene. Such pain is primarily caused by performing tasks involving heavy lifting and carrying in various fields, including caregiving, transportation, and agriculture. This study proposes a lumbar-powered exoskeleton to assist lifting movements. Passive exoskeletons use springs or rubber belts for assistive force, thus rendering them lightweight but unable to provide controlled assistance based on the wearer’s movements. Active exoskeletons, such as the Hybrid Assistive Limb robot suit, use surface electromyography (sEMG) to detect movement characteristics. However, sEMG is susceptible to noise owing to factors such as sweating and skin contamination. This study proposes a lumbar exoskeleton control method using a nine-axis inertial measurement unit (IMU) that is easy to attach and less affected by the wearer’s state. Convolutional neural networks and long short-term memory models are adopted for posture classification. Tests involving 10 subjects show that integrated electromyographic activity decreased significantly.
Author Fujii, Ryosuke
Tsuichihara, Satoki
Takahashi, Yasutake
Yamada, Takayoshi
Author_xml – sequence: 1
  givenname: Ryosuke
  surname: Fujii
  fullname: Fujii, Ryosuke
  organization: Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
– sequence: 2
  givenname: Yasutake
  orcidid: 0000-0001-7301-9907
  surname: Takahashi
  fullname: Takahashi, Yasutake
  organization: Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
– sequence: 3
  givenname: Satoki
  orcidid: 0000-0003-0203-6544
  surname: Tsuichihara
  fullname: Tsuichihara, Satoki
  organization: Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
– sequence: 4
  givenname: Takayoshi
  orcidid: 0009-0005-8888-0739
  surname: Yamada
  fullname: Yamada, Takayoshi
  organization: Faculty of Education, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
BookMark eNotkE1PAjEQhhuDiYj8AU-beF7sN-2REFSSJZIo52Y_pqYILbZL1H9vAU_zzsyTmeS5RQMfPCB0T_CEYi3F47ZunXO5oWJywELoKzQkSrFSYcIHOTPOSkwYvkHjlLYY50wl5mSI1rOUXOqLefB9DLsi2KJytnf-o1iF3gV_nhz3TR3LdfiGCF2x-AnpE3bQ5-0mndDlalO8gU8hpjt0betdgvF_HaHN0-J9_lJWr8_L-awqW8amupSSSNwqRSVtpNV1Bw3tOFWN1I1lWmkL2tJOSG4JtVwB09JOdUdYIwBPORuhh8vdQwxfR0i92YZj9PmlYTQ7YEIqnCl6odoYUopgzSG6fR1_DcHmLM9c5JmTPHOWx_4AwYRkkQ
Cites_doi 10.3390/electronics9122176
10.3390/app10072424
10.1155/2017/8682168
10.1299/jbse.16-00595
10.1080/24725838.2021.2005720
10.3390/s16091408
10.1515/BMT.2006.063
10.1371/journal.pone.0238247
10.18178/ijmerr.7.4.353-360
10.1163/1568553054455103
10.3390/app9010164
10.1109/ICORR.2019.8779392
10.1186/s12984-015-0086-5
10.1177/0278364914562476
10.1109/ACCESS.2020.3010644
10.3390/app8091462
10.3390/sym15010163
10.3390/app11125573
10.1007/s00521-017-3210-6
10.1016/S1050-6411(01)00011-6
10.15439/2019F185
10.3390/s20082323
10.1088/1757-899X/853/1/012041
10.1080/01691864.2023.2197966
10.3390/s19040963
10.1155/2018/5712108
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p0559
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 573
ExternalDocumentID 10_20965_jaciii_2025_p0559
GroupedDBID AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3379-66160c88262b6f9adeb2d428b69bf3989fe9f2d564f12f48e396f79d13b5e0743
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Fri Jul 25 09:36:09 EDT 2025
Tue Jul 01 04:55:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3379-66160c88262b6f9adeb2d428b69bf3989fe9f2d564f12f48e396f79d13b5e0743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7301-9907
0000-0003-0203-6544
0009-0005-8888-0739
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p0559
PQID 3205535680
PQPubID 4911628
PageCount 15
ParticipantIDs proquest_journals_3205535680
crossref_primary_10_20965_jaciii_2025_p0559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-20
PublicationDateYYYYMMDD 2025-05-20
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p0559-22
key-10.20965/jaciii.2025.p0559-23
key-10.20965/jaciii.2025.p0559-20
key-10.20965/jaciii.2025.p0559-21
key-10.20965/jaciii.2025.p0559-26
key-10.20965/jaciii.2025.p0559-27
key-10.20965/jaciii.2025.p0559-24
key-10.20965/jaciii.2025.p0559-25
key-10.20965/jaciii.2025.p0559-28
key-10.20965/jaciii.2025.p0559-29
key-10.20965/jaciii.2025.p0559-30
key-10.20965/jaciii.2025.p0559-6
key-10.20965/jaciii.2025.p0559-11
key-10.20965/jaciii.2025.p0559-7
key-10.20965/jaciii.2025.p0559-12
key-10.20965/jaciii.2025.p0559-8
key-10.20965/jaciii.2025.p0559-31
key-10.20965/jaciii.2025.p0559-9
key-10.20965/jaciii.2025.p0559-10
key-10.20965/jaciii.2025.p0559-15
key-10.20965/jaciii.2025.p0559-16
key-10.20965/jaciii.2025.p0559-13
key-10.20965/jaciii.2025.p0559-14
key-10.20965/jaciii.2025.p0559-19
key-10.20965/jaciii.2025.p0559-17
key-10.20965/jaciii.2025.p0559-18
key-10.20965/jaciii.2025.p0559-2
key-10.20965/jaciii.2025.p0559-3
key-10.20965/jaciii.2025.p0559-4
key-10.20965/jaciii.2025.p0559-5
key-10.20965/jaciii.2025.p0559-1
References_xml – ident: key-10.20965/jaciii.2025.p0559-30
– ident: key-10.20965/jaciii.2025.p0559-24
  doi: 10.3390/electronics9122176
– ident: key-10.20965/jaciii.2025.p0559-25
  doi: 10.3390/app10072424
– ident: key-10.20965/jaciii.2025.p0559-17
  doi: 10.1155/2017/8682168
– ident: key-10.20965/jaciii.2025.p0559-5
  doi: 10.1299/jbse.16-00595
– ident: key-10.20965/jaciii.2025.p0559-1
– ident: key-10.20965/jaciii.2025.p0559-3
  doi: 10.1080/24725838.2021.2005720
– ident: key-10.20965/jaciii.2025.p0559-16
  doi: 10.3390/s16091408
– ident: key-10.20965/jaciii.2025.p0559-8
  doi: 10.1515/BMT.2006.063
– ident: key-10.20965/jaciii.2025.p0559-26
– ident: key-10.20965/jaciii.2025.p0559-14
  doi: 10.1371/journal.pone.0238247
– ident: key-10.20965/jaciii.2025.p0559-4
  doi: 10.18178/ijmerr.7.4.353-360
– ident: key-10.20965/jaciii.2025.p0559-7
  doi: 10.1163/1568553054455103
– ident: key-10.20965/jaciii.2025.p0559-13
  doi: 10.3390/app9010164
– ident: key-10.20965/jaciii.2025.p0559-11
  doi: 10.1109/ICORR.2019.8779392
– ident: key-10.20965/jaciii.2025.p0559-9
  doi: 10.1186/s12984-015-0086-5
– ident: key-10.20965/jaciii.2025.p0559-6
  doi: 10.1177/0278364914562476
– ident: key-10.20965/jaciii.2025.p0559-21
  doi: 10.1109/ACCESS.2020.3010644
– ident: key-10.20965/jaciii.2025.p0559-31
– ident: key-10.20965/jaciii.2025.p0559-18
  doi: 10.3390/app8091462
– ident: key-10.20965/jaciii.2025.p0559-22
  doi: 10.3390/sym15010163
– ident: key-10.20965/jaciii.2025.p0559-15
  doi: 10.3390/app11125573
– ident: key-10.20965/jaciii.2025.p0559-29
  doi: 10.1007/s00521-017-3210-6
– ident: key-10.20965/jaciii.2025.p0559-27
– ident: key-10.20965/jaciii.2025.p0559-2
  doi: 10.1016/S1050-6411(01)00011-6
– ident: key-10.20965/jaciii.2025.p0559-28
  doi: 10.15439/2019F185
– ident: key-10.20965/jaciii.2025.p0559-10
  doi: 10.3390/s20082323
– ident: key-10.20965/jaciii.2025.p0559-19
  doi: 10.1088/1757-899X/853/1/012041
– ident: key-10.20965/jaciii.2025.p0559-23
  doi: 10.1080/01691864.2023.2197966
– ident: key-10.20965/jaciii.2025.p0559-12
  doi: 10.3390/s19040963
– ident: key-10.20965/jaciii.2025.p0559-20
  doi: 10.1155/2018/5712108
SSID ssj0001326041
ssib051641541
Score 2.323529
Snippet According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 559
SubjectTerms Accuracy
Artificial neural networks
Back pain
Classification
Control methods
Electromyography
Exoskeletons
Hoisting
Inertial platforms
Investigations
Load
Neural networks
Pain
Posture
Sensors
Support vector machines
Title Assist Control of Lifting Motion of Lumbar-Powered Exoskeleton Using IMU Sensors
URI https://www.proquest.com/docview/3205535680
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrz4Fqu15OBNYtPNYzcn0dJaxZaiFnpbNtkEVOzWPsCf72QflF687sIGvtnMfN9kJoPQNbdSJlHIiYbgSGAnGqIN5yRkjrpAOkO5b04ejuRgwp-nYlom3JZlWWXlE3NHnWbG58jbLKBCMCEjejf_IX5qlD9dLUdo7KI6uOAIxFf9oTcav1Z_lAAxAByhs8m6AFuhvFBh3BcSMVp00gT-FpT2Z2L8lQ4BEIHbOayntqPVtrPOI1D_EO2X1BHfF7Y-Qjt2dowOqrEMuNylJ2gMkIPxcLeoQseZwy8fzpc342E-syd_sv7WyYKM_ZA0m-Leb7b8gggETBDnVQT4aTjBb6Bxs8XyFE36vffugJSDE4hhLFQEYq6kBrizDLR0KklBPqegM7RU2jEVKWeVC1IhuesEjkeWKelClXaYFtZzijNUm2Uze44w1yZNqOEdAxYMveCx3JlQJL4DIOWigW4qgOJ5cT9GDLoihzMu4Iw9nHEOZwM1Kwzjcq8s441lL_5_fYn2_Kf82X1Am6i2WqztFVCClW6h3aj_2Cqt38qF9R-MxrST
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB3xcYBLC6UVtBR8aE_IxfHXxoeqqoCQlAQhQSRu27XXlqBqNk1Abf9Uf2NndrNCXLhx3ZUs7fOz5z3vjAfgg47WFt1Mc4_BkeNKDNwHrXmmkkjSpiA0FSePzm1_rL9dm-sl-NfWwlBaZbsn1ht1WQU6Iz9UUhijjO2KL9NfnLpG0d_VtoVGQ4uz-Pc3Wrb558Exzu9HKXsnV0d9vugqwINSmeMYkKwIKCyt9Da5okRvWaII99b5pFzXpeiSLI3VqSOT7kblbMpc2VHeRAq4OO4yrGqFz6kyvXfa8teg9UBF0nk440FtJHTj-TSlLSnR1O1IunPl8LYIdIGERNnxaYpf5x7HxsehoY53vQ14sRCq7GvDrE1YipNX8LJtAsEWe8IWXOAEI1XYUZPzzqrEhjeJkqnZqO4QVD-5_-mLGb-glmyxZCd_qvkPjHeoO1mds8AGozG7REddzeavYfwsgL6BlUk1idvAtA9lIYLuBORLRvYq6hQyU1C9QanNDhy0AOXT5jaOHF1MDWfewJkTnHkN5w7sthjmi5U5zx949Pbp1_uw1r8aDfPh4PzsHazTsJQ1IMUurNzN7uN7FCN3fq9mAIPvz025_w1K7SY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assist+Control+of+Lifting+Motion+of+Lumbar-Powered+Exoskeleton+Using+IMU+Sensors&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Fujii%2C+Ryosuke&rft.au=Takahashi%2C+Yasutake&rft.au=Tsuichihara%2C+Satoki&rft.au=Yamada%2C+Takayoshi&rft.date=2025-05-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=3&rft.spage=559&rft.epage=573&rft_id=info:doi/10.20965%2Fjaciii.2025.p0559&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p0559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon