Assist Control of Lifting Motion of Lumbar-Powered Exoskeleton Using IMU Sensors
According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and hygiene. Such pain is primarily caused by performing tasks involving heavy lifting and carrying in various fields, including caregiving, transpo...
Saved in:
Published in | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 3; pp. 559 - 573 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Co. Ltd
20.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1343-0130 1883-8014 |
DOI | 10.20965/jaciii.2025.p0559 |
Cover
Loading…
Abstract | According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and hygiene. Such pain is primarily caused by performing tasks involving heavy lifting and carrying in various fields, including caregiving, transportation, and agriculture. This study proposes a lumbar-powered exoskeleton to assist lifting movements. Passive exoskeletons use springs or rubber belts for assistive force, thus rendering them lightweight but unable to provide controlled assistance based on the wearer’s movements. Active exoskeletons, such as the Hybrid Assistive Limb robot suit, use surface electromyography (sEMG) to detect movement characteristics. However, sEMG is susceptible to noise owing to factors such as sweating and skin contamination. This study proposes a lumbar exoskeleton control method using a nine-axis inertial measurement unit (IMU) that is easy to attach and less affected by the wearer’s state. Convolutional neural networks and long short-term memory models are adopted for posture classification. Tests involving 10 subjects show that integrated electromyographic activity decreased significantly. |
---|---|
AbstractList | According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and hygiene. Such pain is primarily caused by performing tasks involving heavy lifting and carrying in various fields, including caregiving, transportation, and agriculture. This study proposes a lumbar-powered exoskeleton to assist lifting movements. Passive exoskeletons use springs or rubber belts for assistive force, thus rendering them lightweight but unable to provide controlled assistance based on the wearer’s movements. Active exoskeletons, such as the Hybrid Assistive Limb robot suit, use surface electromyography (sEMG) to detect movement characteristics. However, sEMG is susceptible to noise owing to factors such as sweating and skin contamination. This study proposes a lumbar exoskeleton control method using a nine-axis inertial measurement unit (IMU) that is easy to attach and less affected by the wearer’s state. Convolutional neural networks and long short-term memory models are adopted for posture classification. Tests involving 10 subjects show that integrated electromyographic activity decreased significantly. |
Author | Fujii, Ryosuke Tsuichihara, Satoki Takahashi, Yasutake Yamada, Takayoshi |
Author_xml | – sequence: 1 givenname: Ryosuke surname: Fujii fullname: Fujii, Ryosuke organization: Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan – sequence: 2 givenname: Yasutake orcidid: 0000-0001-7301-9907 surname: Takahashi fullname: Takahashi, Yasutake organization: Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan – sequence: 3 givenname: Satoki orcidid: 0000-0003-0203-6544 surname: Tsuichihara fullname: Tsuichihara, Satoki organization: Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan – sequence: 4 givenname: Takayoshi orcidid: 0009-0005-8888-0739 surname: Yamada fullname: Yamada, Takayoshi organization: Faculty of Education, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan |
BookMark | eNotkE1PAjEQhhuDiYj8AU-beF7sN-2REFSSJZIo52Y_pqYILbZL1H9vAU_zzsyTmeS5RQMfPCB0T_CEYi3F47ZunXO5oWJywELoKzQkSrFSYcIHOTPOSkwYvkHjlLYY50wl5mSI1rOUXOqLefB9DLsi2KJytnf-o1iF3gV_nhz3TR3LdfiGCF2x-AnpE3bQ5-0mndDlalO8gU8hpjt0betdgvF_HaHN0-J9_lJWr8_L-awqW8amupSSSNwqRSVtpNV1Bw3tOFWN1I1lWmkL2tJOSG4JtVwB09JOdUdYIwBPORuhh8vdQwxfR0i92YZj9PmlYTQ7YEIqnCl6odoYUopgzSG6fR1_DcHmLM9c5JmTPHOWx_4AwYRkkQ |
Cites_doi | 10.3390/electronics9122176 10.3390/app10072424 10.1155/2017/8682168 10.1299/jbse.16-00595 10.1080/24725838.2021.2005720 10.3390/s16091408 10.1515/BMT.2006.063 10.1371/journal.pone.0238247 10.18178/ijmerr.7.4.353-360 10.1163/1568553054455103 10.3390/app9010164 10.1109/ICORR.2019.8779392 10.1186/s12984-015-0086-5 10.1177/0278364914562476 10.1109/ACCESS.2020.3010644 10.3390/app8091462 10.3390/sym15010163 10.3390/app11125573 10.1007/s00521-017-3210-6 10.1016/S1050-6411(01)00011-6 10.15439/2019F185 10.3390/s20082323 10.1088/1757-899X/853/1/012041 10.1080/01691864.2023.2197966 10.3390/s19040963 10.1155/2018/5712108 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.20965/jaciii.2025.p0559 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1883-8014 |
EndPage | 573 |
ExternalDocumentID | 10_20965_jaciii_2025_p0559 |
GroupedDBID | AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ JSI JSP K7- P2P PHGZM PHGZT RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3379-66160c88262b6f9adeb2d428b69bf3989fe9f2d564f12f48e396f79d13b5e0743 |
IEDL.DBID | BENPR |
ISSN | 1343-0130 |
IngestDate | Fri Jul 25 09:36:09 EDT 2025 Tue Jul 01 04:55:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3379-66160c88262b6f9adeb2d428b69bf3989fe9f2d564f12f48e396f79d13b5e0743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7301-9907 0000-0003-0203-6544 0009-0005-8888-0739 |
OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p0559 |
PQID | 3205535680 |
PQPubID | 4911628 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3205535680 crossref_primary_10_20965_jaciii_2025_p0559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-20 |
PublicationDateYYYYMMDD | 2025-05-20 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
PublicationYear | 2025 |
Publisher | Fuji Technology Press Co. Ltd |
Publisher_xml | – name: Fuji Technology Press Co. Ltd |
References | key-10.20965/jaciii.2025.p0559-22 key-10.20965/jaciii.2025.p0559-23 key-10.20965/jaciii.2025.p0559-20 key-10.20965/jaciii.2025.p0559-21 key-10.20965/jaciii.2025.p0559-26 key-10.20965/jaciii.2025.p0559-27 key-10.20965/jaciii.2025.p0559-24 key-10.20965/jaciii.2025.p0559-25 key-10.20965/jaciii.2025.p0559-28 key-10.20965/jaciii.2025.p0559-29 key-10.20965/jaciii.2025.p0559-30 key-10.20965/jaciii.2025.p0559-6 key-10.20965/jaciii.2025.p0559-11 key-10.20965/jaciii.2025.p0559-7 key-10.20965/jaciii.2025.p0559-12 key-10.20965/jaciii.2025.p0559-8 key-10.20965/jaciii.2025.p0559-31 key-10.20965/jaciii.2025.p0559-9 key-10.20965/jaciii.2025.p0559-10 key-10.20965/jaciii.2025.p0559-15 key-10.20965/jaciii.2025.p0559-16 key-10.20965/jaciii.2025.p0559-13 key-10.20965/jaciii.2025.p0559-14 key-10.20965/jaciii.2025.p0559-19 key-10.20965/jaciii.2025.p0559-17 key-10.20965/jaciii.2025.p0559-18 key-10.20965/jaciii.2025.p0559-2 key-10.20965/jaciii.2025.p0559-3 key-10.20965/jaciii.2025.p0559-4 key-10.20965/jaciii.2025.p0559-5 key-10.20965/jaciii.2025.p0559-1 |
References_xml | – ident: key-10.20965/jaciii.2025.p0559-30 – ident: key-10.20965/jaciii.2025.p0559-24 doi: 10.3390/electronics9122176 – ident: key-10.20965/jaciii.2025.p0559-25 doi: 10.3390/app10072424 – ident: key-10.20965/jaciii.2025.p0559-17 doi: 10.1155/2017/8682168 – ident: key-10.20965/jaciii.2025.p0559-5 doi: 10.1299/jbse.16-00595 – ident: key-10.20965/jaciii.2025.p0559-1 – ident: key-10.20965/jaciii.2025.p0559-3 doi: 10.1080/24725838.2021.2005720 – ident: key-10.20965/jaciii.2025.p0559-16 doi: 10.3390/s16091408 – ident: key-10.20965/jaciii.2025.p0559-8 doi: 10.1515/BMT.2006.063 – ident: key-10.20965/jaciii.2025.p0559-26 – ident: key-10.20965/jaciii.2025.p0559-14 doi: 10.1371/journal.pone.0238247 – ident: key-10.20965/jaciii.2025.p0559-4 doi: 10.18178/ijmerr.7.4.353-360 – ident: key-10.20965/jaciii.2025.p0559-7 doi: 10.1163/1568553054455103 – ident: key-10.20965/jaciii.2025.p0559-13 doi: 10.3390/app9010164 – ident: key-10.20965/jaciii.2025.p0559-11 doi: 10.1109/ICORR.2019.8779392 – ident: key-10.20965/jaciii.2025.p0559-9 doi: 10.1186/s12984-015-0086-5 – ident: key-10.20965/jaciii.2025.p0559-6 doi: 10.1177/0278364914562476 – ident: key-10.20965/jaciii.2025.p0559-21 doi: 10.1109/ACCESS.2020.3010644 – ident: key-10.20965/jaciii.2025.p0559-31 – ident: key-10.20965/jaciii.2025.p0559-18 doi: 10.3390/app8091462 – ident: key-10.20965/jaciii.2025.p0559-22 doi: 10.3390/sym15010163 – ident: key-10.20965/jaciii.2025.p0559-15 doi: 10.3390/app11125573 – ident: key-10.20965/jaciii.2025.p0559-29 doi: 10.1007/s00521-017-3210-6 – ident: key-10.20965/jaciii.2025.p0559-27 – ident: key-10.20965/jaciii.2025.p0559-2 doi: 10.1016/S1050-6411(01)00011-6 – ident: key-10.20965/jaciii.2025.p0559-28 doi: 10.15439/2019F185 – ident: key-10.20965/jaciii.2025.p0559-10 doi: 10.3390/s20082323 – ident: key-10.20965/jaciii.2025.p0559-19 doi: 10.1088/1757-899X/853/1/012041 – ident: key-10.20965/jaciii.2025.p0559-23 doi: 10.1080/01691864.2023.2197966 – ident: key-10.20965/jaciii.2025.p0559-12 doi: 10.3390/s19040963 – ident: key-10.20965/jaciii.2025.p0559-20 doi: 10.1155/2018/5712108 |
SSID | ssj0001326041 ssib051641541 |
Score | 2.323529 |
Snippet | According to Japan’s Ministry of Health, Labour and Welfare, work-related lower back pain is prevalent in industries such as commerce, finance, health, and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 559 |
SubjectTerms | Accuracy Artificial neural networks Back pain Classification Control methods Electromyography Exoskeletons Hoisting Inertial platforms Investigations Load Neural networks Pain Posture Sensors Support vector machines |
Title | Assist Control of Lifting Motion of Lumbar-Powered Exoskeleton Using IMU Sensors |
URI | https://www.proquest.com/docview/3205535680 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrz4Fqu15OBNYtPNYzcn0dJaxZaiFnpbNtkEVOzWPsCf72QflF687sIGvtnMfN9kJoPQNbdSJlHIiYbgSGAnGqIN5yRkjrpAOkO5b04ejuRgwp-nYlom3JZlWWXlE3NHnWbG58jbLKBCMCEjejf_IX5qlD9dLUdo7KI6uOAIxFf9oTcav1Z_lAAxAByhs8m6AFuhvFBh3BcSMVp00gT-FpT2Z2L8lQ4BEIHbOayntqPVtrPOI1D_EO2X1BHfF7Y-Qjt2dowOqrEMuNylJ2gMkIPxcLeoQseZwy8fzpc342E-syd_sv7WyYKM_ZA0m-Leb7b8gggETBDnVQT4aTjBb6Bxs8XyFE36vffugJSDE4hhLFQEYq6kBrizDLR0KklBPqegM7RU2jEVKWeVC1IhuesEjkeWKelClXaYFtZzijNUm2Uze44w1yZNqOEdAxYMveCx3JlQJL4DIOWigW4qgOJ5cT9GDLoihzMu4Iw9nHEOZwM1Kwzjcq8s441lL_5_fYn2_Kf82X1Am6i2WqztFVCClW6h3aj_2Cqt38qF9R-MxrST |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB3xcYBLC6UVtBR8aE_IxfHXxoeqqoCQlAQhQSRu27XXlqBqNk1Abf9Uf2NndrNCXLhx3ZUs7fOz5z3vjAfgg47WFt1Mc4_BkeNKDNwHrXmmkkjSpiA0FSePzm1_rL9dm-sl-NfWwlBaZbsn1ht1WQU6Iz9UUhijjO2KL9NfnLpG0d_VtoVGQ4uz-Pc3Wrb558Exzu9HKXsnV0d9vugqwINSmeMYkKwIKCyt9Da5okRvWaII99b5pFzXpeiSLI3VqSOT7kblbMpc2VHeRAq4OO4yrGqFz6kyvXfa8teg9UBF0nk440FtJHTj-TSlLSnR1O1IunPl8LYIdIGERNnxaYpf5x7HxsehoY53vQ14sRCq7GvDrE1YipNX8LJtAsEWe8IWXOAEI1XYUZPzzqrEhjeJkqnZqO4QVD-5_-mLGb-glmyxZCd_qvkPjHeoO1mds8AGozG7REddzeavYfwsgL6BlUk1idvAtA9lIYLuBORLRvYq6hQyU1C9QanNDhy0AOXT5jaOHF1MDWfewJkTnHkN5w7sthjmi5U5zx949Pbp1_uw1r8aDfPh4PzsHazTsJQ1IMUurNzN7uN7FCN3fq9mAIPvz025_w1K7SY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assist+Control+of+Lifting+Motion+of+Lumbar-Powered+Exoskeleton+Using+IMU+Sensors&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Fujii%2C+Ryosuke&rft.au=Takahashi%2C+Yasutake&rft.au=Tsuichihara%2C+Satoki&rft.au=Yamada%2C+Takayoshi&rft.date=2025-05-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=3&rft.spage=559&rft.epage=573&rft_id=info:doi/10.20965%2Fjaciii.2025.p0559&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p0559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |