Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching
Summary Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article...
Saved in:
Published in | International statistical review Vol. 91; no. 2; pp. 269 - 293 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-7734 1751-5823 |
DOI | 10.1111/insr.12524 |
Cover
Loading…
Abstract | Summary
Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data. |
---|---|
AbstractList | Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data. Summary Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest. Statistical matching attempts to generate a fused database containing matched measurements on all the target variables. In this article, we consider the use of statistical matching when the samples are drawn by informative sampling designs and are subject to not missing at random non‐response. The problem with ignoring the sampling process and non‐response is that the distribution of the data observed for the responding units can be very different from the distribution holding for the population data, which may distort the inference process and result in a matched database that misrepresents the joint distribution in the population. Our proposed methodology employs the empirical likelihood approach and is shown to perform well in a simulation experiment and when applied to real sample data. |
Author | Pfeffermann, Danny Marella, Daniela |
Author_xml | – sequence: 1 givenname: Daniela orcidid: 0000-0002-2195-7229 surname: Marella fullname: Marella, Daniela email: daniela.marella@uniroma1.it organization: Sapienza Università di Roma – sequence: 2 givenname: Danny surname: Pfeffermann fullname: Pfeffermann, Danny organization: University of Southampton |
BookMark | eNp9kE1OwzAQhS1UJNrChhNEYoeUYsd2nSyrip9KpUgtrC3XsYur1A52KtQdR-CMnASHdIUQs5nFfG9m3huAnnVWAXCJ4AjFujE2-BHKaEZOQB8xilKaZ7gH-hDDccoYJmdgEMIWQoiznPTBciKl29vG2E2inU8Wzn59fJqNdV6sK5WsxK6u2qGw5XHoVaidDSoxNlk1ojGhMVJUyaNo5GtEz8GpFlVQF8c-BC93t8_Th3T-dD-bTuapxJiRlBalFkJDhUQJCSkwlYSUuRZQZ7AcC7qmuYYsPi6pZOsMIkoyRUheEIZYjvAQXHV7a-_e9io0fOv23saTPFpjsCBFUUTquqOkdyF4pXntzU74A0eQt5nxNjP-k1mE4S9Ymtahs40XpvpbgjrJu6nU4Z_lfLZYLTvNN30vgok |
CitedBy_id | crossref_primary_10_2478_jos_2023_0008 |
Cites_doi | 10.1016/j.csda.2013.07.004 10.1080/01621459.2015.1112803 10.2307/1391390 10.1201/9781315120416-6 10.1201/9781420036152 10.1515/jos-2015-0045 10.1214/aos/1176347494 10.1007/978-1-4757-3076-0 10.1093/biomet/80.1.107 10.1177/0008068317696546 10.1007/s10260-016-0374-7 10.1111/j.2517-6161.1991.tb01857.x 10.1007/s10888-005-1089-4 10.1214/11-AOAS456 10.1007/s11749-009-0159-5 10.1093/biomet/55.3.547 10.1214/aos/1176348368 10.1016/S0169-7161(09)00239-9 10.1007/978-1-4613-0053-3 10.1002/0470023554 10.1214/aos/1176325370 10.1080/03610926.2015.1010005 10.1002/cjs.11183 10.3150/19-BEJ1138 10.1016/j.jspi.2019.03.001 |
ContentType | Journal Article |
Copyright | 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1111/insr.12524 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1751-5823 |
EndPage | 293 |
ExternalDocumentID | 10_1111_insr_12524 INSR12524 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29J 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAWIL AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABLJU ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACNCT ACPOU ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADODI ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AELLO AENEX AEQDE AEUPB AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFVYC AFWVQ AFZJQ AGHNM AGLNM AGQPQ AGYGG AHBTC AIAGR AIHAF AITYG AIURR AIWBW AJBDE AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EBS ECEWR EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGD HGLYW HQ6 HVGLF HZ~ H~9 IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RBU RNS ROL RPE RX1 SA0 SUPJJ TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 YYP ZZTAW ~02 ~IA ~WT AAYXX CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3374-59dfaaf0e1ad044935c44d8fa0f20d6a5b58f07030c5c7b201542e44894717813 |
IEDL.DBID | DR2 |
ISSN | 0306-7734 |
IngestDate | Fri Jul 25 19:04:48 EDT 2025 Tue Jul 01 00:48:50 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Wed Jun 11 08:26:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3374-59dfaaf0e1ad044935c44d8fa0f20d6a5b58f07030c5c7b201542e44894717813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2195-7229 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12524 |
PQID | 2847094999 |
PQPubID | 105652 |
PageCount | 293 |
ParticipantIDs | proquest_journals_2847094999 crossref_primary_10_1111_insr_12524 crossref_citationtrail_10_1111_insr_12524 wiley_primary_10_1111_insr_12524_INSR12524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International statistical review |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2004; 66 1991; 19 2017; 26 2006b 2017; 69 2010 2013; 68 1990; 18 2015; 31 1991; 53 2013; 41 2019; 203 2009 1975 1994; 22 1995 2006; 4 2011; 37 1999; 61 2002 2011; 5 1972; 1 1999; 9 1999 1998; 24 2015; 46 2004; 32 1993; 19 2001 1986; 4 1987 2019 2020; 26 2016; 111 1993; 80 2012; 28 2001; 17 2009; 19 2011; 27 2006a; 22 1968; 55 2009; 18 1998; 8 e_1_2_9_31_1 e_1_2_9_11_1 Moriarity C. (e_1_2_9_23_1) 2001; 17 Babu G.J. (e_1_2_9_2_1) 2004; 66 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 D'Orazio M. (e_1_2_9_14_1) 2006; 22 Pfeffermann D. (e_1_2_9_32_1) 1998; 8 Bishop Y.M. (e_1_2_9_3_1) 1975 Pfeffermann D. (e_1_2_9_35_1) 1999; 61 Wu C. (e_1_2_9_43_1) 2004; 32 Singh A.C. (e_1_2_9_42_1) 1993; 19 Little R.J.A. (e_1_2_9_21_1) 1987 Chen J. (e_1_2_9_6_1) 1999; 9 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_37_1 Pfeffermann D. (e_1_2_9_34_1) 2011; 27 Renssen R.H. (e_1_2_9_39_1) 1998; 24 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 Sheather S.J. (e_1_2_9_41_1) 1991; 53 e_1_2_9_24_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 Conti P.L. (e_1_2_9_10_1) 2012; 28 e_1_2_9_5_1 e_1_2_9_4_1 Pfeffermann D. (e_1_2_9_30_1) 2011; 37 Okner B. (e_1_2_9_25_1) 1972; 1 Dougherty J. (e_1_2_9_16_1) 1995 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Kim J.K. (e_1_2_9_19_1) 2009; 19 |
References_xml | – volume: 28 start-page: 1 year: 2012 end-page: 21 article-title: Uncertainty analysis in statistical matching publication-title: Journal of Official Statistics. – volume: 61 start-page: 166 year: 1999 end-page: 186 article-title: Parametric and and semi‐parametric estimation of regression models fitted to survey data publication-title: Sankhya, Series B – volume: 203 start-page: 70 year: 2019 end-page: 81 article-title: Matching information from two independent informative sampling publication-title: Journal of Statistical Planning and Inference – volume: 8 start-page: 1087 year: 1998 end-page: 1114 article-title: Parametric distribution of complex survey data under informative probability sampling publication-title: Statistica Sinica – year: 1987 – year: 2001 – volume: 9 start-page: 385 year: 1999 end-page: 406 article-title: A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys publication-title: Statistica Sinica – volume: 53 start-page: 683 year: 1991 end-page: 690 article-title: A reliable data‐based bandwidth selection method for kernel density estimation publication-title: Journal of the Royal Statistical Society, Series B – volume: 68 start-page: 311 year: 2013 end-page: 325 article-title: Uncertainty analysis for statistical matching of ordered categorical variables publication-title: Computational Statistics & Data Analysis – volume: 19 start-page: 59 year: 1993 end-page: 79 article-title: Statistical matching: Use of auxiliary information as an alternative to the conditional independence assumption publication-title: Survey Methodology – volume: 4 start-page: 33 year: 2006 end-page: 55 article-title: Survey nonresponse and the distribution of income publication-title: The Journal of Economic Inequality – year: 1975 – start-page: 121 year: 2019 end-page: 136 – volume: 4 start-page: 87 year: 1986 end-page: 94 article-title: Statistical matching using file concatenation with adjusted weights and multiple imputations publication-title: Journal of Business and Economics Statistics – volume: 111 start-page: 1715 year: 2016 end-page: 1725 article-title: Statistical matching analysis for complex survey data with applications publication-title: Journal of the American Statistical Association – volume: 55 start-page: 547 year: 1968 end-page: 557 article-title: A new estimation theory for sample surveys publication-title: Biometrika – volume: 24 start-page: 171 year: 1998 end-page: 183 article-title: Use of statistical matching techniques in calibration estimation publication-title: Survey Methodology – volume: 22 start-page: 137 year: 2006a end-page: 157 article-title: Statistical matching for categorical data: Displaying uncertainty and using logical constraints publication-title: Journal of Official Statistics – year: 2010 – volume: 19 start-page: 145 year: 2009 end-page: 157 article-title: Calibration estimation using empirical likelihood in survey sampling publication-title: Statistica Sinica – volume: 26 start-page: 485 issue: 3 year: 2017 end-page: 505 article-title: Statistical matching and uncertainty analysis in combining household income and expenditure data publication-title: Statistical Methods & Applications – start-page: 455 year: 2009 end-page: 487 – volume: 31 start-page: 783 year: 2015 end-page: 807 article-title: On proxy variables and categorical data fusion publication-title: Journal of Official Statistics – volume: 1 start-page: 325 year: 1972 end-page: 342 article-title: Constructing a new data base from existing microdata sets: the 1966 merge file publication-title: Annals of Economic and Social Measurement – volume: 22 start-page: 300 year: 1994 end-page: 325 article-title: Empirical likelihood and general estimating equations publication-title: The Annals of Statistics – volume: 41 start-page: 387 year: 2013 end-page: 397 article-title: Self‐concordance for empirical likelihood publication-title: Canadian Journal of Statistics – volume: 5 start-page: 1726 year: 2011 end-page: 1751 article-title: Are private schools really better than public schools? Assessment by methods for observational studies publication-title: Annals of Applied Statistics – volume: 18 start-page: 415 year: 2009 end-page: 447 article-title: A review on empirical likelihood methods for regression publication-title: Test – volume: 18 start-page: 90 issue: 1 year: 1990 end-page: 120 article-title: Empirical likelihood confidence regions publication-title: The Annals of Statistics – year: 2002 – volume: 32 start-page: 1 issue: 112 year: 2004 end-page: 12 article-title: Combining information from multipe surveys through the empirical likelihood method publication-title: The Canadian Journal of Statistics – volume: 46 start-page: 967 year: 2015 end-page: 994 article-title: How far from identifiability? A systematic overview of the statistical matching problem in a non‐parametric framework publication-title: Communications in Statistics‐Theory and Methods – volume: 80 start-page: 107 year: 1993 end-page: 116 article-title: Empirical likelihood estimation for finite population and the effective usage of auxiliary information publication-title: Biometrika – year: 1995 – volume: 17 start-page: 407 year: 2001 end-page: 422 article-title: Statistical matching: A paradigm of assessing the Procedure publication-title: Journal of Official Statistics – year: 2006b – volume: 69 start-page: 35 year: 2017 end-page: 63 article-title: Bayes‐based non‐Bayesian inference on finite populations from non‐representative samples: A unified approach publication-title: Calcutta Statistical Association Bulletin – volume: 27 start-page: 181 year: 2011 end-page: 209 article-title: Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information publication-title: Journal of Official Statistics – volume: 66 start-page: 63 year: 2004 end-page: 74 article-title: Goodness‐of‐fit tests when parameters are estimated publication-title: Sankhya, Series A – volume: 19 start-page: 1725 year: 1991 end-page: 1747 article-title: Empirical likelihood for linear models publication-title: The Annals of Statistics – volume: 37 start-page: 115 year: 2011 end-page: 136 article-title: Modelling of complex survey data: Why model? Why is it a problem? How can we approach it? publication-title: Survey Methodology – volume: 26 start-page: 1044 issue: 2 year: 2020 end-page: 1069 article-title: A unified principled framework for resampling based on pseudo‐populations: Asymptotic theory publication-title: Bernoulli – year: 2019 – year: 1999 – volume: 9 start-page: 385 year: 1999 ident: e_1_2_9_6_1 article-title: A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys publication-title: Statistica Sinica – ident: e_1_2_9_11_1 doi: 10.1016/j.csda.2013.07.004 – ident: e_1_2_9_13_1 doi: 10.1080/01621459.2015.1112803 – volume: 27 start-page: 181 year: 2011 ident: e_1_2_9_34_1 article-title: Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information publication-title: Journal of Official Statistics – ident: e_1_2_9_40_1 doi: 10.2307/1391390 – ident: e_1_2_9_45_1 doi: 10.1201/9781315120416-6 – ident: e_1_2_9_28_1 doi: 10.1201/9781420036152 – ident: e_1_2_9_44_1 doi: 10.1515/jos-2015-0045 – ident: e_1_2_9_26_1 doi: 10.1214/aos/1176347494 – ident: e_1_2_9_17_1 – volume: 32 start-page: 1 issue: 112 year: 2004 ident: e_1_2_9_43_1 article-title: Combining information from multipe surveys through the empirical likelihood method publication-title: The Canadian Journal of Statistics – volume: 66 start-page: 63 year: 2004 ident: e_1_2_9_2_1 article-title: Goodness‐of‐fit tests when parameters are estimated publication-title: Sankhya, Series A – volume: 8 start-page: 1087 year: 1998 ident: e_1_2_9_32_1 article-title: Parametric distribution of complex survey data under informative probability sampling publication-title: Statistica Sinica – volume: 61 start-page: 166 year: 1999 ident: e_1_2_9_35_1 article-title: Parametric and and semi‐parametric estimation of regression models fitted to survey data publication-title: Sankhya, Series B – volume: 1 start-page: 325 year: 1972 ident: e_1_2_9_25_1 article-title: Constructing a new data base from existing microdata sets: the 1966 merge file publication-title: Annals of Economic and Social Measurement – volume: 24 start-page: 171 year: 1998 ident: e_1_2_9_39_1 article-title: Use of statistical matching techniques in calibration estimation publication-title: Survey Methodology – ident: e_1_2_9_24_1 doi: 10.1007/978-1-4757-3076-0 – volume: 22 start-page: 137 year: 2006 ident: e_1_2_9_14_1 article-title: Statistical matching for categorical data: Displaying uncertainty and using logical constraints publication-title: Journal of Official Statistics – volume: 19 start-page: 59 year: 1993 ident: e_1_2_9_42_1 article-title: Statistical matching: Use of auxiliary information as an alternative to the conditional independence assumption publication-title: Survey Methodology – volume-title: Statistical Analysis with Missing Data year: 1987 ident: e_1_2_9_21_1 – ident: e_1_2_9_5_1 doi: 10.1093/biomet/80.1.107 – ident: e_1_2_9_4_1 – ident: e_1_2_9_31_1 doi: 10.1177/0008068317696546 – volume: 37 start-page: 115 year: 2011 ident: e_1_2_9_30_1 article-title: Modelling of complex survey data: Why model? Why is it a problem? How can we approach it? publication-title: Survey Methodology – volume: 28 start-page: 1 year: 2012 ident: e_1_2_9_10_1 article-title: Uncertainty analysis in statistical matching publication-title: Journal of Official Statistics. – volume-title: Supervised and Unsupervised Discretization of Continuous Features year: 1995 ident: e_1_2_9_16_1 – volume-title: Discrete Multivariate Analysis year: 1975 ident: e_1_2_9_3_1 – ident: e_1_2_9_9_1 doi: 10.1007/s10260-016-0374-7 – volume: 53 start-page: 683 year: 1991 ident: e_1_2_9_41_1 article-title: A reliable data‐based bandwidth selection method for kernel density estimation publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1991.tb01857.x – ident: e_1_2_9_20_1 doi: 10.1007/s10888-005-1089-4 – ident: e_1_2_9_33_1 doi: 10.1214/11-AOAS456 – ident: e_1_2_9_7_1 doi: 10.1007/s11749-009-0159-5 – ident: e_1_2_9_18_1 doi: 10.1093/biomet/55.3.547 – volume: 19 start-page: 145 year: 2009 ident: e_1_2_9_19_1 article-title: Calibration estimation using empirical likelihood in survey sampling publication-title: Statistica Sinica – ident: e_1_2_9_27_1 doi: 10.1214/aos/1176348368 – ident: e_1_2_9_36_1 doi: 10.1016/S0169-7161(09)00239-9 – ident: e_1_2_9_38_1 doi: 10.1007/978-1-4613-0053-3 – ident: e_1_2_9_15_1 doi: 10.1002/0470023554 – ident: e_1_2_9_37_1 doi: 10.1214/aos/1176325370 – ident: e_1_2_9_12_1 doi: 10.1080/03610926.2015.1010005 – ident: e_1_2_9_29_1 doi: 10.1002/cjs.11183 – ident: e_1_2_9_8_1 doi: 10.3150/19-BEJ1138 – ident: e_1_2_9_22_1 doi: 10.1016/j.jspi.2019.03.001 – volume: 17 start-page: 407 year: 2001 ident: e_1_2_9_23_1 article-title: Statistical matching: A paradigm of assessing the Procedure publication-title: Journal of Official Statistics |
SSID | ssj0003284 |
Score | 2.3304772 |
Snippet | Summary
Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of... Data for statistical analysis is often available from different samples, with each sample containing measurements on only some of the variables of interest.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 269 |
SubjectTerms | Empirical analysis empirical likelihood fusion IPF algorithm Matching matching uncertainty NMAR non‐response sample and respondents distributions Sampling designs Statistical analysis |
Title | Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12524 https://www.proquest.com/docview/2847094999 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6oT3vxLs4bBX1R6GhzaVPwRUSZwoZMhb1ISdJEhqPKNl988if4G_0l5vSyqYigb4Wcpm1yLl_Sk-8AHGjKI4beLzRZ7DMVJb6wmfA1UzQR1LnlAA84d7pR-5Zd9nl_Do7rszAlP8R0ww0to_DXaOBSjT8Z-SAfj1ouPBMkA8VkLUREvRl3FCWi5I5yS-Y4pqziJsU0ntmtX6PRDGJ-BqpFpDlfgrv6HcsEk4fW80S19Ms3-sb_fsQyLFYQ1DspdWYF5ky-Cg1EnSVp8xr0ZjUkPAdqve5j_v76NrjPnb6oofGuJeahu0aZZ1XjqMy1Nd4g96Zduad0nKvHTa51uD0_uzlt-1XxBV9TGjOfJ5mV0gYmlFnAWEK5ZiwTVgaWBFkkueLCFv5Ccx0rgliMGLfYS1y4i0VIN2Ahf8zNJngmMpoSGYXWhkwKoohQ3GrNJf6k5XETDutJSHXFTI4FMoZpvULBYUqLYWrC_lT2qeTj-FFqp57LtLLJcYqBOEAunqQJR8Wk_NJDetG97hVXW38R3oYG1qMvMwR3YGEyeja7DrVM1B7ME3a1V-joB3GR658 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagDLDwjygUiAQLSKmS2E6cESFQ-WmHtkhske3YqKIyqC0LE4_AM_Ik-Jy0AYSQYItkx1Fs39135_N3CB1JTGMC2i9UeeITEac-0znzJRE4Zdiq5QAuOLc7ceuWXN3RuzI3B-7CFPwQs4AbSIbT1yDgEJD-JOUDMx41rX2OyDxagJLezqPqVuxROGIFe5R1mpMEk5KdFBJ5qne_2qMKZH6Gqs7WXKwUBVXHjqIQUkwems8T0ZQv3wgc__0bq2i5RKHeabFt1tCcMutoCYBnwdu8gbpVGQnP4lqv82jeX98G98ZuGTFUXo9DKrpt5CYvG0dFuq3yBsabDWW_0rbaHuJcm-j24rx_1vLL-gu-xDghPk1zzbkOVMjzgJAUU0lIzjQPdBTkMaeCMu1UhqQyERHAsUhZfy-1Fi9hId5CNfNo1DbyVKwkjngcah0SziIRMUG1lJTDOS1N6uh4ugqZLMnJoUbGMJs6KTBNmZumOjqc9X0qKDl-7NWYLmZWiuU4A1scAB1PWkcnblV-GSG77PS67mnnL50P0GKr377Jbi4717toCcrTFwmDDVSbjJ7VngUxE7HvtuoHkpju4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MCeKLd3E6taAvCh1tk7Qp-CLO4XXIpuCLlCRNZDi6scuLT_4Ef6O_xKSXbYoI-lZImrbJuXwnPfkOwKFAxMfG-rkyDmzM_dCmKqa2wByFFGmz7JgDzrdN_-IBXz2SxxKcFGdhMn6IyYab0YzUXhsF78dqRsk7yXBQ0-7Zw3Mwj32HGpmut6bkUcijGXmUjpmDAOGcnNTk8Uzv_eqOphhzFqmmrqaxDE_FS2YZJi-18YjXxOs3_sb_fsUKLOUY1DrNhGYVSjJZg0UDOzPW5nVoTYtIWBrVWs1e8vH23nlOtMDwrrTazCSi60aWxHnjIEu2lVYnsSZD6afcaltvdrk24KFxfn92YefVF2yBUIBtEsaKMeVIl8UOxiEiAuOYKuYoz4l9RjihKjUYgoiAewaMeVJHe6H2dwF10SaUk14it8CSvhTIY76rlIsZ9bhHOVFCEGb-0pKgAkfFIkQipyY3FTK6URGimGmK0mmqwMGkbz8j5PixV7VYyyhXymFkPLFjyHjCChyni_LLCNFls91Kr7b_0nkfFu7qjejmsnm9A4umNn2WLViF8mgwlrsawYz4Xiqon_h27Zs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+Non%E2%80%90ignorable+Sampling+and+Non%E2%80%90response+in+Statistical+Matching&rft.jtitle=International+statistical+review&rft.au=Marella%2C+Daniela&rft.au=Pfeffermann%2C+Danny&rft.date=2023-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=91&rft.issue=2&rft.spage=269&rft.epage=293&rft_id=info:doi/10.1111%2Finsr.12524&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon |