Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching

Summary Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review Vol. 91; no. 2; pp. 269 - 293
Main Authors Marella, Daniela, Pfeffermann, Danny
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN0306-7734
1751-5823
DOI10.1111/insr.12524

Cover

Loading…
Abstract Summary Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data.
AbstractList Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data.
Summary Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data.
Author Pfeffermann, Danny
Marella, Daniela
Author_xml – sequence: 1
  givenname: Daniela
  orcidid: 0000-0002-2195-7229
  surname: Marella
  fullname: Marella, Daniela
  email: daniela.marella@uniroma1.it
  organization: Sapienza Università di Roma
– sequence: 2
  givenname: Danny
  surname: Pfeffermann
  fullname: Pfeffermann, Danny
  organization: University of Southampton
BookMark eNp9kE1OwzAQhS1UJNrChhNEYoeUYsd2nSyrip9KpUgtrC3XsYur1A52KtQdR-CMnASHdIUQs5nFfG9m3huAnnVWAXCJ4AjFujE2-BHKaEZOQB8xilKaZ7gH-hDDccoYJmdgEMIWQoiznPTBciKl29vG2E2inU8Wzn59fJqNdV6sK5WsxK6u2qGw5XHoVaidDSoxNlk1ojGhMVJUyaNo5GtEz8GpFlVQF8c-BC93t8_Th3T-dD-bTuapxJiRlBalFkJDhUQJCSkwlYSUuRZQZ7AcC7qmuYYsPi6pZOsMIkoyRUheEIZYjvAQXHV7a-_e9io0fOv23saTPFpjsCBFUUTquqOkdyF4pXntzU74A0eQt5nxNjP-k1mE4S9Ymtahs40XpvpbgjrJu6nU4Z_lfLZYLTvNN30vgok
CitedBy_id crossref_primary_10_2478_jos_2023_0008
Cites_doi 10.1016/j.csda.2013.07.004
10.1080/01621459.2015.1112803
10.2307/1391390
10.1201/9781315120416-6
10.1201/9781420036152
10.1515/jos-2015-0045
10.1214/aos/1176347494
10.1007/978-1-4757-3076-0
10.1093/biomet/80.1.107
10.1177/0008068317696546
10.1007/s10260-016-0374-7
10.1111/j.2517-6161.1991.tb01857.x
10.1007/s10888-005-1089-4
10.1214/11-AOAS456
10.1007/s11749-009-0159-5
10.1093/biomet/55.3.547
10.1214/aos/1176348368
10.1016/S0169-7161(09)00239-9
10.1007/978-1-4613-0053-3
10.1002/0470023554
10.1214/aos/1176325370
10.1080/03610926.2015.1010005
10.1002/cjs.11183
10.3150/19-BEJ1138
10.1016/j.jspi.2019.03.001
ContentType Journal Article
Copyright 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/insr.12524
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1751-5823
EndPage 293
ExternalDocumentID 10_1111_insr_12524
INSR12524
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29J
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWIL
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AENEX
AEQDE
AEUPB
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFVYC
AFWVQ
AFZJQ
AGHNM
AGLNM
AGQPQ
AGYGG
AHBTC
AIAGR
AIHAF
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EBS
ECEWR
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
H~9
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RBU
RNS
ROL
RPE
RX1
SA0
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
YYP
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3374-59dfaaf0e1ad044935c44d8fa0f20d6a5b58f07030c5c7b201542e44894717813
IEDL.DBID DR2
ISSN 0306-7734
IngestDate Fri Jul 25 19:04:48 EDT 2025
Tue Jul 01 00:48:50 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Wed Jun 11 08:26:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3374-59dfaaf0e1ad044935c44d8fa0f20d6a5b58f07030c5c7b201542e44894717813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2195-7229
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12524
PQID 2847094999
PQPubID 105652
PageCount 293
ParticipantIDs proquest_journals_2847094999
crossref_primary_10_1111_insr_12524
crossref_citationtrail_10_1111_insr_12524
wiley_primary_10_1111_insr_12524_INSR12524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International statistical review
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2004; 66
1991; 19
2017; 26
2006b
2017; 69
2010
2013; 68
1990; 18
2015; 31
1991; 53
2013; 41
2019; 203
2009
1975
1994; 22
1995
2006; 4
2011; 37
1999; 61
2002
2011; 5
1972; 1
1999; 9
1999
1998; 24
2015; 46
2004; 32
1993; 19
2001
1986; 4
1987
2019
2020; 26
2016; 111
1993; 80
2012; 28
2001; 17
2009; 19
2011; 27
2006a; 22
1968; 55
2009; 18
1998; 8
e_1_2_9_31_1
e_1_2_9_11_1
Moriarity C. (e_1_2_9_23_1) 2001; 17
Babu G.J. (e_1_2_9_2_1) 2004; 66
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
D'Orazio M. (e_1_2_9_14_1) 2006; 22
Pfeffermann D. (e_1_2_9_32_1) 1998; 8
Bishop Y.M. (e_1_2_9_3_1) 1975
Pfeffermann D. (e_1_2_9_35_1) 1999; 61
Wu C. (e_1_2_9_43_1) 2004; 32
Singh A.C. (e_1_2_9_42_1) 1993; 19
Little R.J.A. (e_1_2_9_21_1) 1987
Chen J. (e_1_2_9_6_1) 1999; 9
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_37_1
Pfeffermann D. (e_1_2_9_34_1) 2011; 27
Renssen R.H. (e_1_2_9_39_1) 1998; 24
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
Sheather S.J. (e_1_2_9_41_1) 1991; 53
e_1_2_9_24_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
Conti P.L. (e_1_2_9_10_1) 2012; 28
e_1_2_9_5_1
e_1_2_9_4_1
Pfeffermann D. (e_1_2_9_30_1) 2011; 37
Okner B. (e_1_2_9_25_1) 1972; 1
Dougherty J. (e_1_2_9_16_1) 1995
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Kim J.K. (e_1_2_9_19_1) 2009; 19
References_xml – volume: 28
  start-page: 1
  year: 2012
  end-page: 21
  article-title: Uncertainty analysis in statistical matching
  publication-title: Journal of Official Statistics.
– volume: 61
  start-page: 166
  year: 1999
  end-page: 186
  article-title: Parametric and and semi‐parametric estimation of regression models fitted to survey data
  publication-title: Sankhya, Series B
– volume: 203
  start-page: 70
  year: 2019
  end-page: 81
  article-title: Matching information from two independent informative sampling
  publication-title: Journal of Statistical Planning and Inference
– volume: 8
  start-page: 1087
  year: 1998
  end-page: 1114
  article-title: Parametric distribution of complex survey data under informative probability sampling
  publication-title: Statistica Sinica
– year: 1987
– year: 2001
– volume: 9
  start-page: 385
  year: 1999
  end-page: 406
  article-title: A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys
  publication-title: Statistica Sinica
– volume: 53
  start-page: 683
  year: 1991
  end-page: 690
  article-title: A reliable data‐based bandwidth selection method for kernel density estimation
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 68
  start-page: 311
  year: 2013
  end-page: 325
  article-title: Uncertainty analysis for statistical matching of ordered categorical variables
  publication-title: Computational Statistics & Data Analysis
– volume: 19
  start-page: 59
  year: 1993
  end-page: 79
  article-title: Statistical matching: Use of auxiliary information as an alternative to the conditional independence assumption
  publication-title: Survey Methodology
– volume: 4
  start-page: 33
  year: 2006
  end-page: 55
  article-title: Survey nonresponse and the distribution of income
  publication-title: The Journal of Economic Inequality
– year: 1975
– start-page: 121
  year: 2019
  end-page: 136
– volume: 4
  start-page: 87
  year: 1986
  end-page: 94
  article-title: Statistical matching using file concatenation with adjusted weights and multiple imputations
  publication-title: Journal of Business and Economics Statistics
– volume: 111
  start-page: 1715
  year: 2016
  end-page: 1725
  article-title: Statistical matching analysis for complex survey data with applications
  publication-title: Journal of the American Statistical Association
– volume: 55
  start-page: 547
  year: 1968
  end-page: 557
  article-title: A new estimation theory for sample surveys
  publication-title: Biometrika
– volume: 24
  start-page: 171
  year: 1998
  end-page: 183
  article-title: Use of statistical matching techniques in calibration estimation
  publication-title: Survey Methodology
– volume: 22
  start-page: 137
  year: 2006a
  end-page: 157
  article-title: Statistical matching for categorical data: Displaying uncertainty and using logical constraints
  publication-title: Journal of Official Statistics
– year: 2010
– volume: 19
  start-page: 145
  year: 2009
  end-page: 157
  article-title: Calibration estimation using empirical likelihood in survey sampling
  publication-title: Statistica Sinica
– volume: 26
  start-page: 485
  issue: 3
  year: 2017
  end-page: 505
  article-title: Statistical matching and uncertainty analysis in combining household income and expenditure data
  publication-title: Statistical Methods & Applications
– start-page: 455
  year: 2009
  end-page: 487
– volume: 31
  start-page: 783
  year: 2015
  end-page: 807
  article-title: On proxy variables and categorical data fusion
  publication-title: Journal of Official Statistics
– volume: 1
  start-page: 325
  year: 1972
  end-page: 342
  article-title: Constructing a new data base from existing microdata sets: the 1966 merge file
  publication-title: Annals of Economic and Social Measurement
– volume: 22
  start-page: 300
  year: 1994
  end-page: 325
  article-title: Empirical likelihood and general estimating equations
  publication-title: The Annals of Statistics
– volume: 41
  start-page: 387
  year: 2013
  end-page: 397
  article-title: Self‐concordance for empirical likelihood
  publication-title: Canadian Journal of Statistics
– volume: 5
  start-page: 1726
  year: 2011
  end-page: 1751
  article-title: Are private schools really better than public schools? Assessment by methods for observational studies
  publication-title: Annals of Applied Statistics
– volume: 18
  start-page: 415
  year: 2009
  end-page: 447
  article-title: A review on empirical likelihood methods for regression
  publication-title: Test
– volume: 18
  start-page: 90
  issue: 1
  year: 1990
  end-page: 120
  article-title: Empirical likelihood confidence regions
  publication-title: The Annals of Statistics
– year: 2002
– volume: 32
  start-page: 1
  issue: 112
  year: 2004
  end-page: 12
  article-title: Combining information from multipe surveys through the empirical likelihood method
  publication-title: The Canadian Journal of Statistics
– volume: 46
  start-page: 967
  year: 2015
  end-page: 994
  article-title: How far from identifiability? A systematic overview of the statistical matching problem in a non‐parametric framework
  publication-title: Communications in Statistics‐Theory and Methods
– volume: 80
  start-page: 107
  year: 1993
  end-page: 116
  article-title: Empirical likelihood estimation for finite population and the effective usage of auxiliary information
  publication-title: Biometrika
– year: 1995
– volume: 17
  start-page: 407
  year: 2001
  end-page: 422
  article-title: Statistical matching: A paradigm of assessing the Procedure
  publication-title: Journal of Official Statistics
– year: 2006b
– volume: 69
  start-page: 35
  year: 2017
  end-page: 63
  article-title: Bayes‐based non‐Bayesian inference on finite populations from non‐representative samples: A unified approach
  publication-title: Calcutta Statistical Association Bulletin
– volume: 27
  start-page: 181
  year: 2011
  end-page: 209
  article-title: Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information
  publication-title: Journal of Official Statistics
– volume: 66
  start-page: 63
  year: 2004
  end-page: 74
  article-title: Goodness‐of‐fit tests when parameters are estimated
  publication-title: Sankhya, Series A
– volume: 19
  start-page: 1725
  year: 1991
  end-page: 1747
  article-title: Empirical likelihood for linear models
  publication-title: The Annals of Statistics
– volume: 37
  start-page: 115
  year: 2011
  end-page: 136
  article-title: Modelling of complex survey data: Why model? Why is it a problem? How can we approach it?
  publication-title: Survey Methodology
– volume: 26
  start-page: 1044
  issue: 2
  year: 2020
  end-page: 1069
  article-title: A unified principled framework for resampling based on pseudo‐populations: Asymptotic theory
  publication-title: Bernoulli
– year: 2019
– year: 1999
– volume: 9
  start-page: 385
  year: 1999
  ident: e_1_2_9_6_1
  article-title: A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys
  publication-title: Statistica Sinica
– ident: e_1_2_9_11_1
  doi: 10.1016/j.csda.2013.07.004
– ident: e_1_2_9_13_1
  doi: 10.1080/01621459.2015.1112803
– volume: 27
  start-page: 181
  year: 2011
  ident: e_1_2_9_34_1
  article-title: Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information
  publication-title: Journal of Official Statistics
– ident: e_1_2_9_40_1
  doi: 10.2307/1391390
– ident: e_1_2_9_45_1
  doi: 10.1201/9781315120416-6
– ident: e_1_2_9_28_1
  doi: 10.1201/9781420036152
– ident: e_1_2_9_44_1
  doi: 10.1515/jos-2015-0045
– ident: e_1_2_9_26_1
  doi: 10.1214/aos/1176347494
– ident: e_1_2_9_17_1
– volume: 32
  start-page: 1
  issue: 112
  year: 2004
  ident: e_1_2_9_43_1
  article-title: Combining information from multipe surveys through the empirical likelihood method
  publication-title: The Canadian Journal of Statistics
– volume: 66
  start-page: 63
  year: 2004
  ident: e_1_2_9_2_1
  article-title: Goodness‐of‐fit tests when parameters are estimated
  publication-title: Sankhya, Series A
– volume: 8
  start-page: 1087
  year: 1998
  ident: e_1_2_9_32_1
  article-title: Parametric distribution of complex survey data under informative probability sampling
  publication-title: Statistica Sinica
– volume: 61
  start-page: 166
  year: 1999
  ident: e_1_2_9_35_1
  article-title: Parametric and and semi‐parametric estimation of regression models fitted to survey data
  publication-title: Sankhya, Series B
– volume: 1
  start-page: 325
  year: 1972
  ident: e_1_2_9_25_1
  article-title: Constructing a new data base from existing microdata sets: the 1966 merge file
  publication-title: Annals of Economic and Social Measurement
– volume: 24
  start-page: 171
  year: 1998
  ident: e_1_2_9_39_1
  article-title: Use of statistical matching techniques in calibration estimation
  publication-title: Survey Methodology
– ident: e_1_2_9_24_1
  doi: 10.1007/978-1-4757-3076-0
– volume: 22
  start-page: 137
  year: 2006
  ident: e_1_2_9_14_1
  article-title: Statistical matching for categorical data: Displaying uncertainty and using logical constraints
  publication-title: Journal of Official Statistics
– volume: 19
  start-page: 59
  year: 1993
  ident: e_1_2_9_42_1
  article-title: Statistical matching: Use of auxiliary information as an alternative to the conditional independence assumption
  publication-title: Survey Methodology
– volume-title: Statistical Analysis with Missing Data
  year: 1987
  ident: e_1_2_9_21_1
– ident: e_1_2_9_5_1
  doi: 10.1093/biomet/80.1.107
– ident: e_1_2_9_4_1
– ident: e_1_2_9_31_1
  doi: 10.1177/0008068317696546
– volume: 37
  start-page: 115
  year: 2011
  ident: e_1_2_9_30_1
  article-title: Modelling of complex survey data: Why model? Why is it a problem? How can we approach it?
  publication-title: Survey Methodology
– volume: 28
  start-page: 1
  year: 2012
  ident: e_1_2_9_10_1
  article-title: Uncertainty analysis in statistical matching
  publication-title: Journal of Official Statistics.
– volume-title: Supervised and Unsupervised Discretization of Continuous Features
  year: 1995
  ident: e_1_2_9_16_1
– volume-title: Discrete Multivariate Analysis
  year: 1975
  ident: e_1_2_9_3_1
– ident: e_1_2_9_9_1
  doi: 10.1007/s10260-016-0374-7
– volume: 53
  start-page: 683
  year: 1991
  ident: e_1_2_9_41_1
  article-title: A reliable data‐based bandwidth selection method for kernel density estimation
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1991.tb01857.x
– ident: e_1_2_9_20_1
  doi: 10.1007/s10888-005-1089-4
– ident: e_1_2_9_33_1
  doi: 10.1214/11-AOAS456
– ident: e_1_2_9_7_1
  doi: 10.1007/s11749-009-0159-5
– ident: e_1_2_9_18_1
  doi: 10.1093/biomet/55.3.547
– volume: 19
  start-page: 145
  year: 2009
  ident: e_1_2_9_19_1
  article-title: Calibration estimation using empirical likelihood in survey sampling
  publication-title: Statistica Sinica
– ident: e_1_2_9_27_1
  doi: 10.1214/aos/1176348368
– ident: e_1_2_9_36_1
  doi: 10.1016/S0169-7161(09)00239-9
– ident: e_1_2_9_38_1
  doi: 10.1007/978-1-4613-0053-3
– ident: e_1_2_9_15_1
  doi: 10.1002/0470023554
– ident: e_1_2_9_37_1
  doi: 10.1214/aos/1176325370
– ident: e_1_2_9_12_1
  doi: 10.1080/03610926.2015.1010005
– ident: e_1_2_9_29_1
  doi: 10.1002/cjs.11183
– ident: e_1_2_9_8_1
  doi: 10.3150/19-BEJ1138
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jspi.2019.03.001
– volume: 17
  start-page: 407
  year: 2001
  ident: e_1_2_9_23_1
  article-title: Statistical matching: A paradigm of assessing the Procedure
  publication-title: Journal of Official Statistics
SSID ssj0003284
Score 2.3304772
Snippet Summary Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of...
Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Empirical analysis
empirical likelihood
fusion
IPF algorithm
Matching
matching uncertainty
NMAR non‐response
sample and respondents distributions
Sampling designs
Statistical analysis
Title Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12524
https://www.proquest.com/docview/2847094999
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6oT3vxLs4bBX1R6GhzaVPwRUSZwoZMhb1ISdJEhqPKNl988if4G_0l5vSyqYigb4Wcpm1yLl_Sk-8AHGjKI4beLzRZ7DMVJb6wmfA1UzQR1LnlAA84d7pR-5Zd9nl_Do7rszAlP8R0ww0to_DXaOBSjT8Z-SAfj1ouPBMkA8VkLUREvRl3FCWi5I5yS-Y4pqziJsU0ntmtX6PRDGJ-BqpFpDlfgrv6HcsEk4fW80S19Ms3-sb_fsQyLFYQ1DspdWYF5ky-Cg1EnSVp8xr0ZjUkPAdqve5j_v76NrjPnb6oofGuJeahu0aZZ1XjqMy1Nd4g96Zduad0nKvHTa51uD0_uzlt-1XxBV9TGjOfJ5mV0gYmlFnAWEK5ZiwTVgaWBFkkueLCFv5Ccx0rgliMGLfYS1y4i0VIN2Ahf8zNJngmMpoSGYXWhkwKoohQ3GrNJf6k5XETDutJSHXFTI4FMoZpvULBYUqLYWrC_lT2qeTj-FFqp57LtLLJcYqBOEAunqQJR8Wk_NJDetG97hVXW38R3oYG1qMvMwR3YGEyeja7DrVM1B7ME3a1V-joB3GR658
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagDLDwjygUiAQLSKmS2E6cESFQ-WmHtkhske3YqKIyqC0LE4_AM_Ik-Jy0AYSQYItkx1Fs39135_N3CB1JTGMC2i9UeeITEac-0znzJRE4Zdiq5QAuOLc7ceuWXN3RuzI3B-7CFPwQs4AbSIbT1yDgEJD-JOUDMx41rX2OyDxagJLezqPqVuxROGIFe5R1mpMEk5KdFBJ5qne_2qMKZH6Gqs7WXKwUBVXHjqIQUkwems8T0ZQv3wgc__0bq2i5RKHeabFt1tCcMutoCYBnwdu8gbpVGQnP4lqv82jeX98G98ZuGTFUXo9DKrpt5CYvG0dFuq3yBsabDWW_0rbaHuJcm-j24rx_1vLL-gu-xDghPk1zzbkOVMjzgJAUU0lIzjQPdBTkMaeCMu1UhqQyERHAsUhZfy-1Fi9hId5CNfNo1DbyVKwkjngcah0SziIRMUG1lJTDOS1N6uh4ugqZLMnJoUbGMJs6KTBNmZumOjqc9X0qKDl-7NWYLmZWiuU4A1scAB1PWkcnblV-GSG77PS67mnnL50P0GKr377Jbi4717toCcrTFwmDDVSbjJ7VngUxE7HvtuoHkpju4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MCeKLd3E6taAvCh1tk7Qp-CLO4XXIpuCLlCRNZDi6scuLT_4Ef6O_xKSXbYoI-lZImrbJuXwnPfkOwKFAxMfG-rkyDmzM_dCmKqa2wByFFGmz7JgDzrdN_-IBXz2SxxKcFGdhMn6IyYab0YzUXhsF78dqRsk7yXBQ0-7Zw3Mwj32HGpmut6bkUcijGXmUjpmDAOGcnNTk8Uzv_eqOphhzFqmmrqaxDE_FS2YZJi-18YjXxOs3_sb_fsUKLOUY1DrNhGYVSjJZg0UDOzPW5nVoTYtIWBrVWs1e8vH23nlOtMDwrrTazCSi60aWxHnjIEu2lVYnsSZD6afcaltvdrk24KFxfn92YefVF2yBUIBtEsaKMeVIl8UOxiEiAuOYKuYoz4l9RjihKjUYgoiAewaMeVJHe6H2dwF10SaUk14it8CSvhTIY76rlIsZ9bhHOVFCEGb-0pKgAkfFIkQipyY3FTK6URGimGmK0mmqwMGkbz8j5PixV7VYyyhXymFkPLFjyHjCChyni_LLCNFls91Kr7b_0nkfFu7qjejmsnm9A4umNn2WLViF8mgwlrsawYz4Xiqon_h27Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+Non%E2%80%90ignorable+Sampling+and+Non%E2%80%90response+in+Statistical+Matching&rft.jtitle=International+statistical+review&rft.au=Marella%2C+Daniela&rft.au=Pfeffermann%2C+Danny&rft.date=2023-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=91&rft.issue=2&rft.spage=269&rft.epage=293&rft_id=info:doi/10.1111%2Finsr.12524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon