Terrestrial insects and climate change: adaptive responses in key traits

Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate chan...

Full description

Saved in:
Bibliographic Details
Published inPhysiological entomology Vol. 44; no. 2; pp. 99 - 115
Main Authors Kellermann, Vanessa, van Heerwaarden, Belinda
Format Journal Article
LanguageEnglish
Published Oxford, UK The Royal Entomological Society 01.06.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species. Making predictions that capture how and which insect species will respond adaptively to climate change requires an understanding of which key traits and environmental drivers interact to shape fitness in a changing world. We explore how stress resistance, fitness and phenology shape current distributions and future responses to climate, as well as the evidence for adaptive genetic and plastic responses in these traits. Although there is evidence of range shifts and trait changes, few studies disentangle genetic and plastic responses. More data from taxonomically diverse groups, capturing field complexity are required.
AbstractList Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species.
Abstract Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila , and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species.
Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species. Making predictions that capture how and which insect species will respond adaptively to climate change requires an understanding of which key traits and environmental drivers interact to shape fitness in a changing world. We explore how stress resistance, fitness and phenology shape current distributions and future responses to climate, as well as the evidence for adaptive genetic and plastic responses in these traits. Although there is evidence of range shifts and trait changes, few studies disentangle genetic and plastic responses. More data from taxonomically diverse groups, capturing field complexity are required.
Author van Heerwaarden, Belinda
Kellermann, Vanessa
Author_xml – sequence: 1
  givenname: Vanessa
  orcidid: 0000-0002-9859-9642
  surname: Kellermann
  fullname: Kellermann, Vanessa
  email: vanessa.kellermann@monash.edu
  organization: Monash University
– sequence: 2
  givenname: Belinda
  surname: van Heerwaarden
  fullname: van Heerwaarden, Belinda
  organization: Monash University
BookMark eNp90L1OwzAUBWALFYlSWHgCS2xIKde_tdlQVShSBQxltozj0JTgBDsF9e1xCTN38fL5-PqcolFog0fogsCU5LnuNj5MCaWKHqExYVIUDBgdoTEwmBVSS3qCTlPaAoAEIsdoufYx-tTH2ja4Dsm7PmEbSuya-sP2HruNDW_-BtvSdn395XHWXZthyhy_-z3uo637dIaOK9skf_53TtDL3WI9Xxarp_uH-e2qcIzNaEGc5cAlaKWJZMJWikshBBdczyzVUCnlbMkUV4q_ApScitJqJm3luNSCsQm6HHK72H7u8uZm2-5iyE8aSilROVeTrK4G5WKbUvSV6WL-T9wbAubQlDk0ZX6bypgM-Ltu_P4faZ6Xi8fhzg_o8mta
CitedBy_id crossref_primary_10_1007_s00442_023_05333_w
crossref_primary_10_1111_eea_13382
crossref_primary_10_1038_s41598_023_36273_3
crossref_primary_10_1146_annurev_ecolsys_011521_102856
crossref_primary_10_1016_j_jinsphys_2024_104616
crossref_primary_10_1111_ddi_13814
crossref_primary_10_1016_j_jtherbio_2022_103369
crossref_primary_10_1093_jee_toae128
crossref_primary_10_1038_s41467_020_15208_w
crossref_primary_10_1111_evo_14366
crossref_primary_10_1186_s12915_023_01530_4
crossref_primary_10_3390_agriculture12050610
crossref_primary_10_1016_j_ancene_2024_100432
crossref_primary_10_1093_aesa_saab038
crossref_primary_10_1016_j_jtherbio_2020_102794
crossref_primary_10_1002_ece3_10218
crossref_primary_10_1073_pnas_2002543117
crossref_primary_10_7717_peerj_11425
crossref_primary_10_1111_jeb_14087
crossref_primary_10_1093_evlett_qrad007
crossref_primary_10_1371_journal_pbio_3002342
crossref_primary_10_3389_fgene_2020_00573
crossref_primary_10_1038_s41598_021_04369_3
crossref_primary_10_3389_fevo_2020_00271
crossref_primary_10_1086_719655
crossref_primary_10_1016_j_jtherbio_2022_103353
crossref_primary_10_1093_evolut_qpad104
crossref_primary_10_1242_bio_060179
crossref_primary_10_1111_icad_12619
crossref_primary_10_3390_d15010047
crossref_primary_10_1111_1365_2435_14590
crossref_primary_10_1016_j_cois_2020_05_005
crossref_primary_10_1111_gcb_15751
crossref_primary_10_1002_ps_8125
crossref_primary_10_1111_brv_12588
crossref_primary_10_3398_064_082_0311
crossref_primary_10_1016_j_cois_2023_101029
crossref_primary_10_1111_nph_17036
crossref_primary_10_1016_j_scitotenv_2023_168127
crossref_primary_10_1093_icb_icae043
crossref_primary_10_1098_rspb_2023_2700
crossref_primary_10_1002_ajp_23614
crossref_primary_10_1016_j_jtherbio_2023_103478
crossref_primary_10_1111_1365_2435_14083
crossref_primary_10_1016_j_jip_2021_107644
crossref_primary_10_1371_journal_pone_0291393
crossref_primary_10_1111_icad_12570
crossref_primary_10_1111_1365_2435_13952
crossref_primary_10_1186_s40850_021_00089_3
crossref_primary_10_1098_rstb_2022_0018
crossref_primary_10_1242_jeb_230326
crossref_primary_10_1002_ece3_9560
crossref_primary_10_1002_ece3_10244
crossref_primary_10_1111_1365_2656_13860
crossref_primary_10_3390_life13122290
crossref_primary_10_1016_j_cois_2022_100918
crossref_primary_10_1016_j_scitotenv_2022_161049
crossref_primary_10_1111_1365_2435_14250
crossref_primary_10_1016_j_jtherbio_2023_103680
crossref_primary_10_1111_jbi_14077
crossref_primary_10_1016_j_jinsphys_2023_104491
crossref_primary_10_1038_s41598_022_07279_0
crossref_primary_10_1016_j_jinsphys_2021_104268
crossref_primary_10_1016_j_jssas_2023_02_004
crossref_primary_10_1016_j_jinsphys_2024_104647
crossref_primary_10_1146_annurev_ento_041520_074454
crossref_primary_10_1016_j_tree_2020_05_006
crossref_primary_10_1111_1365_2656_13636
crossref_primary_10_1093_biolinnean_blac094
crossref_primary_10_1038_s41467_022_32953_2
crossref_primary_10_1007_s10709_023_00201_0
crossref_primary_10_1016_j_jtherbio_2024_103795
crossref_primary_10_1098_rspb_2021_2660
crossref_primary_10_3389_fgene_2021_676218
crossref_primary_10_1590_1806_9665_rbent_2021_0025
crossref_primary_10_1093_evolut_qpad052
crossref_primary_10_1111_jeb_14090
crossref_primary_10_1371_journal_pone_0265361
crossref_primary_10_1016_j_cois_2021_04_008
crossref_primary_10_1093_jeb_voae061
crossref_primary_10_1016_j_cropro_2023_106378
crossref_primary_10_1111_1462_2920_16609
crossref_primary_10_1016_j_cris_2022_100051
crossref_primary_10_1186_s12863_020_00935_2
crossref_primary_10_1002_ece3_5782
crossref_primary_10_3390_insects13040393
crossref_primary_10_1093_jisesa_ieab004
crossref_primary_10_1111_evo_14065
crossref_primary_10_3390_insects13020134
crossref_primary_10_1093_conphys_coac073
crossref_primary_10_1242_jeb_228031
crossref_primary_10_1242_jeb_213405
crossref_primary_10_1038_s41598_020_73391_8
crossref_primary_10_1016_j_cois_2021_10_006
crossref_primary_10_1007_s00442_022_05115_w
crossref_primary_10_1016_j_cois_2020_02_006
crossref_primary_10_1111_gcb_17205
crossref_primary_10_1007_s10841_023_00546_z
crossref_primary_10_1002_ecy_3598
crossref_primary_10_1016_j_cris_2022_100048
crossref_primary_10_1016_j_jtherbio_2023_103677
crossref_primary_10_1093_jeb_voad009
crossref_primary_10_1111_1365_2435_14284
crossref_primary_10_1016_j_jtherbio_2021_103119
crossref_primary_10_1016_j_jtherbio_2023_103550
crossref_primary_10_3390_insects15020081
crossref_primary_10_1093_conphys_coaa067
crossref_primary_10_1038_s41598_020_61040_z
crossref_primary_10_1093_evolut_qpad154
crossref_primary_10_1242_jeb_244514
crossref_primary_10_1016_j_jtherbio_2023_103673
crossref_primary_10_1016_j_cbpa_2022_111261
crossref_primary_10_1038_s41598_023_49815_6
Cites_doi 10.1209/0295-5075/122/38001
10.1046/j.1365-2486.2000.00322.x
10.1111/mec.14262
10.1673/031.009.6801
10.1111/j.1365-2435.2011.01928.x
10.1111/j.1439-0469.1999.tb00983.x
10.1111/evo.13070
10.1016/j.cois.2015.09.013
10.1086/419266
10.1046/j.1420-9101.1993.6050643.x
10.1111/j.1365-2656.2007.01303.x
10.1007/s00360-016-0980-6
10.1146/annurev.en.25.010180.000245
10.1093/acprof:oso/9780198570875.001.1
10.1111/j.1420-9101.2012.02506.x
10.1111/ele.12696
10.1126/science.1131002
10.1098/rstb.2012.0005
10.1017/S0007485314000352
10.1046/j.1466-822X.2003.00053.x
10.1002/ece3.3588
10.1111/j.0014-3820.2003.tb00592.x
10.1111/j.1365-2435.2012.02036.x
10.1146/annurev-ento-010715-023859
10.1038/hdy.2015.8
10.1073/pnas.241391498
10.1038/hdy.1987.113
10.1111/j.0014-3820.2005.tb01821.x
10.1038/nclimate1717
10.1016/j.jinsphys.2015.05.003
10.1126/science.aaa7031
10.1093/icb/icw014
10.4039/tce.2017.51
10.1086/662551
10.1016/j.jinsphys.2017.03.003
10.1111/aen.12215
10.1126/science.1175443
10.1098/rspb.2000.1065
10.1007/978-94-009-3127-5
10.1016/j.cois.2016.07.002
10.1111/j.1466-8238.2010.00594.x
10.1111/j.1365-2486.2010.02308.x
10.1073/pnas.1714511115
10.1242/jeb.092502
10.1002/ece3.2355
10.1016/0022-1910(91)90110-L
10.1111/gcb.13313
10.1016/S0169-5347(03)00036-3
10.1038/nature18608
10.1016/j.jinsphys.2017.12.002
10.1038/nature01286
10.1098/rspb.2017.0447
10.1371/journal.pbio.1000585
10.1002/9781119070894.ch3
10.1073/pnas.0709472105
10.1126/science.1083073
10.2307/2409882
10.1111/j.1365-2435.2008.01481.x
10.1086/285797
10.1111/j.1420-9101.2005.00914.x
10.1111/jeb.13018
10.1111/j.1420-9101.2010.02110.x
10.1890/10-1594.1
10.1371/journal.pbio.2001104
10.1111/jeb.12832
10.1098/rspb.2001.1787
10.1016/j.jinsphys.2012.12.001
10.1303/aez.28.161
10.1016/j.jinsphys.2011.05.004
10.1093/jhered/esn082
10.3389/fphys.2011.00074
10.1073/pnas.1207553109
10.1111/j.1420-9101.2011.02227.x
10.1111/gcb.12929
10.1111/j.1558-5646.1985.tb00391.x
10.1098/rspb.2009.1910
10.1007/s00442-017-3986-1
10.1111/gcb.12521
10.1111/mec.13000
10.1098/rspb.2009.1355
10.1093/genetics/140.2.659
10.1111/1365-2435.12499
10.1029/2008JD010536
10.1016/j.cois.2016.08.003
10.1111/j.0014-3820.2004.tb01726.x
10.1146/annurev-ento-010814-021017
10.1038/sdata.2018.22
10.1038/35079066
10.1111/j.1365-2435.2009.01666.x
10.1046/j.1420-9101.2003.00560.x
10.1111/evo.12843
10.1046/j.1570-7458.1999.00480.x
10.1038/sj.hdy.6800168
10.1111/j.1439-0418.2011.01658.x
10.1111/j.1365-2435.2008.01538.x
10.1073/pnas.92.7.2994
10.1111/j.1752-4571.2011.00214.x
10.1126/science.aag2773
10.1093/conphys/cov056
10.1111/een.12127
10.1111/1365-2435.12858
10.1242/jeb.00233
10.1242/jeb.061283
10.1111/j.1365-2656.2009.01611.x
10.1093/icb/icj003
10.1038/s41558-018-0067-3
10.1111/jeb.12436
10.1111/eea.12466
10.1007/s00442-018-4166-7
10.1111/gcb.12014
10.1086/675302
10.1086/431314
10.1111/een.12120
10.1016/j.cbpa.2013.05.012
10.1111/jeb.13231
10.1038/nature09407
10.1186/s12983-016-0147-z
10.1038/hdy.2013.33
10.1086/285369
10.1111/1365-2435.12818
10.1111/1365-2435.12288
10.1086/303381
10.1007/s10682-016-9880-1
10.1016/S0306-4565(02)00057-8
10.1111/j.1365-294X.2011.05155.x
10.1098/rspb.2018.0048
10.1007/s10709-012-9635-z
10.1371/journal.pbio.1000357
10.1098/rstb.2016.0146
10.1111/evo.12617
10.1098/rspb.2007.0997
10.1111/j.1461-0248.2006.00928.x
10.1890/10-1885.1
10.1007/s11692-016-9375-6
10.1098/rspb.2014.0396
10.1046/j.1420-9101.1992.5010041.x
10.1007/s10584-017-2037-6
10.1111/j.1365-2435.2010.01804.x
10.1111/ecog.00967
10.1111/j.1558-5646.2008.00367.x
10.1038/nature09670
10.1073/pnas.052131199
10.1038/nclimate2457
10.1111/jeb.12969
10.1111/j.1365-2486.2011.02542.x
10.1093/icb/icr015
10.1016/0022-1910(90)90176-G
10.1093/icb/icx032
10.1111/j.1420-9101.2009.01725.x
10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2
10.1093/biolinnean/blw047
10.1111/eva.12137
10.1111/1365-2435.12687
10.1111/ele.12686
10.1046/j.1365-2699.2000.00217.x
10.1111/aec.12037
10.1086/683252
10.1016/S0306-4565(00)00022-X
10.1111/jeb.13303
10.1086/664709
10.1111/evo.12221
10.1242/jeb.065730
10.1073/pnas.0708074105
10.1111/gcb.13553
10.1038/srep18654
10.1007/978-3-642-81105-0
10.1111/evo.12285
10.1111/nyas.13223
10.1016/j.jinsphys.2007.06.011
10.1086/321314
10.1093/genetics/109.4.665
10.1111/j.1558-5646.1993.tb02151.x
10.1111/j.1558-5646.2012.01685.x
10.1111/j.1365-2486.2012.02640.x
10.1890/0012-9658(1997)078[0969:HODTAP]2.0.CO;2
10.1098/rspb.2015.0401
10.1242/jeb.02201
10.1073/pnas.0911841107
10.1046/j.1365-2540.1999.00533.x
10.1111/eva.12116
ContentType Journal Article
Copyright 2019 The Royal Entomological Society
Copyright_xml – notice: 2019 The Royal Entomological Society
DBID AAYXX
CITATION
7QG
7QR
7SS
8FD
F1W
FR3
H95
L.G
P64
RC3
DOI 10.1111/phen.12282
DatabaseName CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Chemoreception Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Entomology Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1365-3032
EndPage 115
ExternalDocumentID 10_1111_phen_12282
PHEN12282
Genre article
GrantInformation_xml – fundername: Australian Research Council
– fundername: Monash University
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZY4
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7QG
7QR
7SS
8FD
F1W
FR3
H95
L.G
P64
RC3
ID FETCH-LOGICAL-c3372-1ca404609891635af84655545497a290f88cad384884b00d425da936afc469533
IEDL.DBID DR2
ISSN 0307-6962
IngestDate Thu Oct 10 15:51:30 EDT 2024
Fri Aug 23 02:50:57 EDT 2024
Sat Aug 24 00:55:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3372-1ca404609891635af84655545497a290f88cad384884b00d425da936afc469533
ORCID 0000-0002-9859-9642
OpenAccessLink http://minerva-access.unimelb.edu.au/bitstreams/613bb5c1-9902-5133-a6f2-4e7d607ad8ce/download
PQID 2221889191
PQPubID 37955
PageCount 18
ParticipantIDs proquest_journals_2221889191
crossref_primary_10_1111_phen_12282
wiley_primary_10_1111_phen_12282_PHEN12282
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Physiological entomology
PublicationYear 2019
Publisher The Royal Entomological Society
Wiley Subscription Services, Inc
Publisher_xml – name: The Royal Entomological Society
– name: Wiley Subscription Services, Inc
References 2015; 79
2018; 285
2013; 3
1993; 28
2010; 107
2017; 1389
2013; 67
2010; 467
2002; 99
2014; 27
2003; 57
1996; 71
2016; 30
2011; 57
2012; 18
2008; 105
2014; 28
2012; 367
2011; 470
2014; 23
2001; 268
1977
2014; 20
2010; 23
2018; 9
2018; 8
2013; 59
2003; 206
2018; 5
2012; 135
2010; 24
2006; 209
2002; 89
1987
2016; 43
2017; 284
2008; 113
2018; 31
2001; 411
2010; 8
1998; 13
1992; 5
1993; 47
2018; 187
2011; 2
2016; 19
2011; 139
1990; 36
2018; 107
2012a; 66
2011; 81
2011; 84
1997
2001; 26
2017; 372
2012b; 26
2016; 160
2016; 17
2016; 14
2016; 13
1987; 59
2011; 9
2016; 6
2015; 69
2015; 60
2015; 115
2006; 46
2011; 92
2017; 57
2018; 115
1999; 37
2013; 216
2017; 56
2016b; 70
2009; 100
1992; 139
2000; 81
1995; 146
2003; 28
2014; 39
2016; 29
2017; 144
1995; 140
2005; 18
2001; 158
2016; 22
2016a; 30
2018; 122
2017; 7
2015; 38
2013; 27
2000; 6
2015; 186
2013; 166
2014; 68
2008; 77
2003; 18
2015; 349
2016; 70
1999; 83
2011; 17
2017; 355
2016; 186
1993; 6
2003; 12
2017; 31
2017; 30
2001; 294
2012; 179
1991; 45
2010; 277
1999; 14
2011; 20
2005; 308
2011; 24
2017; 121
2014; 281
2011; 25
2008; 62
2014; 7
2012; 215
2008; 275
2009; 325
2001; 98
2009; 23
2012a; 25
2009; 22
2011; 214
2015; 282
1980; 25
1995; 92
2015; 5
2010; 79
2015; 3
1991; 37
1985; 109
2017; 26
2015; 11
2017; 23
2009
2012b; 109
2000; 156
2007; 53
2006; 313
2014; 112
2016; 56
1985; 39
2018; 150
2013; 38
2000; 267
2005; 166
2017; 99
2017; 13
2011; 51
1997; 78
2015; 21
2009; 9
2017
2014; 183
2016; 61
2016; 535
2017; 185
2005; 59
2003; 301
2003; 421
2012; 5
2014; 104
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_172_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
Hoffmann A.A. (e_1_2_9_80_1) 2017; 13
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_161_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 275
  start-page: 649
  year: 2008
  end-page: 659
  article-title: Keeping up with a warming world; assessing the rate of adaptation to climate change
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 281
  start-page: 20140396
  year: 2014
  article-title: Is adaptation to climate change really constrained in niche specialists?
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 56
  start-page: 85
  year: 2016
  end-page: 97
  article-title: The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity
  publication-title: Integrative and Comparative Biology
– volume: 31
  start-page: 1647
  year: 2017
  end-page: 1658
  article-title: Impact of predicted precipitation scenarios on multitrophic interactions
  publication-title: Functional Ecology
– volume: 37
  start-page: 195
  year: 1999
  end-page: 202
  article-title: Climatic selection of starvation and desiccation resistance in populations of some tropical drosophilids
  publication-title: Journal of Zoological Systematics and Evolutionary Research
– volume: 26
  start-page: 6510
  year: 2017
  end-page: 6523
  article-title: Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance
  publication-title: Molecular Ecology
– volume: 6
  start-page: 643
  year: 1993
  end-page: 657
  article-title: Direct and correlated response to selection for desiccation resistance: a comparison of and
  publication-title: Journal of Evolutionary Biology
– volume: 25
  start-page: 527
  year: 2011
  end-page: 536
  article-title: Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle
  publication-title: Functional Ecology
– volume: 83
  start-page: 15
  year: 1999
  end-page: 29
  article-title: The direct response of to selection on knockdown temperature
  publication-title: Heredity
– volume: 9
  start-page: 68
  year: 2009
  article-title: High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, and
  publication-title: Journal of Insect Science
– volume: 6
  start-page: 407
  year: 2000
  end-page: 416
  article-title: Phenology of British butterflies and climate change
  publication-title: Global Change Biology
– volume: 69
  start-page: 803
  year: 2015
  end-page: 814
  article-title: Low evolutionary potential for egg‐to‐adult viability in at high temperatures
  publication-title: Evolution
– volume: 8
  start-page: 224
  year: 2018
  end-page: 228
  article-title: A global synthesis of animal phenological responses to climate change
  publication-title: Nature Climate Change
– volume: 45
  start-page: 1317
  year: 1991
  end-page: 1331
  article-title: Evolution of generalists and specialists in spatially hetergeneous environments
  publication-title: Evolution
– volume: 139
  start-page: 1331
  year: 2011
  end-page: 1337
  article-title: Genetic variation in heat‐stress tolerance among South American populations
  publication-title: Genetica
– volume: 81
  start-page: 469
  year: 2011
  end-page: 491
  article-title: An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows
  publication-title: Ecological Monographs
– volume: 107
  start-page: 12581
  year: 2010
  end-page: 12586
  article-title: Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 411
  start-page: 577
  year: 2001
  end-page: 581
  article-title: Ecological and evolutionary processes at expanding range margins
  publication-title: Nature
– volume: 9
  start-page: e1000585
  year: 2011
  article-title: Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population
  publication-title: PLoS Biology
– volume: 179
  start-page: 490
  year: 2012
  end-page: 500
  article-title: Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient
  publication-title: American Naturalist
– volume: 109
  start-page: 16228
  year: 2012b
  end-page: 16233
  article-title: Upper thermal limits of are linked to species distributions and strongly constrained phylogenetically
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 282
  start-page: 20150401
  year: 2015
  article-title: Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 285
  start-page: 20180048
  year: 2018
  article-title: Plasticity for desiccation tolerance across species is affected by phylogeny and climate in complex ways
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 18
  start-page: 1833
  year: 2012
  end-page: 1842
  article-title: Degrees of disruption: projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm
  publication-title: Global Change Biology
– volume: 39
  start-page: 453
  year: 2014
  end-page: 461
  article-title: Effects of altered precipitation on insect community composition and structure in a meadow steppe
  publication-title: Ecological Entomology
– volume: 367
  start-page: 1665
  year: 2012
  end-page: 1679
  article-title: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation
  publication-title: Philosophical Transactions of the Royal Society B, Biological Sciences
– volume: 59
  start-page: 1721
  year: 2005
  end-page: 1732
  article-title: Geographic variation in diapause incidence, life‐history traits, and climatic adaptation in
  publication-title: Evolution
– volume: 30
  start-page: 442
  year: 2016
  end-page: 452
  article-title: Evolutionary potential of multiple measures of upper thermal tolerance in
  publication-title: Functional Ecology
– volume: 84
  start-page: 543
  year: 2011
  end-page: 552
  article-title: The mean and variance of environmental temperature interact to determine physiological tolerance and fitness
  publication-title: Physiological and Biochemical Zoology
– volume: 12
  start-page: 403
  year: 2003
  end-page: 410
  article-title: Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale
  publication-title: Global Ecology and Biogeography
– volume: 18
  start-page: 448
  year: 2012
  end-page: 456
  article-title: Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants
  publication-title: Global Change Biology
– volume: 3
  start-page: 244
  year: 2013
  end-page: 248
  article-title: Evolutionary response of the egg hatching date of a herbivorous insect under climate change
  publication-title: Nature Climate Change
– volume: 23
  start-page: 2484
  year: 2010
  end-page: 2493
  article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia
  publication-title: Journal of Evolutionary Biology
– volume: 216
  start-page: 4601
  year: 2013
  end-page: 4607
  article-title: Stress‐induced plastic responses in following exposure to combinations of temperature and humidity levels
  publication-title: Journal of Experimental Biology
– volume: 3
  start-page: cov056
  year: 2015
  article-title: Mechanistic species distribution modelling as a link between physiology and conservation
  publication-title: Conservation Physiology
– volume: 135
  start-page: 332
  year: 2012
  end-page: 346
  article-title: Effects of acclimation and latitude on the activity thresholds of the aphid in Europe
  publication-title: Journal of Applied Entomology
– volume: 46
  start-page: 5
  year: 2006
  end-page: 17
  article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited
  publication-title: Integrative and Comparative Biology
– volume: 31
  start-page: 93
  year: 2017
  end-page: 117
  article-title: Sibling species ( and ) show divergence for thermotolerance along a latitudinal gradient
  publication-title: Evolutionary Ecology
– volume: 156
  start-page: 121
  year: 2000
  end-page: 130
  article-title: The evolution of plasticity and non plastic spatial and temporal adaptations in the presence of imperfect environmental cues
  publication-title: American Naturalist
– volume: 57
  start-page: 1070
  year: 2011
  end-page: 1084
  article-title: Water loss in insects: an environmental change perspective
  publication-title: Journal of Insect Physiology
– volume: 77
  start-page: 145
  year: 2008
  end-page: 155
  article-title: Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect
  publication-title: Journal of Animal Ecology
– year: 1987
– volume: 70
  start-page: 2583
  year: 2016
  end-page: 2594
  article-title: Reasons for success: rapid evolution for desiccation resistance and life‐history changes in the polyphagous fly
  publication-title: Evolution
– volume: 29
  start-page: 900
  year: 2016
  end-page: 915
  article-title: Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
  publication-title: Journal of Evolutionary Biology
– volume: 18
  start-page: 838
  year: 2005
  end-page: 846
  article-title: Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding climatic adaptations
  publication-title: Journal of Evolutionary Biology
– volume: 268
  start-page: 2163
  year: 2001
  end-page: 2168
  article-title: Postponed reproduction as an adaptation to winter conditions in : evidence for clinal variation under semi‐natural conditions
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 38
  start-page: 942
  year: 2013
  end-page: 951
  article-title: Foraging patterns and strategies in an Australian desert ant
  publication-title: Austral Ecology
– volume: 113
  start-page: D22104
  year: 2008
  article-title: Relationships between global precipitation and surface temperature on interannual and longer timescales (1979‐2006)
  publication-title: Journal of Geophysical Research – Atmospheres
– volume: 185
  start-page: 607
  year: 2017
  end-page: 618
  article-title: Using eco‐physiological traits to understand the realized niche: the role of desiccation tolerance in disease vectors
  publication-title: Oecologia
– volume: 28
  start-page: 1449
  year: 2014
  end-page: 1458
  article-title: Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods
  publication-title: Functional Ecology
– volume: 66
  start-page: 3377
  year: 2012a
  end-page: 3389
  article-title: Phylogenetic constraints in key functional traits behind species' climate niches: patterns of desiccation and cold resistance across 95 species
  publication-title: Evolution
– volume: 68
  start-page: 587
  year: 2014
  end-page: 594
  article-title: Does environmental robustness play a role in fluctuating environments?
  publication-title: Evolution
– volume: 421
  start-page: 37
  year: 2003
  end-page: 42
  article-title: A globally coherent fingerprint of climate change impacts across natural systems
  publication-title: Nature
– volume: 13
  year: 2017
  article-title: Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed?
  publication-title: Intergrative Zoology
– volume: 36
  start-page: 885
  year: 1990
  end-page: 891
  article-title: Acclimation for desiccation resistance in and the assocation between acclimation responses and genetic variation
  publication-title: Journal of Insect Physiology
– volume: 60
  start-page: 123
  year: 2015
  end-page: 140
  article-title: Insects in fluctuating thermal environments
  publication-title: Annual Review of Entomology
– volume: 67
  start-page: 3573
  year: 2013
  end-page: 3587
  article-title: Variation in thermal performance and reaction norms among populations of
  publication-title: Evolution
– volume: 13
  start-page: 77
  year: 1998
  end-page: 81
  article-title: Costs and limits of phenotypic plasticity
  publication-title: Trends in Ecology & Evolution
– volume: 28
  start-page: 175
  year: 2003
  end-page: 216
  article-title: Adaptation of to temperature extremes: bringing together quantitative and molecular approaches
  publication-title: Journal of Thermal Biology
– volume: 38
  start-page: 15
  year: 2015
  end-page: 28
  article-title: Climate‐related range shifts – a global multidimensional synthesis and new research directions
  publication-title: Ecography
– volume: 21
  start-page: 3356
  year: 2015
  end-page: 3366
  article-title: Revealing hidden evolutionary capacity to cope with global change
  publication-title: Global Change Biology
– volume: 158
  start-page: 204
  year: 2001
  end-page: 210
  article-title: Temperature, demography, and ectotherm fitness
  publication-title: American Naturalist
– volume: 23
  start-page: 1847
  year: 2017
  end-page: 1860
  article-title: Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest : beyond laboratory estimates
  publication-title: Global Change Biology
– volume: 25
  start-page: 1180
  year: 2012a
  end-page: 1188
  article-title: Humidity affects genetic architecture of heat resistance in
  publication-title: Journal of Evolutionary Biology
– volume: 7
  start-page: 56
  year: 2014
  end-page: 67
  article-title: Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes
  publication-title: Evolutionary Applications
– volume: 18
  start-page: 228
  year: 2003
  end-page: 233
  article-title: Phenotypic flexibility and the evolution of organismal design
  publication-title: Trends in Ecology & Evolution
– volume: 78
  start-page: 969
  year: 1997
  end-page: 976
  article-title: Heritability of development time and protandry in the pitcher‐plant mosquito,
  publication-title: Ecology
– volume: 27
  start-page: 934
  year: 2013
  end-page: 949
  article-title: Upper thermal limits in terrestrial ectotherms: how constrained are they?
  publication-title: Functional Ecology
– volume: 140
  start-page: 659
  year: 1995
  end-page: 666
  article-title: Cellular basis and developmental timing in a size cline of Drosophila melanogaster
  publication-title: Genetics
– volume: 71
  start-page: 3
  year: 1996
  end-page: 35
  article-title: The evolution of threshold traits in animals
  publication-title: Quarterly Review of Biology
– volume: 5
  start-page: 61
  year: 2015
  end-page: 66
  article-title: Physiological plasticity increases resilience of ectothermic animals to climate change
  publication-title: Nature Climate Change
– volume: 166
  start-page: 277
  year: 2005
  end-page: 289
  article-title: Variation in continuous reaction norms: quantifying directions of biological interest
  publication-title: American Naturalist
– volume: 105
  start-page: 6668
  year: 2008
  end-page: 6672
  article-title: Impacts of climate warming on terrestrial ectotherms across latitude
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 3543
  year: 2012
  end-page: 3557
  article-title: Atmospheric change alters performance of an invasive forest insect
  publication-title: Global Change Biology
– volume: 355
  start-page: 959
  year: 2017
  end-page: 962
  article-title: Precipitation drives global variation in natural selection
  publication-title: Science
– volume: 59
  start-page: 248
  year: 2013
  end-page: 254
  article-title: Heat stress affects male reproduction in a parasitoid wasp
  publication-title: Journal of Insect Physiology
– volume: 39
  start-page: 519
  year: 2014
  end-page: 526
  article-title: Survivability and post‐diapause fitness in a beetle as a function of overwintering developmental stage and the implications for population dynamics
  publication-title: Ecological Entomology
– volume: 301
  start-page: 65
  year: 2003
  end-page: 65
  article-title: Acclimation capacity underlies susceptibility to climate change
  publication-title: Science
– volume: 1389
  start-page: 5
  year: 2017
  end-page: 19
  article-title: Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change
  publication-title: Annals of the New York Academy of Sciences
– volume: 277
  start-page: 503
  year: 2010
  end-page: 511
  article-title: Re‐evaluating the costs and limits of adaptive phenotypic plasticity
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 79
  start-page: 194
  year: 2010
  end-page: 204
  article-title: What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles ( : )
  publication-title: Journal of Animal Ecology
– volume: 144
  start-page: 237
  year: 2017
  end-page: 255
  article-title: The power of the transplant: direct assessment of climate change impacts
  publication-title: Climatic Change
– volume: 467
  start-page: 704
  year: 2010
  end-page: U788
  article-title: Global metabolic impacts of recent climate warming
  publication-title: Nature
– volume: 183
  start-page: 453
  year: 2014
  end-page: 467
  article-title: Evolutionary change in continuous reaction norms
  publication-title: American Naturalist
– volume: 28
  start-page: 161
  year: 1993
  end-page: 168
  article-title: Response to selection for desiccation resistance in eggs (Diptera, Culicidae)
  publication-title: Applied Entomology and Zoology
– year: 2009
– volume: 5
  start-page: 18654
  year: 2015
  article-title: Responses of community‐level plant‐insect interactions to climate warming in a meadow steppe
  publication-title: Scientific Reports
– volume: 17
  start-page: 49
  year: 2016
  end-page: 54
  article-title: Complex responses of insect phenology to climate change
  publication-title: Current Opinion in Insect Science
– volume: 31
  year: 2018
  article-title: Evidence for lower plasticity in CTMAX at warmer developmental temperatures
  publication-title: Journal of Evolutionary Biology
– volume: 215
  start-page: 2181
  year: 2012
  end-page: 2191
  article-title: Divergence of desiccation‐related traits in two species of the subgroup from the western Himalayas
  publication-title: Journal of Experimental Biology
– volume: 26
  start-page: 29
  year: 2001
  end-page: 39
  article-title: Viability and rate of development at different temperatures in : a comparison of constant and alternating thermal regimes
  publication-title: Journal of Thermal Biology
– volume: 61
  year: 2016
  article-title: What can plasticity contribute to insect responses to climate change?
  publication-title: Annual Review of Entomology
– volume: 39
  start-page: 505
  year: 1985
  end-page: 522
  article-title: Genotype environment interaction and the evolution of phenotypic plasticity
  publication-title: Evolution
– volume: 57
  start-page: 988
  year: 2017
  end-page: 998
  article-title: Insect development, thermal plasticity and fitness implications in changing, seasonal environments
  publication-title: Integrative and Comparative Biology
– volume: 24
  start-page: 965
  year: 2011
  end-page: 975
  article-title: Quantitative genetic variation for thermal performance curves within and among natural populations of
  publication-title: Journal of Evolutionary Biology
– volume: 6
  start-page: 6282
  year: 2016
  end-page: 6291
  article-title: Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community
  publication-title: Ecology and Evolution
– volume: 20
  start-page: 1738
  year: 2014
  end-page: 1750
  article-title: Sensitivity to thermal extremes in Australian implies similar impacts of climate change on the distribution of widespread and tropical species
  publication-title: Global Change Biology
– volume: 57
  start-page: 1846
  year: 2003
  end-page: 1851
  article-title: Evolution of additive and nonadditive genetic variance in development time along a cline in
  publication-title: Evolution
– volume: 14
  start-page: 96
  year: 1999
  end-page: 101
  article-title: Heritable variation and evolution under favourable and unfavourable conditions
  publication-title: Trends in Ecology & Evolution
– volume: 8
  start-page: E1000357
  year: 2010
  article-title: Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory
  publication-title: PLoS Biology
– volume: 146
  start-page: 252
  year: 1995
  end-page: 270
  article-title: Specialists and geeralists in changing environments 1. Fitness landscapes of thermal sensitivity
  publication-title: American Naturalist
– volume: 150
  start-page: 66
  year: 2018
  end-page: 79
  article-title: Bioclimatic approach to assessing factors influencing shifts in geographic distribution and relative abundance of two flea beetle species (Coleoptera: Chrysomelidae) in North America
  publication-title: Canadian Entomologist
– volume: 294
  start-page: 151
  year: 2001
  end-page: 154
  article-title: Constraint to adaptive evolution in response to global warming
  publication-title: Science
– volume: 20
  start-page: 2973
  year: 2011
  end-page: 2984
  article-title: Polymorphism in the couch potato gene clines in eastern Australia but is not associated with ovarian dormancy in
  publication-title: Molecular Ecology
– volume: 13
  start-page: 15
  year: 2016
  article-title: Physiological mechanisms of dehydration tolerance contribute to the invasion potential of (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners
  publication-title: Frontiers in Zoology
– volume: 25
  start-page: 1
  year: 1980
  end-page: 25
  article-title: Summer diapause
  publication-title: Annual Review of Entomology
– volume: 81
  start-page: 443
  year: 2000
  end-page: 450
  article-title: Impacts of extreme weather and climate on terrestrial biota
  publication-title: Bulletin of the American Meteorological Society
– volume: 17
  start-page: 1289
  year: 2011
  end-page: 1300
  article-title: Predicting insect phenology across space and time
  publication-title: Global Change Biology
– volume: 23
  start-page: 528
  year: 2009
  end-page: 538
  article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito in Australia
  publication-title: Functional Ecology
– volume: 56
  start-page: 104
  year: 2017
  end-page: 114
  article-title: Effects of microclimate and species identity on body temperature and thermal tolerance of ants (Hymenoptera: Formicidae)
  publication-title: Austral Entomology
– volume: 31
  start-page: 1091
  year: 2017
  end-page: 1100
  article-title: Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants
  publication-title: Functional Ecology
– volume: 19
  start-page: 1468
  year: 2016
  end-page: 1478
  article-title: Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change
  publication-title: Ecology Letters
– volume: 89
  start-page: 473
  year: 2002
  end-page: 479
  article-title: The common quantitative genetic basis of wing morphology and diapause occurrence in the cricket
  publication-title: Heredity
– volume: 43
  start-page: 356
  year: 2016
  end-page: 367
  article-title: Response of development and body mass to daily temperature fluctuations: a study on
  publication-title: Evolutionary Biology
– volume: 22
  start-page: 1111
  year: 2009
  end-page: 1122
  article-title: Local adaptation of stress related traits in and in spite of high gene flow
  publication-title: Journal of Evolutionary Biology
– volume: 29
  start-page: 2447
  year: 2016
  end-page: 2463
  article-title: Thermal plasticity in from eastern Australia: quantitative traits to transcripts
  publication-title: Journal of Evolutionary Biology
– volume: 99
  start-page: 1
  year: 2017
  end-page: 7
  article-title: Life stages of an aphid living under similar thermal conditions differ in thermal performance
  publication-title: Journal of Insect Physiology
– volume: 59
  start-page: 181
  year: 1987
  end-page: 197
  article-title: Natural selection and the heritability of fitness components
  publication-title: Heredity
– year: 1997
– volume: 17
  start-page: 98
  year: 2016
  end-page: 104
  article-title: Evolutionary and ecological patterns of thermal acclimation capacity in : is it important for keeping up with climate change?
  publication-title: Current Opinion in Insect Science
– volume: 105
  start-page: 216
  year: 2008
  end-page: 221
  article-title: Costs and benefits of cold acclimation in field‐released
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 277
  start-page: 1281
  year: 2010
  end-page: 1287
  article-title: Climatic warming increases voltinism in European butterflies and moths
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 186
  start-page: 581
  year: 2016
  end-page: 587
  article-title: Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly
  publication-title: Journal of Comparative Physiology B – Biochemical Systemic and Environmental Physiology
– volume: 115
  start-page: 5211
  year: 2018
  end-page: 5216
  article-title: Global shifts in the phenological synchrony of species interactions over recent decades
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 187
  start-page: 851
  year: 2018
  end-page: 862
  article-title: Largely flat latitudinal life history clines in the dung fly across Europe (Diptera: Sepsidae)
  publication-title: Oecologia
– volume: 37
  start-page: 757
  year: 1991
  end-page: 762
  article-title: Acclimation for desiccation resistance in species and population comparisons
  publication-title: Journal of Insect Physiology
– volume: 14
  start-page: 18
  year: 2016
  article-title: Climate‐related local extinctions are already widespread among plant and animal species
  publication-title: PLoS Biology
– volume: 5
  start-page: 117
  year: 2012
  end-page: 129
  article-title: Genetic erosion impedes adaptive responses to stressful environments
  publication-title: Evolutionary Applications
– volume: 2
  start-page: 74
  year: 2011
  article-title: Complex interactions between temperature and relative humidity on water balance of adult tsetse (Glossinidae, Diptera): implications for climate change
  publication-title: Frontiers in Physiology
– volume: 92
  start-page: 1005
  year: 2011
  end-page: 1012
  article-title: Species' traits predict phenological responses to climate change in butterflies
  publication-title: Ecology
– volume: 20
  start-page: 34
  year: 2011
  end-page: 45
  article-title: Asymmetric boundary shifts of tropical montane over four decades of climate warming
  publication-title: Global Ecology and Biogeography
– volume: 51
  start-page: 719
  year: 2011
  end-page: 732
  article-title: Complex life cycles and the responses of insects to climate change
  publication-title: Integrative and Comparative Biology
– volume: 23
  start-page: 133
  year: 2009
  end-page: 140
  article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context
  publication-title: Functional Ecology
– volume: 166
  start-page: 81
  year: 2013
  end-page: 90
  article-title: Rapid effects of humidity acclimation on stress resistance in
  publication-title: Comparative Biochemistry and Physiology A – Molecular & Integrative Physiology
– volume: 112
  start-page: 4
  year: 2014
  end-page: 12
  article-title: The evolution of quantitative traits in complex environments
  publication-title: Heredity
– volume: 470
  start-page: 479
  year: 2011
  end-page: 485
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
– volume: 53
  start-page: 1199
  year: 2007
  end-page: 1205
  article-title: Impact of mild temperature hardening on thermo tolerance, fecundity, and Hsp gene expression in
  publication-title: Journal of Insect Physiology
– volume: 19
  start-page: 1372
  year: 2016
  end-page: 1385
  article-title: Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?
  publication-title: Ecology Letters
– volume: 160
  start-page: 147
  year: 2016
  end-page: 155
  article-title: Rapid responses to a strong experimental selection for heat hardening in the invasive whitefly MEAM 1
  publication-title: Entomologia Experimentalis et Applicata
– volume: 214
  start-page: 3713
  year: 2011
  end-page: 3725
  article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures
  publication-title: Journal of Experimental Biology
– volume: 107
  start-page: 276
  year: 2018
  end-page: 283
  article-title: Behavioural thermoregulation in a small herbivore avoids direct UVB damage
  publication-title: Journal of Insect Physiology
– volume: 98
  start-page: 14509
  year: 2001
  end-page: 14511
  article-title: Genetic shift in photoperiodic response correlated with global warming
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 79
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Adult plasticity of cold tolerance in a continental‐temperate population of
  publication-title: Journal of Insect Physiology
– volume: 139
  start-page: 971
  year: 1992
  end-page: 989
  article-title: The evolutionary maintenance of alternative phenotypes
  publication-title: American Naturalist
– volume: 186
  start-page: 582
  year: 2015
  end-page: 593
  article-title: Experimental evolution under fluctuating thermal conditions does not reproduce patterns of adaptive clinal differentiation in
  publication-title: American Naturalist
– volume: 284
  start-page: 20170447
  year: 2017
  article-title: How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 209
  start-page: 1837
  year: 2006
  end-page: 1847
  article-title: A new set of laboratory‐selected lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses
  publication-title: Journal of Experimental Biology
– volume: 121
  start-page: 248
  year: 2017
  end-page: 257
  article-title: Rapid evolution of ant thermal tolerance across an urban‐rural temperature cline
  publication-title: Biological Journal of the Linnean Society
– volume: 349
  start-page: 177
  year: 2015
  end-page: 180
  article-title: Climate change impacts on bumblebees converge across continents
  publication-title: Science
– volume: 11
  start-page: 84
  year: 2015
  end-page: 89
  article-title: Microclimate‐based macrophysiology: implications for insects in a warming world
  publication-title: Current Opinion in Insect Science
– volume: 30
  start-page: 1947
  year: 2016a
  end-page: 1956
  article-title: Limited scope for plasticity to increase upper thermal limits
  publication-title: Functional Ecology
– volume: 325
  start-page: 1244
  year: 2009
  end-page: 1246
  article-title: Fundamental evolutionary limits in ecological traits drive species distributions
  publication-title: Science
– volume: 70
  start-page: 456
  year: 2016b
  end-page: 464
  article-title: Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest species
  publication-title: Evolution
– year: 1977
– volume: 47
  start-page: 1255
  year: 1993
  end-page: 1270
  article-title: The genetics of central and marginal populations of I. Genetic variation for stress resistance and species borders
  publication-title: Evolution
– volume: 9
  year: 2018
  publication-title: Nature communications
– volume: 30
  start-page: 422
  year: 2017
  end-page: 429
  article-title: Local adaptation of reproductive performance during thermal stress
  publication-title: Journal of Evolutionary Biology
– volume: 5
  start-page: 180022
  year: 2018
  article-title: GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms
  publication-title: Scientific Data
– volume: 31
  start-page: 405
  year: 2018
  end-page: 415
  article-title: Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest
  publication-title: Journal of Evolutionary Biology
– volume: 24
  start-page: 694
  year: 2010
  end-page: 700
  article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in
  publication-title: Functional Ecology
– volume: 27
  start-page: 1859
  year: 2014
  end-page: 1868
  article-title: A laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future
  publication-title: Journal of Evolutionary Biology
– volume: 62
  start-page: 1345
  year: 2008
  end-page: 1357
  article-title: Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life‐history timing in
  publication-title: Evolution
– volume: 267
  start-page: 739
  year: 2000
  end-page: 745
  article-title: Thermal tolerance, climatic variability and latitude
  publication-title: Proceedings of the Royal Society of London Series B, Biological Sciences
– volume: 109
  start-page: 665
  year: 1985
  end-page: 689
  article-title: Temperature related divergence in experimental populations of . 1. Genetic and developmental basis of wing size and shape variation
  publication-title: Genetics
– volume: 100
  start-page: 251
  year: 2009
  end-page: 255
  article-title: Mendelian inheritance of pupal diapause in the flesh fly,
  publication-title: Journal of Heredity
– volume: 313
  start-page: 1773
  year: 2006
  end-page: 1775
  article-title: Global genetic change tracks global climate warming in
  publication-title: Science
– volume: 104
  start-page: 586
  year: 2014
  end-page: 591
  article-title: A genetic analysis of diapause in crosses of a southern and a northern strain of the cabbage beetle (Coleoptera: chrysomelidae)
  publication-title: Bulletin of Entomological Research
– volume: 22
  start-page: 3829
  year: 2016
  end-page: 3842
  article-title: Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities
  publication-title: Global Change Biology
– volume: 115
  start-page: 293
  year: 2015
  end-page: 301
  article-title: Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity
  publication-title: Heredity
– volume: 122
  start-page: 38001
  year: 2018
  article-title: Playing evolution in the laboratory: from the first major evolutionary transition to global warming
  publication-title: Europhysics Letters
– volume: 206
  start-page: 1183
  year: 2003
  end-page: 1192
  article-title: Evolution of water conservation mechanisms in
  publication-title: Journal of Experimental Biology
– volume: 99
  start-page: 6070
  year: 2002
  end-page: 6074
  article-title: Climate change hastens population extinctions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 92
  start-page: 2994
  year: 1995
  end-page: 2998
  article-title: Heat shock protein synthesis and thermotolerance in , an ant from the sahara desert
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 308
  start-page: 691
  year: 2005
  end-page: 693
  article-title: A rapid shift in a classic clinal pattern in reflecting climate change
  publication-title: Science
– year: 2017
– volume: 535
  start-page: 241
  year: 2016
  end-page: U294
  article-title: Phenological sensitivity to climate across taxa and trophic levels
  publication-title: Nature
– volume: 26
  start-page: 245
  year: 2012b
  end-page: 253
  article-title: Plastic responses to four environmental stresses and cross‐resistance in a laboratory population of
  publication-title: Functional Ecology
– volume: 5
  start-page: 41
  year: 1992
  end-page: 59
  article-title: The selective advantage of reaction norms for environmental tolerance
  publication-title: Journal of Evolutionary Biology
– volume: 7
  start-page: 10871
  year: 2017
  end-page: 10879
  article-title: Effects of temperature and drought on early life stages in three species of butterflies: mortality of early life stages as a key determinant of vulnerability to climate change?
  publication-title: Ecology and Evolution
– volume: 23
  start-page: 6135
  year: 2014
  end-page: 6151
  article-title: Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits
  publication-title: Molecular Ecology
– volume: 372
  start-page: 20160146
  year: 2017
  article-title: Evolution caused by extreme events
  publication-title: Philosophical Transactions of the Royal Society B‐Biological Sciences
– volume: 7
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Climate change, adaptation, and phenotypic plasticity: the problem and the evidence
  publication-title: Evolutionary Applications
– ident: e_1_2_9_59_1
  doi: 10.1209/0295-5075/122/38001
– ident: e_1_2_9_145_1
  doi: 10.1046/j.1365-2486.2000.00322.x
– ident: e_1_2_9_152_1
  doi: 10.1111/mec.14262
– ident: e_1_2_9_179_1
  doi: 10.1673/031.009.6801
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-2435.2011.01928.x
– ident: e_1_2_9_131_1
  doi: 10.1111/j.1439-0469.1999.tb00983.x
– ident: e_1_2_9_163_1
  doi: 10.1111/evo.13070
– ident: e_1_2_9_50_1
  doi: 10.1016/j.cois.2015.09.013
– ident: e_1_2_9_143_1
  doi: 10.1086/419266
– ident: e_1_2_9_75_1
  doi: 10.1046/j.1420-9101.1993.6050643.x
– ident: e_1_2_9_117_1
  doi: 10.1111/j.1365-2656.2007.01303.x
– ident: e_1_2_9_18_1
  doi: 10.1007/s00360-016-0980-6
– ident: e_1_2_9_114_1
  doi: 10.1146/annurev.en.25.010180.000245
– ident: e_1_2_9_8_1
  doi: 10.1093/acprof:oso/9780198570875.001.1
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1420-9101.2012.02506.x
– ident: e_1_2_9_27_1
  doi: 10.1111/ele.12696
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1131002
– ident: e_1_2_9_85_1
  doi: 10.1098/rstb.2012.0005
– ident: e_1_2_9_31_1
  doi: 10.1017/S0007485314000352
– ident: e_1_2_9_105_1
  doi: 10.1046/j.1466-822X.2003.00053.x
– ident: e_1_2_9_104_1
  doi: 10.1002/ece3.3588
– ident: e_1_2_9_155_1
  doi: 10.1111/j.0014-3820.2003.tb00592.x
– ident: e_1_2_9_82_1
  doi: 10.1111/j.1365-2435.2012.02036.x
– ident: e_1_2_9_157_1
  doi: 10.1146/annurev-ento-010715-023859
– ident: e_1_2_9_124_1
  doi: 10.1038/hdy.2015.8
– ident: e_1_2_9_19_1
  doi: 10.1073/pnas.241391498
– ident: e_1_2_9_121_1
  doi: 10.1038/hdy.1987.113
– ident: e_1_2_9_150_1
  doi: 10.1111/j.0014-3820.2005.tb01821.x
– ident: e_1_2_9_9_1
  doi: 10.1038/nclimate1717
– ident: e_1_2_9_88_1
  doi: 10.1016/j.jinsphys.2015.05.003
– ident: e_1_2_9_98_1
  doi: 10.1126/science.aaa7031
– ident: e_1_2_9_139_1
  doi: 10.1093/icb/icw014
– ident: e_1_2_9_128_1
  doi: 10.4039/tce.2017.51
– ident: e_1_2_9_17_1
  doi: 10.1086/662551
– ident: e_1_2_9_181_1
  doi: 10.1016/j.jinsphys.2017.03.003
– ident: e_1_2_9_73_1
  doi: 10.1111/aen.12215
– ident: e_1_2_9_92_1
  doi: 10.1126/science.1175443
– ident: e_1_2_9_2_1
  doi: 10.1098/rspb.2000.1065
– ident: e_1_2_9_40_1
  doi: 10.1007/978-94-009-3127-5
– ident: e_1_2_9_57_1
  doi: 10.1016/j.cois.2016.07.002
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1466-8238.2010.00594.x
– ident: e_1_2_9_74_1
  doi: 10.1111/j.1365-2486.2010.02308.x
– ident: e_1_2_9_100_1
  doi: 10.1073/pnas.1714511115
– ident: e_1_2_9_23_1
  doi: 10.1242/jeb.092502
– ident: e_1_2_9_26_1
  doi: 10.1002/ece3.2355
– ident: e_1_2_9_77_1
  doi: 10.1016/0022-1910(91)90110-L
– ident: e_1_2_9_24_1
  doi: 10.1111/gcb.13313
– ident: e_1_2_9_137_1
  doi: 10.1016/S0169-5347(03)00036-3
– ident: e_1_2_9_167_1
  doi: 10.1038/nature18608
– ident: e_1_2_9_178_1
  doi: 10.1016/j.jinsphys.2017.12.002
– ident: e_1_2_9_133_1
  doi: 10.1038/nature01286
– volume: 13
  year: 2017
  ident: e_1_2_9_80_1
  article-title: Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed?
  publication-title: Intergrative Zoology
  contributor:
    fullname: Hoffmann A.A.
– ident: e_1_2_9_96_1
  doi: 10.1098/rspb.2017.0447
– ident: e_1_2_9_86_1
  doi: 10.1371/journal.pbio.1000585
– ident: e_1_2_9_113_1
  doi: 10.1002/9781119070894.ch3
– ident: e_1_2_9_43_1
  doi: 10.1073/pnas.0709472105
– ident: e_1_2_9_162_1
  doi: 10.1126/science.1083073
– ident: e_1_2_9_169_1
  doi: 10.2307/2409882
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1365-2435.2008.01481.x
– ident: e_1_2_9_64_1
  doi: 10.1086/285797
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1420-9101.2005.00914.x
– ident: e_1_2_9_140_1
  doi: 10.1111/jeb.13018
– ident: e_1_2_9_156_1
  doi: 10.1111/j.1420-9101.2010.02110.x
– ident: e_1_2_9_46_1
  doi: 10.1890/10-1594.1
– ident: e_1_2_9_177_1
  doi: 10.1371/journal.pbio.2001104
– ident: e_1_2_9_53_1
  doi: 10.1111/jeb.12832
– ident: e_1_2_9_119_1
  doi: 10.1098/rspb.2001.1787
– ident: e_1_2_9_125_1
  doi: 10.1016/j.jinsphys.2012.12.001
– ident: e_1_2_9_161_1
  doi: 10.1303/aez.28.161
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jinsphys.2011.05.004
– ident: e_1_2_9_68_1
  doi: 10.1093/jhered/esn082
– ident: e_1_2_9_103_1
  doi: 10.3389/fphys.2011.00074
– ident: e_1_2_9_94_1
  doi: 10.1073/pnas.1207553109
– ident: e_1_2_9_110_1
  doi: 10.1111/j.1420-9101.2011.02227.x
– ident: e_1_2_9_34_1
  doi: 10.1111/gcb.12929
– ident: e_1_2_9_173_1
  doi: 10.1111/j.1558-5646.1985.tb00391.x
– ident: e_1_2_9_6_1
  doi: 10.1098/rspb.2009.1910
– ident: e_1_2_9_109_1
  doi: 10.1007/s00442-017-3986-1
– ident: e_1_2_9_130_1
  doi: 10.1111/gcb.12521
– ident: e_1_2_9_165_1
  doi: 10.1111/mec.13000
– ident: e_1_2_9_10_1
  doi: 10.1098/rspb.2009.1355
– ident: e_1_2_9_89_1
  doi: 10.1093/genetics/140.2.659
– ident: e_1_2_9_69_1
  doi: 10.1111/1365-2435.12499
– ident: e_1_2_9_3_1
  doi: 10.1029/2008JD010536
– ident: e_1_2_9_160_1
  doi: 10.1016/j.cois.2016.08.003
– ident: e_1_2_9_144_1
  doi: 10.1111/j.0014-3820.2004.tb01726.x
– ident: e_1_2_9_39_1
  doi: 10.1146/annurev-ento-010814-021017
– ident: e_1_2_9_13_1
  doi: 10.1038/sdata.2018.22
– ident: e_1_2_9_168_1
  doi: 10.1038/35079066
– ident: e_1_2_9_118_1
  doi: 10.1111/j.1365-2435.2009.01666.x
– ident: e_1_2_9_171_1
  doi: 10.1046/j.1420-9101.2003.00560.x
– ident: e_1_2_9_72_1
  doi: 10.1111/evo.12843
– ident: e_1_2_9_44_1
  doi: 10.1046/j.1570-7458.1999.00480.x
– ident: e_1_2_9_12_1
  doi: 10.1038/sj.hdy.6800168
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1439-0418.2011.01658.x
– ident: e_1_2_9_90_1
  doi: 10.1111/j.1365-2435.2008.01538.x
– ident: e_1_2_9_61_1
  doi: 10.1073/pnas.92.7.2994
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1752-4571.2011.00214.x
– ident: e_1_2_9_158_1
  doi: 10.1126/science.aag2773
– ident: e_1_2_9_55_1
  doi: 10.1093/conphys/cov056
– ident: e_1_2_9_51_1
  doi: 10.1111/een.12127
– ident: e_1_2_9_175_1
  doi: 10.1111/1365-2435.12858
– ident: e_1_2_9_63_1
  doi: 10.1242/jeb.00233
– ident: e_1_2_9_166_1
  doi: 10.1242/jeb.061283
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365-2656.2009.01611.x
– ident: e_1_2_9_62_1
  doi: 10.1093/icb/icj003
– ident: e_1_2_9_38_1
  doi: 10.1038/s41558-018-0067-3
– ident: e_1_2_9_151_1
  doi: 10.1111/jeb.12436
– ident: e_1_2_9_122_1
  doi: 10.1111/eea.12466
– ident: e_1_2_9_146_1
  doi: 10.1007/s00442-018-4166-7
– ident: e_1_2_9_41_1
  doi: 10.1111/gcb.12014
– ident: e_1_2_9_123_1
  doi: 10.1086/675302
– ident: e_1_2_9_87_1
  doi: 10.1086/431314
– ident: e_1_2_9_182_1
  doi: 10.1111/een.12120
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cbpa.2013.05.012
– ident: e_1_2_9_148_1
  doi: 10.1111/jeb.13231
– ident: e_1_2_9_49_1
  doi: 10.1038/nature09407
– ident: e_1_2_9_176_1
  doi: 10.1186/s12983-016-0147-z
– ident: e_1_2_9_7_1
  doi: 10.1038/hdy.2013.33
– ident: e_1_2_9_120_1
  doi: 10.1086/285369
– ident: e_1_2_9_135_1
  doi: 10.1111/1365-2435.12818
– ident: e_1_2_9_28_1
  doi: 10.1111/1365-2435.12288
– ident: e_1_2_9_170_1
  doi: 10.1086/303381
– ident: e_1_2_9_142_1
  doi: 10.1007/s10682-016-9880-1
– ident: e_1_2_9_81_1
  doi: 10.1016/S0306-4565(02)00057-8
– ident: e_1_2_9_111_1
  doi: 10.1111/j.1365-294X.2011.05155.x
– ident: e_1_2_9_97_1
  doi: 10.1098/rspb.2018.0048
– ident: e_1_2_9_56_1
  doi: 10.1007/s10709-012-9635-z
– ident: e_1_2_9_33_1
  doi: 10.1371/journal.pbio.1000357
– ident: e_1_2_9_66_1
  doi: 10.1098/rstb.2016.0146
– ident: e_1_2_9_108_1
  doi: 10.1111/evo.12617
– ident: e_1_2_9_174_1
  doi: 10.1098/rspb.2007.0997
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1461-0248.2006.00928.x
– ident: e_1_2_9_58_1
  doi: 10.1890/10-1885.1
– ident: e_1_2_9_106_1
  doi: 10.1007/s11692-016-9375-6
– ident: e_1_2_9_70_1
  doi: 10.1098/rspb.2014.0396
– ident: e_1_2_9_60_1
  doi: 10.1046/j.1420-9101.1992.5010041.x
– ident: e_1_2_9_126_1
  doi: 10.1007/s10584-017-2037-6
– ident: e_1_2_9_138_1
  doi: 10.1111/j.1365-2435.2010.01804.x
– ident: e_1_2_9_112_1
  doi: 10.1111/ecog.00967
– ident: e_1_2_9_129_1
– ident: e_1_2_9_141_1
  doi: 10.1111/j.1558-5646.2008.00367.x
– ident: e_1_2_9_79_1
  doi: 10.1038/nature09670
– ident: e_1_2_9_115_1
  doi: 10.1073/pnas.052131199
– ident: e_1_2_9_154_1
  doi: 10.1038/nclimate2457
– ident: e_1_2_9_37_1
  doi: 10.1111/jeb.12969
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1365-2486.2011.02542.x
– ident: e_1_2_9_101_1
  doi: 10.1093/icb/icr015
– ident: e_1_2_9_76_1
  doi: 10.1016/0022-1910(90)90176-G
– ident: e_1_2_9_25_1
  doi: 10.1093/icb/icx032
– ident: e_1_2_9_147_1
  doi: 10.1111/j.1420-9101.2009.01725.x
– ident: e_1_2_9_134_1
  doi: 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2
– ident: e_1_2_9_48_1
  doi: 10.1093/biolinnean/blw047
– ident: e_1_2_9_116_1
  doi: 10.1111/eva.12137
– ident: e_1_2_9_71_1
  doi: 10.1111/1365-2435.12687
– ident: e_1_2_9_159_1
  doi: 10.1111/ele.12686
– ident: e_1_2_9_78_1
  doi: 10.1046/j.1365-2699.2000.00217.x
– ident: e_1_2_9_153_1
  doi: 10.1111/aec.12037
– ident: e_1_2_9_95_1
  doi: 10.1086/683252
– ident: e_1_2_9_136_1
  doi: 10.1016/S0306-4565(00)00022-X
– ident: e_1_2_9_91_1
  doi: 10.1111/jeb.13303
– ident: e_1_2_9_172_1
  doi: 10.1086/664709
– ident: e_1_2_9_102_1
  doi: 10.1111/evo.12221
– ident: e_1_2_9_132_1
  doi: 10.1242/jeb.065730
– ident: e_1_2_9_107_1
  doi: 10.1073/pnas.0708074105
– ident: e_1_2_9_127_1
  doi: 10.1111/gcb.13553
– ident: e_1_2_9_183_1
  doi: 10.1038/srep18654
– ident: e_1_2_9_52_1
  doi: 10.1007/978-3-642-81105-0
– ident: e_1_2_9_99_1
  doi: 10.1111/evo.12285
– ident: e_1_2_9_45_1
  doi: 10.1111/nyas.13223
– ident: e_1_2_9_83_1
  doi: 10.1016/j.jinsphys.2007.06.011
– ident: e_1_2_9_84_1
  doi: 10.1086/321314
– ident: e_1_2_9_30_1
  doi: 10.1093/genetics/109.4.665
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1558-5646.1993.tb02151.x
– ident: e_1_2_9_93_1
  doi: 10.1111/j.1558-5646.2012.01685.x
– ident: e_1_2_9_180_1
  doi: 10.1111/j.1365-2486.2012.02640.x
– ident: e_1_2_9_20_1
  doi: 10.1890/0012-9658(1997)078[0969:HODTAP]2.0.CO;2
– ident: e_1_2_9_67_1
  doi: 10.1098/rspb.2015.0401
– ident: e_1_2_9_164_1
  doi: 10.1242/jeb.02201
– ident: e_1_2_9_16_1
  doi: 10.1073/pnas.0911841107
– ident: e_1_2_9_65_1
  doi: 10.1046/j.1365-2540.1999.00533.x
– ident: e_1_2_9_149_1
  doi: 10.1111/eva.12116
SSID ssj0006016
Score 2.5872016
Snippet Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity...
Abstract Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 99
SubjectTerms Adaptation
Agricultural conservation
Agricultural management
Biodiversity
Climate change
Climate models
Complexity
CTmax
evolutionary potential
Field tests
Fitness
Fruit flies
heat
heritability
Insects
latitude
phenology
phenotypic plasticity
Predictions
Reproductive fitness
Resilience
Shape
Species
stress resistance
Terrestrial environments
thermal performance curves
upper thermal limits
Wildlife conservation
Title Terrestrial insects and climate change: adaptive responses in key traits
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphen.12282
https://www.proquest.com/docview/2221889191
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jIPjitzidEtAnoWP9TsQX0Y3iwxDZYAhS8lUYSjfW7sVf771p66YPgr4V2ob0JufmJD05IeRKsYhpHktHxplyYIQKHR5yz8HdKpnSHJsd1RajKJkEj9Nw2iK3zV6Yyh_ia8ENkWHzNQJcyGID5CiB6rkeTBkgAbt-jHquh-e1dxT6jDQuiBGPvNqbFGU861e_j0ZrirlJVO1IM9wlr00dK4HJW29Vyp76-GHf-N-P2CM7NQWld1Wf2Sctkx-QrZe5XWA_JMnY2AM7sGfSWV6g3IOKXFP1PgN6a2i1V_iGCi0WmCzpstLZmgIep5AUKJ47URZHZDIcjO8Tpz5vwVG-H0P7KBHgf1LOgDP6ocgYmqsBxQp4LDzezxhTQvsMMB8AWjXAXQvuRyJTMMkG3nhM2vk8NyeECsNDBjf6kZFYpoy19UbzhHZlGOkOuWzini4qW420mY5gTFIbkw7pNk2S1tAqUiA0LoMacrdDrm1sfykhfUoGI3t1-peHz8g2ECNeScK6pF0uV-YcyEcpL2wn-wQmqNM6
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA06EX3xW5xODeiT0LF-J76JblSdQ2SD4UtJkxSG0o21e_HXe2_auemDoG-FpqG9yUlO0pNzCbmULGCKh4mVhKm0YIbyLe5zx8LTKqlUHJsd1Ra9IBp4D0N_WGlz8CxM6Q_xteGGyDDjNQIcN6SXUI4aqKbtwJphlawB3l3M3HD3snCPQqeRuQ9iwAOncidFIc_i2e_z0YJkLlNVM9d0tsuEqrmxKESJyVtzViRN-fHDwPHfn7FDtioWSm_KbrNLVnS2R9Zfx2aPfZ9EfW1ydmDnpKMsR8UHFZmi8n0EDFfT8rjwNRVKTHC8pNNSaqtzKE5hXKCYeqLID8ig0-7fRlaVcsGSrhtCE0nh4a9SzoA2ur5IGfqrAcvyeCgc3koZk0K5DGDvAWAVIF4J7gYilbDOBup4SGrZONNHhArNfQY3WoFOsM4kVMYezRHKTvxA1cnFPPDxpHTWiOcrEoxJbGJSJ415m8QVuvIYOI3N4A25XSdXJri_1BA_R-2euTr-S-FzshH1n7px9773eEI2gSfxUiHWILViOtOnwEWK5Mz0uE9iYNdS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGP2YE8UX7-J0akCfhI71nogvohvzwhiywRCkpEkLQ-nGLi_-er8vXd30QdC3QtOQfslJTpKTE4ALxQOuRRhbcZgqC0co3xK-cCw6rZIqLajaSW3RDlo976Hv90twXZyFyf0hvhbcCBmmvyaAj3S6BHKSQNVsB6cMK7DqBUh9iRI9L8yjyGiksEEMRODMzUlJx7P49vtwtOCYy0zVDDXNLXgtCpkrTN5qs2lcUx8__Bv_-xfbsDnnoOwmbzQ7UEqyXVh7GZoV9j1odRNzYwc1TTbIJqT3YDLTTL0PkN8mLD8sfMWkliPqLdk4F9omE0zOsFdgdPHEdLIPvWaje9uy5hcuWMp1Q6wgJT3aKBUcSaPry5STuxpyLE-E0hH1lHMltcsR9B7CVSPetRRuIFOFs2wkjgdQzoZZcghMJsLn-KIeJDHlGYfamKM5UtuxH-gKnBdxj0a5r0ZUzEcoJpGJSQWqRZVEc2xNImQ0NscSCrsClya2v-QQdVqNtnk6-kviM1jv3DWjp_v24zFsIEkSuTysCuXpeJacIBGZxqemvX0C_1XWAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+insects+and+climate+change%3A+adaptive+responses+in+key+traits&rft.jtitle=Physiological+entomology&rft.au=Kellermann%2C+Vanessa&rft.au=Belinda+van+Heerwaarden&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0307-6962&rft.eissn=1365-3032&rft.volume=44&rft.issue=2&rft.spage=99&rft.epage=115&rft_id=info:doi/10.1111%2Fphen.12282&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-6962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-6962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-6962&client=summon