Research on Temperature Error Calibration Method of Fluxgate Sensor
The fluxgate sensor is the most widely used sensor in vector magnetic measurement. However, during long-term continuous observation, the fluxgate sensor will produce large measurement errors due to changes in ambient temperature. This paper proposes a temperature calibration method for the fluxgate...
Saved in:
Published in | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 3; pp. 583 - 591 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Co. Ltd
20.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The fluxgate sensor is the most widely used sensor in vector magnetic measurement. However, during long-term continuous observation, the fluxgate sensor will produce large measurement errors due to changes in ambient temperature. This paper proposes a temperature calibration method for the fluxgate sensor based on polynomial fitting to address the temperature error of fluxgate sensors. First, the effect of temperature on the performance indicators of the fluxgate sensor was analyzed. Second, according to the existing temperature-magnetic field data, a temperature calibration model of the fluxgate sensor was constructed. Compared with other temperature calibration methods, the result shows that the proposed temperature calibration method is relatively simple and can better achieve real-time calibration for sensor application scenarios. Finally, to verify the effectiveness of the proposed method, numerous laboratory experiments were implemented. The temperature drift was reduced from about 700 nT before calibration to about 1 nT, root mean square error RMSE = 11.7189, indicating that the proposed method has a good temperature calibration effect on the data measured by the fluxgate sensor within the variable temperature background. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2025.p0583 |