Crops use inorganic and labile organic phosphorus from both high‐ and low‐availability layers in no‐till compost‐amended soils

Organic fertilization in no‐till soils increases soil organic matter and nutrient pools primarily in surface soils. However, little is known about how microbial activity affects crop access to phosphorus (P) forms at the surface, where the organic fertilizer is applied, and the subsurface, the main...

Full description

Saved in:
Bibliographic Details
Published inSoil use and management Vol. 40; no. 1
Main Authors Li, Xue, Hallama, Moritz, Romanyà, Joan
Format Journal Article
LanguageEnglish
Published 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic fertilization in no‐till soils increases soil organic matter and nutrient pools primarily in surface soils. However, little is known about how microbial activity affects crop access to phosphorus (P) forms at the surface, where the organic fertilizer is applied, and the subsurface, the main rooting zone. We aimed to study the changes in organic and inorganic P (Po; Pi) forms and compounds in no‐till compost amended surface (0–5 cm) and subsurface (5–15 cm) soils growing a crop rotation for 2 years in pots. Crops were grown in pots with compost amended to the soil surface, while unamended and compost‐amended pots without crops were used as controls. We measured changes in microbial C (carbon), soluble C, total Po and Pi forms, the moderately accessible EDTA‐NaOH‐Pi (‐Po), and labile NaHCO3‐Pi (‐Po). P compounds in the EDTA‐NaOH extract were measured by 31P‐NMR. Compost addition increased the levels of total Pi and although it had no effect on total Po, increases of inositol, other phosphate monoesters and orthophosphate diesters could be observed. After the application of compost, the amount of total organic C, soluble carbon and all P forms increased in surface soil, while in the subsurface soil, there was a reduction in organic C and an increase in soluble C, total Pi, EDTA‐NaOH‐Pi and NaHCO3‐Pi and the EDTA‐NaOH‐Po and labile NaHCO3‐Po. Growing crops reduced all measured Pi forms and labile NaHCO3‐Po, increased EDTA‐NaOH‐Po in surface soils and had no observable impact on total Po in either organic C‐enriched surface or organic C‐reduced subsurface soils. Crops mostly used Pi from the low P availability C‐reduced subsurface layer, where NaHCO3‐Po pools also decreased. Large reductions in NaHCO3‐Po and increased levels of IHP and other‐monoesters in crop‐growing organic C‐enriched surface layers may suggest microbial formation of monoesters Po and crop use of labile Po pools. In summary, Po formation in C‐enriched surface layers and the mobilization of all Pi forms throughout the soil profile are particularly important findings for the understanding of P dynamics in compost‐amended no‐till systems.
AbstractList Organic fertilization in no‐till soils increases soil organic matter and nutrient pools primarily in surface soils. However, little is known about how microbial activity affects crop access to phosphorus (P) forms at the surface, where the organic fertilizer is applied, and the subsurface, the main rooting zone. We aimed to study the changes in organic and inorganic P (Po; Pi) forms and compounds in no‐till compost amended surface (0–5 cm) and subsurface (5–15 cm) soils growing a crop rotation for 2 years in pots. Crops were grown in pots with compost amended to the soil surface, while unamended and compost‐amended pots without crops were used as controls. We measured changes in microbial C (carbon), soluble C, total Po and Pi forms, the moderately accessible EDTA‐NaOH‐Pi (‐Po), and labile NaHCO₃‐Pi (‐Po). P compounds in the EDTA‐NaOH extract were measured by ³¹P‐NMR. Compost addition increased the levels of total Pi and although it had no effect on total Po, increases of inositol, other phosphate monoesters and orthophosphate diesters could be observed. After the application of compost, the amount of total organic C, soluble carbon and all P forms increased in surface soil, while in the subsurface soil, there was a reduction in organic C and an increase in soluble C, total Pi, EDTA‐NaOH‐Pi and NaHCO₃‐Pi and the EDTA‐NaOH‐Po and labile NaHCO₃‐Po. Growing crops reduced all measured Pi forms and labile NaHCO₃‐Po, increased EDTA‐NaOH‐Po in surface soils and had no observable impact on total Po in either organic C‐enriched surface or organic C‐reduced subsurface soils. Crops mostly used Pi from the low P availability C‐reduced subsurface layer, where NaHCO₃‐Po pools also decreased. Large reductions in NaHCO₃‐Po and increased levels of IHP and other‐monoesters in crop‐growing organic C‐enriched surface layers may suggest microbial formation of monoesters Po and crop use of labile Po pools. In summary, Po formation in C‐enriched surface layers and the mobilization of all Pi forms throughout the soil profile are particularly important findings for the understanding of P dynamics in compost‐amended no‐till systems.
Organic fertilization in no‐till soils increases soil organic matter and nutrient pools primarily in surface soils. However, little is known about how microbial activity affects crop access to phosphorus (P) forms at the surface, where the organic fertilizer is applied, and the subsurface, the main rooting zone. We aimed to study the changes in organic and inorganic P (Po; Pi) forms and compounds in no‐till compost amended surface (0–5 cm) and subsurface (5–15 cm) soils growing a crop rotation for 2 years in pots. Crops were grown in pots with compost amended to the soil surface, while unamended and compost‐amended pots without crops were used as controls. We measured changes in microbial C (carbon), soluble C, total Po and Pi forms, the moderately accessible EDTA‐NaOH‐Pi (‐Po), and labile NaHCO 3 ‐Pi (‐Po). P compounds in the EDTA‐NaOH extract were measured by 31 P‐NMR. Compost addition increased the levels of total Pi and although it had no effect on total Po, increases of inositol, other phosphate monoesters and orthophosphate diesters could be observed. After the application of compost, the amount of total organic C, soluble carbon and all P forms increased in surface soil, while in the subsurface soil, there was a reduction in organic C and an increase in soluble C, total Pi, EDTA‐NaOH‐Pi and NaHCO 3 ‐Pi and the EDTA‐NaOH‐Po and labile NaHCO 3 ‐Po. Growing crops reduced all measured Pi forms and labile NaHCO 3 ‐Po, increased EDTA‐NaOH‐Po in surface soils and had no observable impact on total Po in either organic C‐enriched surface or organic C‐reduced subsurface soils. Crops mostly used Pi from the low P availability C‐reduced subsurface layer, where NaHCO 3 ‐Po pools also decreased. Large reductions in NaHCO 3 ‐Po and increased levels of IHP and other‐monoesters in crop‐growing organic C‐enriched surface layers may suggest microbial formation of monoesters Po and crop use of labile Po pools. In summary, Po formation in C‐enriched surface layers and the mobilization of all Pi forms throughout the soil profile are particularly important findings for the understanding of P dynamics in compost‐amended no‐till systems.
Organic fertilization in no‐till soils increases soil organic matter and nutrient pools primarily in surface soils. However, little is known about how microbial activity affects crop access to phosphorus (P) forms at the surface, where the organic fertilizer is applied, and the subsurface, the main rooting zone. We aimed to study the changes in organic and inorganic P (Po; Pi) forms and compounds in no‐till compost amended surface (0–5 cm) and subsurface (5–15 cm) soils growing a crop rotation for 2 years in pots. Crops were grown in pots with compost amended to the soil surface, while unamended and compost‐amended pots without crops were used as controls. We measured changes in microbial C (carbon), soluble C, total Po and Pi forms, the moderately accessible EDTA‐NaOH‐Pi (‐Po), and labile NaHCO3‐Pi (‐Po). P compounds in the EDTA‐NaOH extract were measured by 31P‐NMR. Compost addition increased the levels of total Pi and although it had no effect on total Po, increases of inositol, other phosphate monoesters and orthophosphate diesters could be observed. After the application of compost, the amount of total organic C, soluble carbon and all P forms increased in surface soil, while in the subsurface soil, there was a reduction in organic C and an increase in soluble C, total Pi, EDTA‐NaOH‐Pi and NaHCO3‐Pi and the EDTA‐NaOH‐Po and labile NaHCO3‐Po. Growing crops reduced all measured Pi forms and labile NaHCO3‐Po, increased EDTA‐NaOH‐Po in surface soils and had no observable impact on total Po in either organic C‐enriched surface or organic C‐reduced subsurface soils. Crops mostly used Pi from the low P availability C‐reduced subsurface layer, where NaHCO3‐Po pools also decreased. Large reductions in NaHCO3‐Po and increased levels of IHP and other‐monoesters in crop‐growing organic C‐enriched surface layers may suggest microbial formation of monoesters Po and crop use of labile Po pools. In summary, Po formation in C‐enriched surface layers and the mobilization of all Pi forms throughout the soil profile are particularly important findings for the understanding of P dynamics in compost‐amended no‐till systems.
Author Li, Xue
Romanyà, Joan
Hallama, Moritz
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0003-2534-9631
  surname: Li
  fullname: Li, Xue
  email: 18809871791@163.com
  organization: University of Barcelona
– sequence: 2
  givenname: Moritz
  surname: Hallama
  fullname: Hallama, Moritz
  organization: University of Hohenheim
– sequence: 3
  givenname: Joan
  surname: Romanyà
  fullname: Romanyà, Joan
  email: jromanya@ub.edu
  organization: University of Barcelona
BookMark eNp9kL1OwzAURi1UJEph4A08wpDWjpM4HVHFn1TEAJ0jx3Fao8QOvglVNiZmnpEnwW1gQQJLV7Z8z_cN5xiNjDUKoTNKptSfGXT1lDIS8gM0phGPg5BHbITGJEySgBAWHqFjgGdCQsoTMkbvC2cbwB0orI11a2G0xMIUuBK5rhT--Wo2Fvy4DnDpbI1z227wRq83n28fA2-3_ilehd4nddv7il458L3YWL9rdVVhaevGQrtDa2UKVWCwuoITdFiKCtTp9z1Bq-urp8VtsHy4uVtcLgPJGOdBnpKciaigSTwXhHNRCpnIkIYJJUrGioqYq3xOSFGmUV6wtIxTwWKR5wWP54yzCTofehtnXzoFbVZrkKqqhFG2g4yRiEQxS3ni0YsBlc4COFVmjdO1cH1GSbZznXnX2d61Z2e_WKlb0WprWueF_JfYesv939XZ4-p-SHwB_ByZNA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_178294
crossref_primary_10_1186_s12870_025_06092_x
Cites_doi 10.1016/j.soilbio.2017.06.015
10.1016/0038-0717(87)90052-6
10.1111/sum.12585
10.1080/10643389.2013.790752
10.1007/s00374-016-1123-7
10.2134/jeq2006.0131
10.1111/ejss.12517
10.1111/j.1365-2389.1955.tb00849.x
10.1016/j.eja.2007.02.001
10.1111/gcb.12113
10.2134/jeq2000.00472425002900050012x
10.1007/S13593‐015‐0332‐Z
10.2134/jeq2013.10.0424
10.1016/j.scitotenv.2019.07.221
10.1016/j.soilbio.2015.02.019
10.1023/A:1009823600950
10.1371/journal.pone.0131713
10.1016/j.geoderma.2018.11.049
10.23986/afsci.59307
10.1016/j.geoderma.2010.02.019
10.1007/s00374-020-01531-3
10.1097/00010694-199611000-00006
10.17221/263/2020-PSE
10.1002/jpln.201000079
10.1080/00103620902960666
10.1002/jpln.201200169
10.1371/journal.pone.0235458
10.1111/j.1365-2389.2010.01259.x
10.1186/s40538-017-0098-4
10.1016/j.catena.2014.01.020
10.1007/s00374‐007‐0254‐2
10.1016/j.soilbio.2019.107628
10.1007/s10705-017-9894-2
10.1038/nclimate2580
10.1016/S0003-2670(00)88444-5
10.1007/s11104-017-3490-8
10.1094/MPMI.2001.14.6.775
10.1016/j.geoderma.2015.01.014
10.1016/j.geoderma.2019.114122
10.1016/j.agee.2009.07.001
10.1016/S0038-0717(00)00127-9
10.1007/s11104‐021‐04897‐x
10.1021/es404875j
10.1039/C9EM00485H
10.1016/j.talanta.2004.12.024
10.1007/s11104-013-1731-z
10.1016/S0003-2670(00)88254-9
10.1007/s11104-021-05225-z
10.1021/acs.est.2c00099
10.2307/1938144
10.1016/j.geoderma.2009.05.009
10.1111/ppa.12668
10.1104/pp.111.175448
10.2134/jeq2005.0060
10.1016/j.soilbio.2017.04.003
10.1007/s11104-022-05468-4
10.1016/0016-7061(81)90024-0
10.3389/fmicb.2018.02456
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
DBID 24P
AAYXX
CITATION
7S9
L.6
DOI 10.1111/sum.13027
DatabaseName Wiley Online Library Open Access - NZ
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1475-2743
EndPage n/a
ExternalDocumentID 10_1111_sum_13027
SUM13027
Genre researchArticle
GrantInformation_xml – fundername: Spanish Ministry of Science, Innovation and Universities (MITOS: PID2020‐114022RB‐I00)
– fundername: China Scholarship Council (202008210403)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7S9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L.6
ID FETCH-LOGICAL-c3377-b80b3a4d1659a077afac6c212610ec5e1a57eb900df84bd38f58a35abbd759373
IEDL.DBID DR2
ISSN 0266-0032
IngestDate Fri Jul 11 18:23:47 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Tue Jul 01 00:47:51 EDT 2025
Wed Jan 22 16:12:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3377-b80b3a4d1659a077afac6c212610ec5e1a57eb900df84bd38f58a35abbd759373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2534-9631
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.13027
PQID 3040453876
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_3040453876
crossref_primary_10_1111_sum_13027
crossref_citationtrail_10_1111_sum_13027
wiley_primary_10_1111_sum_13027_SUM13027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Soil use and management
PublicationYear 2024
References 2015; 35
2009; 40
2017; 4
2022; 172
2020; 362
1977; 29
1995; 76
1955; 6
2013; 367
2020; 15
2009; 151
1983; 17
2017; 111
2017; 113
2005; 66
2011; 156
2007; 36
2010; 61
2013; 19
2018; 9
1987; 42
2015; 84
2021; 158
2015; 134
2010; 156
2001; 59
2022; 405
2022; 843
2001; 14
2005; 34
2007; 27
2014; 118
2022; 472
2000; 29
2015; 5
2017; 26
2017; 66
2018; 423
2015; 10
1996; 161
2014; 48
2009; 134
2016; 52
1981; 26
2020; 36
2005
2021; 463
2014; 44
2014; 43
2022; 476
2018; 69
2021; 57
2018; 110
1960; 22
2022; 56
1962; 27
2016
2008; 44
2010; 173
2019; 139
2020; 66
2020; 22
2013; 176
2019; 338
2001; 33
2019; 692
2015; 257–258
e_1_2_8_28_1
Faucon M. P. (e_1_2_8_20_1) 2015
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Dalal R. C. (e_1_2_8_16_1) 1977; 29
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
Jantamenchai M. (e_1_2_8_29_1) 2022; 405
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Jilling A. (e_1_2_8_31_1) 2021; 158
Condron L. M. (e_1_2_8_12_1) 2005
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
Li X. (e_1_2_8_37_1) 2022; 843
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Villar P. (e_1_2_8_61_1) 2016
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_58_1
Ebina J. (e_1_2_8_19_1) 1983; 17
e_1_2_8_10_1
Kelly C. (e_1_2_8_34_1) 2022; 172
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 476
  start-page: 117
  year: 2022
  end-page: 131
  article-title: How understanding soil chemistry can lead to better phosphate fertilizer practice: A 68 year journey (so far)
  publication-title: Plant and Soil
– volume: 40
  start-page: 2185
  year: 2009
  end-page: 2199
  article-title: Phosphorus adsorption and bioavailability in a paddy soil amended with pig manure compost and decaying rice straw
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 27
  start-page: 62
  year: 2007
  end-page: 71
  article-title: Labile phosphorus forms in irrigated and rainfed semiarid Mediterranean grassy crops with long‐term organic or conventional farming practices
  publication-title: European Journal of Agronomy
– volume: 66
  start-page: 1110
  year: 2017
  end-page: 1116
  article-title: Increased rhizosphere populations of strain T34 caused by secretion pattern of root exudates in tomato plants inoculated with
  publication-title: Plant Pathology
– volume: 172
  start-page: 768
  issue: 108
  year: 2022
  article-title: Long‐term compost amendment modulates wheat genotype differences in belowground carbon allocation, microbial rhizosphere recruitment and nitrogen acquisition
  publication-title: Soil Biology and Biochemistry
– volume: 156
  start-page: 207
  year: 2010
  end-page: 215
  article-title: Tillage and phosphorus management effects on enzyme‐labile bioactive phosphorus availability in Cerrado Oxisols
  publication-title: Geoderma
– volume: 36
  start-page: 305
  year: 2007
  end-page: 315
  article-title: Phosphorus movement and speciation in a sandy soil profile after long‐term animal manure applications
  publication-title: Journal of Environmental Quality
– volume: 29
  start-page: 85
  year: 1977
  end-page: 117
  article-title: Soil organic phosphorus
  publication-title: Agricultural Sciences
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nature Climate Change
– volume: 35
  start-page: 1571
  year: 2015
  end-page: 1579
  article-title: Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms
  publication-title: Agronomy for Sustainable Development
– volume: 57
  start-page: 499
  year: 2021
  end-page: 511
  article-title: Crop residue application at low rates could improve soil phosphorus cycling under long‐term no‐tillage management
  publication-title: Biology and Fertility of Soils
– volume: 257–258
  start-page: 67
  year: 2015
  end-page: 77
  article-title: Long‐term addition of organic fertilisers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions
  publication-title: Geoderma
– volume: 44
  year: 2014
  article-title: A meta‐analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality
  publication-title: Critical Reviews in Environmental Science and Technology
– volume: 111
  start-page: 78
  year: 2017
  end-page: 84
  article-title: Rhizosphere priming effect: A meta‐analysis
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 1
  year: 2015
  end-page: 15
  article-title: Changes in Olsen phosphorus concentration and its response to phosphorus balance in black soils under different long‐term fertilization patterns
  publication-title: PLoS One
– volume: 139
  year: 2019
  article-title: Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability?
  publication-title: Soil Biology and Biochemistry
– volume: 36
  start-page: 536
  year: 2020
  end-page: 546
  article-title: Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems
  publication-title: Soil Use and Management
– volume: 26
  start-page: 25
  year: 2017
  end-page: 33
  article-title: Phosphorus availability in residues as fertilisers in organic agriculture
  publication-title: Agricultural and Food Science
– volume: 338
  start-page: 128
  year: 2019
  end-page: 135
  article-title: Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: A fractionation and path analysis study
  publication-title: Geoderma
– volume: 118
  start-page: 20
  year: 2014
  end-page: 27
  article-title: Long‐term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers
  publication-title: Catena
– volume: 76
  start-page: 1407
  year: 1995
  end-page: 1424
  article-title: Changes in soil phosphorus fractions and ecosystem dynamics across a longchronosequence in Hawaii
  publication-title: Ecology
– volume: 34
  start-page: 1921
  year: 2005
  end-page: 1929
  article-title: Phosphorus cycling in wetland soils: The importance of phosphate diesters
  publication-title: Journal of Environmental Quality
– volume: 17
  start-page: 575
  issue: 1721
  year: 1983
  article-title: Simultaneous determination of total nitrogen and total phosphorus in water usingeroxydisulfatee oxidation
  publication-title: Water Research
– volume: 176
  start-page: 494
  year: 2013
  end-page: 496
  article-title: Phosphorus characterization of manure composts and combined organic fertilisers by a sequential‐fractionation method
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 843
  start-page: 22
  issue: 157
  year: 2022
  article-title: Biochar fertilization effects on soil bacterial community and soil phosphorus forms depends on the application rate
  publication-title: Science of the Total Environment
– volume: 66
  start-page: 359
  year: 2005
  end-page: 371
  article-title: Characterizing phosphorus in environmental and agricultural samples by P‐31 nuclear magnetic resonance spectroscopy
  publication-title: Talanta
– volume: 151
  start-page: 378
  year: 2009
  end-page: 386
  article-title: Organic and inorganic P reserves in rain‐fed and irrigated calcareous soils under long‐term organic and conventional agriculture
  publication-title: Geoderma
– volume: 52
  start-page: 825
  year: 2016
  end-page: 839
  article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development
  publication-title: Biology and Fertility of Soils
– volume: 29
  start-page: 1462
  year: 2000
  end-page: 1469
  article-title: Phosphorus forms in manure and compost and their release during simulated rainfall
  publication-title: Journal of Environmental Quality
– volume: 367
  start-page: 149
  issue: 162
  year: 2013
  article-title: Soil organic phosphorus transformations in a boreal forest chronosequence
  publication-title: Plant and Soil
– volume: 472
  start-page: 239
  year: 2022
  end-page: 255
  article-title: Long‐term changes in organic and inorganic phosphorus compounds as affected by long‐term synthetic fertilisers and pig manure in arable soils
  publication-title: Plant and Soil
– volume: 33
  start-page: 173
  year: 2001
  end-page: 188
  article-title: Substrate limitations to microbial activity in taiga forest floors
  publication-title: Soil Biology and Biochemistry
– volume: 113
  start-page: 250
  year: 2017
  end-page: 259
  article-title: Phosphorus mobilization in low‐P arable soils may involve soil organic C depletion
  publication-title: Soil Biology and Biochemistry
– volume: 423
  start-page: 1
  year: 2018
  end-page: 2
  article-title: Mechanisms by which citric acid increases phosphate availability
  publication-title: Plant and Soil
– volume: 26
  start-page: 267
  year: 1981
  end-page: 286
  article-title: Comparative aspects of cycling of organic c, n, and p through soil organic matter
  publication-title: Geoderma
– volume: 692
  start-page: 89
  year: 2019
  end-page: 97
  article-title: Characterization of fluvo‐aquic soil phosphorus affected by long‐term fertilization using solution 31P NMR spectroscopy
  publication-title: Science of the Total Environment
– volume: 48
  start-page: 5492
  year: 2014
  article-title: Formations of hydroxyapatite and inositol Hexakisphosphate in poultry litter during the composting period: Sequential fractionation, P K‐edge XANES and solution 31 P NMR investigations
  publication-title: Environmental Science and Technology
– volume: 6
  start-page: 254
  year: 1955
  end-page: 267
  article-title: Observations on the determination of total organic phosphorus in soils
  publication-title: Journal of Soil Science
– volume: 134
  year: 2015
– volume: 405
  start-page: 462
  issue: 115
  year: 2022
  article-title: Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality
  publication-title: Geoderma
– volume: 158
  start-page: 265
  issue: 108
  year: 2021
  article-title: Priming mechanisms providing plants and microbes access to mineral‐associated organic matter
  publication-title: Soil Biology and Biochemistry
– year: 2016
– volume: 156
  start-page: 989
  year: 2011
  end-page: 996
  article-title: Soil microorganisms mediating phosphorus availability
  publication-title: Plant Physiology
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Long‐term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils
  publication-title: Frontiers in Microbiology
– volume: 59
  start-page: 47
  year: 2001
  end-page: 63
  article-title: Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 66
  start-page: 543
  year: 2020
  end-page: 551
  article-title: Long‐term rotation fertilisation has differential effects on soil phosphorus
  publication-title: Plant, Soil and Environment
– volume: 22
  start-page: 120
  year: 1960
  end-page: 124
  article-title: A rapid method for the determination of organic carbon in soils
  publication-title: Analytica Chimica Acta
– volume: 22
  start-page: 1084
  year: 2020
  end-page: 1094
  article-title: Quantitative measures of: Myo‐IP6 in soil using solution 31P NMR spectroscopy and spectral deconvolution fitting including a broad signal
  publication-title: Environmental Science: Processes and Impacts
– volume: 43
  start-page: 1431
  year: 2014
  end-page: 1441
  article-title: Long‐term impact of tillage practices and phosphorus fertilisation on soil phosphorus forms as determined by P nuclear magnetic resonance spectroscopy
  publication-title: Journal of Environmental Quality
– volume: 4
  start-page: 19
  year: 2017
  article-title: Characterizing phosphorus forms in cropland soils with solution 31P‐NMR: Past studies and future research needs
  publication-title: Chemical and Biological Technologies in Agriculture
– volume: 173
  start-page: 765
  year: 2010
  end-page: 771
  article-title: Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil‐testing methods
  publication-title: Journal of Plant Nutrition and Soil Science
– start-page: 87
  year: 2005
  end-page: 121
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  article-title: The microbial efficiency‐matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
– volume: 110
  start-page: 227
  year: 2018
  end-page: 239
  article-title: Phosphorus availability on many organically managed farms in Europe
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 84
  start-page: 168
  year: 2015
  end-page: 176
  article-title: Organic acid induced release of nutrients from metal‐stabilized soil organic matter—The unbutton model
  publication-title: Soil Biology and Biochemistry
– volume: 61
  start-page: 563
  year: 2010
  end-page: 575
  article-title: Rapid decomposition of myo‐IHP applied to a calcareous soil demonstrated by a solution 31P NMR study
  publication-title: European Journal of Soil Science
– volume: 15
  start-page: 1
  year: 2020
  end-page: 17
  article-title: The response of soil Olsen‐P to the P budgets of three typical cropland soil types under long‐term fertilisation
  publication-title: PLoS One
– volume: 463
  start-page: 307
  year: 2021
  end-page: 328
  article-title: Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture
  publication-title: Plant and Soil
– volume: 69
  start-page: 1
  year: 2018
  end-page: 9
  article-title: On the history and future of soil organic phosphorus research: A critique across three generations
  publication-title: European Journal of Soil Science
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Analytica Chimica Acta
– volume: 161
  start-page: 770
  year: 1996
  end-page: 785
  article-title: A comparison of soil extraction procedures for P‐31 NMR spectroscopy
  publication-title: Soil Science
– volume: 14
  start-page: 775
  year: 2001
  end-page: 784
  article-title: Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 44
  start-page: 717
  year: 2008
  end-page: 726
  article-title: Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies
  publication-title: Biology and Fertility of Soils
– volume: 362
  start-page: 114
  year: 2020
  end-page: 122
  article-title: C:N stoichiometry of stable and labile organic compounds determine priming patterns
  publication-title: Geoderma
– volume: 134
  start-page: 211
  year: 2009
  end-page: 217
  article-title: Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model
  publication-title: Agriculture, Ecosystems and Environment
– volume: 56
  start-page: 9196
  year: 2022
  end-page: 9219
  article-title: Enhancing Phytate availability in soils and Phytate‐P acquisition by plants: A review
  publication-title: Environmental Science and Technology
– volume: 42
  start-page: 703
  issue: 19
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_8_50_1
  doi: 10.1016/j.soilbio.2017.06.015
– ident: e_1_2_8_59_1
  doi: 10.1016/0038-0717(87)90052-6
– ident: e_1_2_8_66_1
  doi: 10.1111/sum.12585
– ident: e_1_2_8_17_1
  doi: 10.1080/10643389.2013.790752
– ident: e_1_2_8_63_1
  doi: 10.1007/s00374-016-1123-7
– ident: e_1_2_8_36_1
  doi: 10.2134/jeq2006.0131
– ident: e_1_2_8_26_1
  doi: 10.1111/ejss.12517
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1365-2389.1955.tb00849.x
– ident: e_1_2_8_51_1
  doi: 10.1016/j.eja.2007.02.001
– ident: e_1_2_8_14_1
  doi: 10.1111/gcb.12113
– ident: e_1_2_8_54_1
  doi: 10.2134/jeq2000.00472425002900050012x
– ident: e_1_2_8_47_1
  doi: 10.1007/S13593‐015‐0332‐Z
– ident: e_1_2_8_2_1
  doi: 10.2134/jeq2013.10.0424
– ident: e_1_2_8_65_1
  doi: 10.1016/j.scitotenv.2019.07.221
– ident: e_1_2_8_11_1
  doi: 10.1016/j.soilbio.2015.02.019
– ident: e_1_2_8_27_1
  doi: 10.1023/A:1009823600950
– ident: e_1_2_8_67_1
  doi: 10.1371/journal.pone.0131713
– volume: 29
  start-page: 85
  year: 1977
  ident: e_1_2_8_16_1
  article-title: Soil organic phosphorus
  publication-title: Agricultural Sciences
– ident: e_1_2_8_32_1
  doi: 10.1016/j.geoderma.2018.11.049
– ident: e_1_2_8_22_1
  doi: 10.23986/afsci.59307
– ident: e_1_2_8_46_1
  doi: 10.1016/j.geoderma.2010.02.019
– ident: e_1_2_8_64_1
  doi: 10.1007/s00374-020-01531-3
– ident: e_1_2_8_10_1
  doi: 10.1097/00010694-199611000-00006
– ident: e_1_2_8_38_1
  doi: 10.17221/263/2020-PSE
– ident: e_1_2_8_56_1
  doi: 10.1002/jpln.201000079
– start-page: 87
  volume-title: Phosphorus: Agriculture and the environment
  year: 2005
  ident: e_1_2_8_12_1
– ident: e_1_2_8_23_1
  doi: 10.1080/00103620902960666
– ident: e_1_2_8_57_1
  doi: 10.1002/jpln.201200169
– ident: e_1_2_8_68_1
  doi: 10.1371/journal.pone.0235458
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1365-2389.2010.01259.x
– ident: e_1_2_8_9_1
  doi: 10.1186/s40538-017-0098-4
– ident: e_1_2_8_55_1
  doi: 10.1016/j.catena.2014.01.020
– ident: e_1_2_8_7_1
  doi: 10.1007/s00374‐007‐0254‐2
– ident: e_1_2_8_30_1
  doi: 10.1016/j.soilbio.2019.107628
– ident: e_1_2_8_13_1
  doi: 10.1007/s10705-017-9894-2
– ident: e_1_2_8_33_1
  doi: 10.1038/nclimate2580
– ident: e_1_2_8_45_1
  doi: 10.1016/S0003-2670(00)88444-5
– volume-title: Advances in Agronomy
  year: 2015
  ident: e_1_2_8_20_1
– ident: e_1_2_8_6_1
  doi: 10.1007/s11104-017-3490-8
– ident: e_1_2_8_35_1
  doi: 10.1094/MPMI.2001.14.6.775
– ident: e_1_2_8_4_1
  doi: 10.1016/j.geoderma.2015.01.014
– ident: e_1_2_8_41_1
  doi: 10.1016/j.geoderma.2019.114122
– ident: e_1_2_8_3_1
  doi: 10.1016/j.agee.2009.07.001
– ident: e_1_2_8_60_1
  doi: 10.1016/S0038-0717(00)00127-9
– ident: e_1_2_8_24_1
  doi: 10.1007/s11104‐021‐04897‐x
– ident: e_1_2_8_25_1
  doi: 10.1021/es404875j
– ident: e_1_2_8_48_1
  doi: 10.1039/C9EM00485H
– volume-title: Guia de la fertilitat dels sòls i la nutrició vegetal en producció integrada, Consell Ca
  year: 2016
  ident: e_1_2_8_61_1
– ident: e_1_2_8_8_1
  doi: 10.1016/j.talanta.2004.12.024
– volume: 172
  start-page: 768
  issue: 108
  year: 2022
  ident: e_1_2_8_34_1
  article-title: Long‐term compost amendment modulates wheat genotype differences in belowground carbon allocation, microbial rhizosphere recruitment and nitrogen acquisition
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_8_62_1
  doi: 10.1007/s11104-013-1731-z
– volume: 405
  start-page: 462
  issue: 115
  year: 2022
  ident: e_1_2_8_29_1
  article-title: Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality
  publication-title: Geoderma
– ident: e_1_2_8_44_1
  doi: 10.1016/S0003-2670(00)88254-9
– volume: 17
  start-page: 575
  issue: 1721
  year: 1983
  ident: e_1_2_8_19_1
  article-title: Simultaneous determination of total nitrogen and total phosphorus in water usingeroxydisulfatee oxidation
  publication-title: Water Research
– ident: e_1_2_8_39_1
  doi: 10.1007/s11104-021-05225-z
– volume: 158
  start-page: 265
  issue: 108
  year: 2021
  ident: e_1_2_8_31_1
  article-title: Priming mechanisms providing plants and microbes access to mineral‐associated organic matter
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.est.2c00099
– ident: e_1_2_8_15_1
  doi: 10.2307/1938144
– ident: e_1_2_8_52_1
  doi: 10.1016/j.geoderma.2009.05.009
– ident: e_1_2_8_21_1
  doi: 10.1111/ppa.12668
– volume: 843
  start-page: 22
  issue: 157
  year: 2022
  ident: e_1_2_8_37_1
  article-title: Biochar fertilization effects on soil bacterial community and soil phosphorus forms depends on the application rate
  publication-title: Science of the Total Environment
– ident: e_1_2_8_49_1
  doi: 10.1104/pp.111.175448
– ident: e_1_2_8_58_1
  doi: 10.2134/jeq2005.0060
– ident: e_1_2_8_28_1
  doi: 10.1016/j.soilbio.2017.04.003
– ident: e_1_2_8_5_1
  doi: 10.1007/s11104-022-05468-4
– ident: e_1_2_8_43_1
  doi: 10.1016/0016-7061(81)90024-0
– ident: e_1_2_8_40_1
  doi: 10.3389/fmicb.2018.02456
SSID ssj0021760
Score 2.3789365
Snippet Organic fertilization in no‐till soils increases soil organic matter and nutrient pools primarily in surface soils. However, little is known about how...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 31P‐NMR
administrative management
carbon
composts
crop growing effects
crop rotation
esters
inositols
labile P
microbial activity
no-tillage
organic C
organic phosphorus
orthophosphates
P forms
soil organic matter
soil profiles
subsurface soil layers
Title Crops use inorganic and labile organic phosphorus from both high‐ and low‐availability layers in no‐till compost‐amended soils
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.13027
https://www.proquest.com/docview/3040453876
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA7zPs0HdVPxTjcy8cGXXtomTVp8GmNjDDaGONiDUE7SVC_r2kvTKtuTTz77N_qXeNJfm-JAfCiU9jRtc3JyvpycfCHkDc99tBoeeybLY4-DSjyFjsHjQugkCA2LpVs7fHIqjs758UV0sUbejWthen6IKeDmLKPrr52Bg7J3jBwVtehm3bD_dblaDhC9n6ijEGmLIb6CI2afhQOrkMvimZ783RfdAsy7MLXzM4ePycfxC_v0kstF26iFvvmDvPE_f-EJeTTgT7rXN5gNsmbKTfJw71M9cHCYp-T7fl2tLG2tocuy3_VJUygzWjg2XkPHS6vPlcWjbi11i1SoQqVTR3_889uPXr76iqfwBZZFzwZ-jUU4iI_l0rLCe82yKKjLaq9s40SvuoA8tdWysM_I-eHBh_0jb9iuwdOMSemp2FcMeBaIKAFfSshBC42uERGa0ZEJIJJGJb6PrYKrjMV5FAOLQKlMRoiS2HMyK6vSvCA0khp0oCRIFnPgPuQ4zA1EYrBDMkLyOXk7Ki7VA5e521KjSMcxDVZt2lXtnLyeRFc9gcffhHZH7adoXm7OBEpTtTZl2MlxdApS4Ds7Xd5fSoqOsDvZ-nfRl2Q9RJjUB3VekVlTt2YbYU6jdsiDkJ_tdK36F5ygAL8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07b9UwFD4qZQAG2vIQhVIMAoklV0ns2MnAULVUt_QxoFbqFmzHgStCcnWdUJWJiZkf0r_SP8Ev4TiPS0EgdenAEMlKjhzLPk_7-DsAz1nuo9Sw2DNZHntMqsRTaBg8xrlOgtDQWLi7w_sHfHzE3hxHxwtwNtyF6fAh5htuTjJafe0E3G1IX5ByXKlRe-zWp1TumtMTDNjsq50tXN0XYbj9-nBz7PU1BTxNqRCein1FJcsCHiXSF0LmUnON-hvdCKMjE8hIGJX4Pg6dqYzGeRRLGkmlMhGhKafY7zW47iqIO6T-rbdzsCr07Xm_o4Mxuk_DHsfI5Q3Nh_q79fvl0l50jFvLtr0E58OcdAktH0dNrUb6yx9wkf_LpC3D7d7FJhudTKzAginvwK2N97MeZsTchW-bs2pqSWMNmZRdYStNZJmRwgEOGzK8mn6oLD6zxhJ3D4co5GviEJ5_fP3e0Vcn2JSf5aToAM9PsQsXxWC_pKzwWz0pCuIS9ytbO9JP7ZkDsdWksPfg6Eom4j4sllVpHgCJhJY6UEIKGjPJfJljJB_wxKDONVywVXg5cEqqe7h2VzWkSIewDZcybZdyFZ7NSacdRsnfiJ4O7JaiBnHHQrI0VWNTinqcod0THP_ZMs-_e0nR1reNh5cnfQI3xof7e-nezsHuI7gZolfY7WGtwWI9a8xj9Opqtd4KE4F3V82IPwEBzl4n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcMRDQvRQlQICSlsXUYlLUBI7dnLoAUFXUFrEoUjcgu04sFKarNa7rPbWU8_8R_-qX9JxHluQqMSFQyQrGU0sz3s8HgPsstxHqWGxZ7I89phUiafQMHiMc50EoaGxcGeHv53x4wv25TK6nIPf3VmYpj_ELOHmJKPW107AB1l-T8iRUPv1rltbUXlqphOM1-ynkyMk7scw7H3-fnjstVcKeJpSITwV-4pKlgU8SqQvhMyl5hrVN3oRRkcmkJEwKvF9nDlTGY3zKJY0kkplIkJLThHvPCy6zUVXPxay81l0FwjeJnQwRPdp2LYxcmVDs6k-NH7_PNr7fnFt2Hqv4GXrkZKDhoVWYM6Ur-HFwfWw7cphVuHX4bAaWDK2hvTL5h4oTWSZkcL15zWkezW4qSw-w7El7tgKUcgGxDVE_vPzroGvJjiUt7JfNP3Bp4jCOf2Il5QVfhv1i4K4OvfKjhzojzpFT2zVL-waXDzLaq_DQlmVZgNIJLTUgRJS0JhJ5sscA9-AJwZVlOGCbcJet7Kpbrubu0s2irSLcpAIaU2ETdiZgQ6alh6PAX3oyJOiwLldFFmaamxTimqPoZkQHP9Z0-3_WFI0jfVg6-mg72Hp_KiXfj05O30DyyH6UE3GZxsWRsOxeYs-0Ei9q3mPwNVzM_tfusEccw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crops+use+inorganic+and+labile+organic+phosphorus+from+both+high%E2%80%90+and+low%E2%80%90availability+layers+in+no%E2%80%90till+compost%E2%80%90amended+soils&rft.jtitle=Soil+use+and+management&rft.au=Li%2C+Xue&rft.au=Hallama%2C+Moritz&rft.au=Romany%C3%A0%2C+Joan&rft.date=2024-01-01&rft.issn=0266-0032&rft.volume=40&rft.issue=1+p.e13027-&rft_id=info:doi/10.1111%2Fsum.13027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon