Human–rat integrated microRNAs profiling identified a new neonatal cerebral hypoxic–ischemic pathway melatonin‐sensitive

Neonatal encephalopathy (NE) is a pathological condition affecting long‐term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 73; no. 2; pp. e12818 - n/a
Main Authors Weiss, Michael D., Carloni, Silvia, Vanzolini, Tania, Coppari, Sofia, Balduini, Walter, Buonocore, Giuseppe, Longini, Mariangela, Perrone, Serafina, Sura, Livia, Mohammadi, Atefeh, Rocchi, Marco Bruno Luigi, Negrini, Massimo, Melandri, Davide, Albertini, Maria Cristina
Format Journal Article
LanguageEnglish
Published 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neonatal encephalopathy (NE) is a pathological condition affecting long‐term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic–ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long‐term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin‐sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)‐Akt, and p‐ERK proteins in rat brain cortexes. PKCα increased in HI‐injured rats and further increased with melatonin. p‐Akt and p‐ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.
AbstractList Neonatal encephalopathy (NE) is a pathological condition affecting long‐term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic–ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long‐term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin‐sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)‐Akt, and p‐ERK proteins in rat brain cortexes. PKCα increased in HI‐injured rats and further increased with melatonin. p‐Akt and p‐ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.
Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.
Author Sura, Livia
Mohammadi, Atefeh
Buonocore, Giuseppe
Longini, Mariangela
Balduini, Walter
Negrini, Massimo
Perrone, Serafina
Vanzolini, Tania
Melandri, Davide
Rocchi, Marco Bruno Luigi
Carloni, Silvia
Weiss, Michael D.
Coppari, Sofia
Albertini, Maria Cristina
Author_xml – sequence: 1
  givenname: Michael D.
  orcidid: 0000-0002-4567-9286
  surname: Weiss
  fullname: Weiss, Michael D.
  organization: University of Florida
– sequence: 2
  givenname: Silvia
  orcidid: 0000-0003-3634-3454
  surname: Carloni
  fullname: Carloni, Silvia
  organization: University of Urbino Carlo Bo
– sequence: 3
  givenname: Tania
  surname: Vanzolini
  fullname: Vanzolini, Tania
  organization: University of Urbino Carlo Bo
– sequence: 4
  givenname: Sofia
  surname: Coppari
  fullname: Coppari, Sofia
  organization: University of Urbino Carlo Bo
– sequence: 5
  givenname: Walter
  orcidid: 0000-0001-8438-9559
  surname: Balduini
  fullname: Balduini, Walter
  organization: University of Urbino Carlo Bo
– sequence: 6
  givenname: Giuseppe
  surname: Buonocore
  fullname: Buonocore, Giuseppe
  organization: University of Siena
– sequence: 7
  givenname: Mariangela
  surname: Longini
  fullname: Longini, Mariangela
  organization: University of Siena
– sequence: 8
  givenname: Serafina
  orcidid: 0000-0001-5478-5657
  surname: Perrone
  fullname: Perrone, Serafina
  organization: University Medical Center of Parma (AOUP) and University of Parma
– sequence: 9
  givenname: Livia
  surname: Sura
  fullname: Sura, Livia
  organization: University of Florida
– sequence: 10
  givenname: Atefeh
  surname: Mohammadi
  fullname: Mohammadi, Atefeh
  organization: University of Urbino Carlo Bo
– sequence: 11
  givenname: Marco Bruno Luigi
  surname: Rocchi
  fullname: Rocchi, Marco Bruno Luigi
  organization: University of Urbino Carlo Bo
– sequence: 12
  givenname: Massimo
  surname: Negrini
  fullname: Negrini, Massimo
  organization: University of Ferrara
– sequence: 13
  givenname: Davide
  surname: Melandri
  fullname: Melandri, Davide
  organization: “M. Bufalini” Hospital
– sequence: 14
  givenname: Maria Cristina
  orcidid: 0000-0003-4549-1475
  surname: Albertini
  fullname: Albertini, Maria Cristina
  email: maria.albertini@uniurb.it
  organization: University of Urbino Carlo Bo
BookMark eNp1UMtOwzAQtBBItMCBP8gRDoG1Q2vniCqeqgAhkLhFTrJpFyVOsF1KL4hPQOIP-RIM7QnBSt4dyTNj7_TZumkNMrbL4YCHOnzs6IALxdUa6_EhQAwyfVhnPZBHIk4gVZus79wjACilhj32ej5rtPl8-7DaR2Q8TgLAMmqosO3t1bGLOttWVJOZRFSi8VRRuNaRwXk4rdFe11GBFnMbwHTRtS9UBD9yxRSDS9RpP53rRdRgrX1rKDz27tA48vSM22yj0rXDndXcYvenJ3ej83h8fXYxOh7HRZJIFaNMVAkl8KpMClmJ71YKQCkgFaCKXAiUKfI8ScsqzyvBB1wqpRUXQoPkyRbbW_qGbZ5m6HzWhA9iXeuww8xlYphyGCRCpoF6uKSGAJyzWGUFee2pNd5qqjMO2XfSWUg6-0k6KPZ_KTpLjbaLP7kr9znVuPifmF3eXCwVX54IlZE
CitedBy_id crossref_primary_10_1515_revneuro_2023_0126
crossref_primary_10_1097_MD_0000000000038993
crossref_primary_10_1007_s12031_023_02155_6
crossref_primary_10_3390_antiox12101844
crossref_primary_10_4103_1673_5374_390952
crossref_primary_10_3390_molecules28031105
Cites_doi 10.1186/s13059-014-0550-8
10.1016/j.neuroscience.2013.01.059
10.1038/jp.2014.186
10.1016/j.mad.2017.04.001
10.1210/er.22.2.153
10.1016/j.neulet.2008.08.024
10.1111/jpi.12434
10.1111/j.1600-079X.2007.00503.x
10.3389/fncel.2017.00078
10.1093/nar/gkaa467
10.1080/14737175.2017.1259567
10.1111/jpi.12716
10.1016/j.neulet.2013.12.071
10.1016/j.jbi.2011.02.006
10.1007/s12192-019-00994-0
10.1111/jpi.12565
10.1155/2021/6308255
10.1111/j.1600-079X.2004.00178.x
10.1016/j.det.2007.06.005
10.1111/j.1600-079X.2007.00435.x
10.1093/nar/28.1.27
10.1292/jvms.70.1219
10.1161/01.STR.0000189996.71237.f7
10.3389/fnins.2019.00760
10.1155/2013/217948
10.1016/S0197-0186(01)00021-3
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
7X8
DOI 10.1111/jpi.12818
DatabaseName Wiley Online Library Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1600-079X
EndPage n/a
ExternalDocumentID 10_1111_jpi_12818
JPI12818
Genre article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
186
1OB
1OC
24P
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BQCPF
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3378-e738d0d01fd3c7f23c7fd20e7209208cb22e79e1b39dfbbf2151788a8122a0713
IEDL.DBID DR2
ISSN 0742-3098
1600-079X
IngestDate Thu Jul 10 22:42:35 EDT 2025
Tue Jul 01 01:05:24 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Wed Jan 22 16:24:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3378-e738d0d01fd3c7f23c7fd20e7209208cb22e79e1b39dfbbf2151788a8122a0713
Notes Michael D. Weiss and Silvia Carloni are joint first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3634-3454
0000-0003-4549-1475
0000-0001-5478-5657
0000-0001-8438-9559
0000-0002-4567-9286
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12818
PQID 2691053279
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2691053279
crossref_citationtrail_10_1111_jpi_12818
crossref_primary_10_1111_jpi_12818
wiley_primary_10_1111_jpi_12818_JPI12818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of pineal research
PublicationYear 2022
References 2015; 35
2017; 63
2000; 28
2019; 13
2008; 444
2001; 22
2021; 71
2008; 70
2019; 66
2013; 35
2017; 17
2017; 11
2013; 237
2019; 24
2014; 15
2020; 48
2011; 44
2008; 44
2001; 39
2017; 164
2007; 42
2005; 38
2014; 565
2007; 25
2021; 2021
2005; 36
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 35
  start-page: 186
  issue: 3
  year: 2015
  end-page: 191
  article-title: Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study
  publication-title: J Perinatol
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  end-page: 30
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
– volume: 237
  start-page: 268
  year: 2013
  end-page: 276
  article-title: Effects of memantine and melatonin on signal transduction pathways vascular leakage and brain injury after focal cerebral ischemia in mice
  publication-title: Neuroscience
– volume: 39
  start-page: 95
  issue: 2
  year: 2001
  end-page: 102
  article-title: Melatonin activates PKC‐α but not PKC‐ε in N1E‐115 cells
  publication-title: Neurochem Int
– volume: 35
  start-page: 561
  year: 2013
  end-page: 566
  article-title: Circulating microRNAs: a potential role in diagnosis and prognosis of acute myocardial infarction
  publication-title: Dis Markers
– volume: 44
  start-page: 615
  issue: 4
  year: 2011
  end-page: 620
  article-title: Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0)
  publication-title: J Biomed Inform
– volume: 164
  start-page: 49
  year: 2017
  end-page: 60
  article-title: The anti‐inflammatory effect of melatonin in SH‐SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide
  publication-title: Mech Ageing Dev
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
– volume: 71
  issue: 1
  year: 2021
  article-title: Melatonin protects inner retinal neurons of newborn mice after hypoxia–ischemia
  publication-title: J Pineal Res
– volume: 22
  start-page: 153
  issue: 2
  year: 2001
  end-page: 183
  article-title: Mitogen‐activated protein (MAP) kinase pathways: regulation and physiological functions
  publication-title: Endocr Rev
– volume: 70
  start-page: 1219
  issue: 11
  year: 2008
  end-page: 1223
  article-title: Melatonin attenuates the cerebral ischemic injury via the MEK/ERK/p90RSK/Bad signaling cascade
  publication-title: J Vet Med Sci
– volume: 444
  start-page: 74
  issue: 1
  year: 2008
  end-page: 78
  article-title: Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway
  publication-title: Neurosci Lett
– volume: 36
  start-page: 2781
  issue: 12
  year: 2005
  end-page: 2790
  article-title: The role of protein kinase C in cerebral ischemic and reperfusion injury
  publication-title: Stroke
– volume: 42
  start-page: 411
  issue: 4
  year: 2007
  end-page: 418
  article-title: Melatonin influences the proliferative and differentiative activity of neural stem cells
  publication-title: J Pineal Res
– volume: 63
  issue: 3
  year: 2017
  article-title: Rapid modulation of the silent information regulator 1 by melatonin after hypoxia–ischemia in the neonatal rat brain
  publication-title: J Pineal Res
– volume: 25
  start-page: 541
  issue: 4
  year: 2007
  end-page: 557
  article-title: Melanocyte receptors: clinical implications and therapeutic relevance
  publication-title: Dermatol Clin
– volume: 11
  start-page: 78
  year: 2017
  article-title: Neonatal hypoxia–ischaemia: mechanisms, models, and therapeutic challenges
  publication-title: Front Cell Neurosci
– volume: 13
  year: 2019
  article-title: Melatonin prevents mice cortical astrocytes from hemin‐induced toxicity through activating PKCα/Nrf2/HO‐1 signaling in vitro
  publication-title: Front Neurosci
– volume: 17
  start-page: 449
  issue: 5
  year: 2017
  end-page: 459
  article-title: Neonatal hypoxic–ischemic encephalopathy: an update on disease pathogenesis and treatment
  publication-title: Expert Rev Neurother
– volume: 24
  start-page: 621
  issue: 3
  year: 2019
  end-page: 633
  article-title: Melatonin ameliorates endoplasmic reticulum stress in N2a neuroblastoma cell hypoxia–reoxygenation injury by activating the AMPK‐Pak2 pathway
  publication-title: Cell Stress Chaperones
– volume: 66
  issue: 4
  year: 2019
  article-title: Melatonin pharmacokinetics and dose extrapolation after enteral infusion in neonates subjected to hypothermia
  publication-title: J Pineal Res
– volume: 44
  start-page: 157
  issue: 2
  year: 2008
  end-page: 164
  article-title: Melatonin protects from the long‐term consequences of a neonatal hypoxic–ischemic brain injury in rats
  publication-title: J Pineal Res
– volume: 48
  start-page: W244
  issue: W1
  year: 2020
  end-page: W251
  article-title: miRNet 2.0: network‐based visual analytics for miRNA functional analysis and systems biology
  publication-title: Nucleic Acids Res
– volume: 565
  start-page: 30
  year: 2014
  end-page: 38
  article-title: The dual role of astrocyte activation and reactive gliosis
  publication-title: Neurosci Lett
– volume: 2021
  year: 2021
  article-title: Antioxidant effect of melatonin in preterm newborns
  publication-title: Oxid Med Cell Longev
– volume: 38
  start-page: 67
  issue: 1
  year: 2005
  end-page: 71
  article-title: Signal transduction pathways involved in melatonin‐induced neuroprotection after focal cerebral ischemia in mice
  publication-title: J Pineal Res
– ident: e_1_2_8_6_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroscience.2013.01.059
– ident: e_1_2_8_4_1
  doi: 10.1038/jp.2014.186
– ident: e_1_2_8_27_1
  doi: 10.1016/j.mad.2017.04.001
– ident: e_1_2_8_18_1
  doi: 10.1210/er.22.2.153
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neulet.2008.08.024
– ident: e_1_2_8_11_1
  doi: 10.1111/jpi.12434
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1600-079X.2007.00503.x
– ident: e_1_2_8_14_1
  doi: 10.3389/fncel.2017.00078
– ident: e_1_2_8_7_1
  doi: 10.1093/nar/gkaa467
– ident: e_1_2_8_13_1
  doi: 10.1080/14737175.2017.1259567
– ident: e_1_2_8_24_1
  doi: 10.1111/jpi.12716
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neulet.2013.12.071
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jbi.2011.02.006
– ident: e_1_2_8_26_1
  doi: 10.1007/s12192-019-00994-0
– ident: e_1_2_8_2_1
  doi: 10.1111/jpi.12565
– ident: e_1_2_8_5_1
  doi: 10.1155/2021/6308255
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1600-079X.2004.00178.x
– ident: e_1_2_8_25_1
  doi: 10.1016/j.det.2007.06.005
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1600-079X.2007.00435.x
– ident: e_1_2_8_9_1
  doi: 10.1093/nar/28.1.27
– ident: e_1_2_8_20_1
  doi: 10.1292/jvms.70.1219
– ident: e_1_2_8_15_1
  doi: 10.1161/01.STR.0000189996.71237.f7
– ident: e_1_2_8_16_1
  doi: 10.3389/fnins.2019.00760
– ident: e_1_2_8_10_1
  doi: 10.1155/2013/217948
– ident: e_1_2_8_17_1
  doi: 10.1016/S0197-0186(01)00021-3
SSID ssj0008886
Score 2.4154038
Snippet Neonatal encephalopathy (NE) is a pathological condition affecting long‐term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does...
Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e12818
SubjectTerms hypothermia
hypoxic–ischemia
melatonin
miRNA
neonatal brain injury
neonatal encephalopathy
Title Human–rat integrated microRNAs profiling identified a new neonatal cerebral hypoxic–ischemic pathway melatonin‐sensitive
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12818
https://www.proquest.com/docview/2691053279
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA3qu3dx3ogi4ktHl3TLgk9DHFNwiCjsQShJk2Jxm8Nt6HwQf4LgP_SX-H3pxQsKInSlsKztmqTfOV9OTgjZtRCCqjrmXmAVEBTA9J6qstgTBmKH4YEREmcjn7ZrrcvgpFPtTJGDfC5M6g9RJNywZ7j3NXZwpYefO_kgKeMwEE70Ra0WAqLzD-soYHa11IKTedyX9cxVyKl48l9-jUUfAPMzTHVxpjlHrvI7TOUlN-XxSJejx2_mjf_8C_NkNsOftJE2mAUyZfuLZKnRB-7dm9A96hShLtW-RJ5chv_t-RVaCS18JQztoYjvvN0Y0nTFb4h-NDGp7Ai-VhSgOnwwLw-XiuwdDk536fVkcPuQRHC-BCg1ivIprod8rya0h5I8TAy_Pb8MUVKPL-Flctk8ujhsedl6DV7EOZBRK3jd-MavxIZHIma4M8y3gvmS-fVIM2aFtBXNpYm1jhFtAANXgDGYQra8Qmb6t327SijQOBFEQokgtoFvmTJSakBP0qDbTl2VyH5ec2GUmZnjmhrdsCA1gyR0z7ZEdoqig9TB46dC23n1h9C_cNBEwXMaD0NWw9bMmZBwTVeZv58lPDk7dgdrfy-6jpkCp2mDbYPMjO7GdhNwzkhvkWkWnG25Zv0O3Mf_aA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL106cP2srXrxtqtrTbG6IuDIzmRBX0JpSHt2jBKAn0ZRrZkZtZ8kA_a9GHkJxT6D_NLeq8cpx90MPaQEIhiO5bke87V0bkAXy2GoGqcCi-wGgkKYnpPV3nqSYOxw4jASEW7kU9btWYnOD6vnq_AfrEXJveHWCbcaGa45zVNcEpIP5zlg6xM60DhC1ilit6OUJ3dm0cht6vlJpzcE74KF75CTsdT_PRxNLqHmA-Bqos0jTfws7jGXGDyuzwZx-Xk-ol94__-iTV4vYCgrJ6PmXVYsb23sFHvIf3uTtk35kShLtu-AX9ckn8-u8WBwpbWEoZ1Scd31qqPWF70GwMgy0yuPMKvNUO0ji9KzeOpEjuk9ekL9ms66F9lCR4vQ1ZNunxGJZEv9ZR1SZVHueH57GZEqnp6Dr-DTuOwfdD0FiUbvEQI5KNWitD4xq-kRiQy5fRmuG8l9xX3wyTm3EplK7FQJo3jlAAHknCNMINrIszvodTr9-wHYMjkZJBILYPUBr7l2igVI4BShgx3Qr0Je0XXRcnCz5zKalxES14zyCJ3bzfhy7LpIDfxeK7R56L_I5xitG6i8T5NRhGv0YAWXCo8p-vNvx8lOv5x5D5s_XvTXXjZbJ-eRCdHre8f4RWnDRZOxfYJSuPhxG4j7BnHO2503wGw5gLG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL1kHZS97Csr_VqrjjL24uBKTmSxp9A0JO0WQlmhDwMjWzI1a1LTJGzZQ-lPGOwf9pfsXjlO0tHC2ENCIIrtWFe-51wdHQHsW0xB9TgVXmA1EhTE9J6u89STBnOHEYGRilYjf-41OmfB8Xn9vAIfy7UwhT_EvOBGI8M9r2mA5yZdHuR5VqNpoPAJPA0afkgh3TpdeEchtWsUHpzcE74KZ7ZCTsZT_vR-MlogzGWc6hJN-wV8LS-x0Jd8q03GcS35-Zd743_-h5fwfAZAWbOImFdQscPXUG0OkXwPpuw9c5JQV2uvwo0r8d_d_sYwYXNjCcMGpOI77TVHrNjyG9Mfy0yhO8KvNUOsji8qzOOpEntNs9OX7GKaX_3IEjxehpyaVPmMNkT-rqdsQJo8qgzf3f4akaaensJv4Kx99OWw4802bPASIZCNWilC4xv_IDUikSmnN8N9K7mvuB8mMedWKnsQC2XSOE4JbiAF1wgyuCa6vAYrw6uhXQeGPE4GidQySG3gW66NUjHCJ2XIbifUG_Ch7LkombmZ06Yal9Gc1eRZ5O7tBrybN80LC4-HGu2V3R_hAKNZE433aTKKeIPCWXCp8JyuMx8_SnTc77oPm__edBdW-6129KnbO9mCZ5xWVzgJ2zasjK8n9i1innG842L7D9U-AX4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human%E2%80%93rat+integrated+microRNAs+profiling+identified+a+new+neonatal+cerebral+hypoxic%E2%80%93ischemic+pathway+melatonin%E2%80%90sensitive&rft.jtitle=Journal+of+pineal+research&rft.au=Weiss%2C+Michael+D.&rft.au=Carloni%2C+Silvia&rft.au=Vanzolini%2C+Tania&rft.au=Coppari%2C+Sofia&rft.date=2022-09-01&rft.issn=0742-3098&rft.eissn=1600-079X&rft.volume=73&rft.issue=2&rft_id=info:doi/10.1111%2Fjpi.12818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jpi_12818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon