Terrestrial insects and climate change: adaptive responses in key traits
Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate chan...
Saved in:
Published in | Physiological entomology Vol. 44; no. 2; pp. 99 - 115 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Royal Entomological Society
01.06.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species.
Making predictions that capture how and which insect species will respond adaptively to climate change requires an understanding of which key traits and environmental drivers interact to shape fitness in a changing world.
We explore how stress resistance, fitness and phenology shape current distributions and future responses to climate, as well as the evidence for adaptive genetic and plastic responses in these traits.
Although there is evidence of range shifts and trait changes, few studies disentangle genetic and plastic responses. More data from taxonomically diverse groups, capturing field complexity are required. |
---|---|
AbstractList | Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species. Abstract Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila , and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species. Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species. Making predictions that capture how and which insect species will respond adaptively to climate change requires an understanding of which key traits and environmental drivers interact to shape fitness in a changing world. We explore how stress resistance, fitness and phenology shape current distributions and future responses to climate, as well as the evidence for adaptive genetic and plastic responses in these traits. Although there is evidence of range shifts and trait changes, few studies disentangle genetic and plastic responses. More data from taxonomically diverse groups, capturing field complexity are required. |
Author | van Heerwaarden, Belinda Kellermann, Vanessa |
Author_xml | – sequence: 1 givenname: Vanessa orcidid: 0000-0002-9859-9642 surname: Kellermann fullname: Kellermann, Vanessa email: vanessa.kellermann@monash.edu organization: Monash University – sequence: 2 givenname: Belinda surname: van Heerwaarden fullname: van Heerwaarden, Belinda organization: Monash University |
BookMark | eNp90L1OwzAUBWALFYlSWHgCS2xIKde_tdlQVShSBQxltozj0JTgBDsF9e1xCTN38fL5-PqcolFog0fogsCU5LnuNj5MCaWKHqExYVIUDBgdoTEwmBVSS3qCTlPaAoAEIsdoufYx-tTH2ja4Dsm7PmEbSuya-sP2HruNDW_-BtvSdn395XHWXZthyhy_-z3uo637dIaOK9skf_53TtDL3WI9Xxarp_uH-e2qcIzNaEGc5cAlaKWJZMJWikshBBdczyzVUCnlbMkUV4q_ApScitJqJm3luNSCsQm6HHK72H7u8uZm2-5iyE8aSilROVeTrK4G5WKbUvSV6WL-T9wbAubQlDk0ZX6bypgM-Ltu_P4faZ6Xi8fhzg_o8mta |
CitedBy_id | crossref_primary_10_1007_s00442_023_05333_w crossref_primary_10_1111_eea_13382 crossref_primary_10_1038_s41598_023_36273_3 crossref_primary_10_1146_annurev_ecolsys_011521_102856 crossref_primary_10_1016_j_jinsphys_2024_104616 crossref_primary_10_1111_ddi_13814 crossref_primary_10_1016_j_jtherbio_2022_103369 crossref_primary_10_1093_jee_toae128 crossref_primary_10_1038_s41467_020_15208_w crossref_primary_10_1111_evo_14366 crossref_primary_10_1186_s12915_023_01530_4 crossref_primary_10_3390_agriculture12050610 crossref_primary_10_1016_j_ancene_2024_100432 crossref_primary_10_1093_aesa_saab038 crossref_primary_10_1016_j_jtherbio_2020_102794 crossref_primary_10_1002_ece3_10218 crossref_primary_10_1073_pnas_2002543117 crossref_primary_10_7717_peerj_11425 crossref_primary_10_1111_jeb_14087 crossref_primary_10_1093_evlett_qrad007 crossref_primary_10_1371_journal_pbio_3002342 crossref_primary_10_3389_fgene_2020_00573 crossref_primary_10_1038_s41598_021_04369_3 crossref_primary_10_3389_fevo_2020_00271 crossref_primary_10_1086_719655 crossref_primary_10_1016_j_jtherbio_2022_103353 crossref_primary_10_1093_evolut_qpad104 crossref_primary_10_1242_bio_060179 crossref_primary_10_1111_icad_12619 crossref_primary_10_3390_d15010047 crossref_primary_10_1111_1365_2435_14590 crossref_primary_10_1016_j_cois_2020_05_005 crossref_primary_10_1111_gcb_15751 crossref_primary_10_1002_ps_8125 crossref_primary_10_1111_brv_12588 crossref_primary_10_3398_064_082_0311 crossref_primary_10_1016_j_cois_2023_101029 crossref_primary_10_1111_nph_17036 crossref_primary_10_1016_j_scitotenv_2023_168127 crossref_primary_10_1093_icb_icae043 crossref_primary_10_1098_rspb_2023_2700 crossref_primary_10_1002_ajp_23614 crossref_primary_10_1016_j_jtherbio_2023_103478 crossref_primary_10_1111_1365_2435_14083 crossref_primary_10_1016_j_jip_2021_107644 crossref_primary_10_1371_journal_pone_0291393 crossref_primary_10_1111_icad_12570 crossref_primary_10_1111_1365_2435_13952 crossref_primary_10_1186_s40850_021_00089_3 crossref_primary_10_1098_rstb_2022_0018 crossref_primary_10_1242_jeb_230326 crossref_primary_10_1002_ece3_9560 crossref_primary_10_1002_ece3_10244 crossref_primary_10_1111_1365_2656_13860 crossref_primary_10_3390_life13122290 crossref_primary_10_1016_j_cois_2022_100918 crossref_primary_10_1016_j_scitotenv_2022_161049 crossref_primary_10_1111_1365_2435_14250 crossref_primary_10_1016_j_jtherbio_2023_103680 crossref_primary_10_1111_jbi_14077 crossref_primary_10_1016_j_jinsphys_2023_104491 crossref_primary_10_1038_s41598_022_07279_0 crossref_primary_10_1016_j_jinsphys_2021_104268 crossref_primary_10_1016_j_jssas_2023_02_004 crossref_primary_10_1016_j_jinsphys_2024_104647 crossref_primary_10_1146_annurev_ento_041520_074454 crossref_primary_10_1016_j_tree_2020_05_006 crossref_primary_10_1111_1365_2656_13636 crossref_primary_10_1093_biolinnean_blac094 crossref_primary_10_1038_s41467_022_32953_2 crossref_primary_10_1007_s10709_023_00201_0 crossref_primary_10_1016_j_jtherbio_2024_103795 crossref_primary_10_1098_rspb_2021_2660 crossref_primary_10_3389_fgene_2021_676218 crossref_primary_10_1590_1806_9665_rbent_2021_0025 crossref_primary_10_1093_evolut_qpad052 crossref_primary_10_1111_jeb_14090 crossref_primary_10_1371_journal_pone_0265361 crossref_primary_10_1016_j_cois_2021_04_008 crossref_primary_10_1093_jeb_voae061 crossref_primary_10_1016_j_cropro_2023_106378 crossref_primary_10_1111_1462_2920_16609 crossref_primary_10_1016_j_cris_2022_100051 crossref_primary_10_1186_s12863_020_00935_2 crossref_primary_10_1002_ece3_5782 crossref_primary_10_3390_insects13040393 crossref_primary_10_1093_jisesa_ieab004 crossref_primary_10_1111_evo_14065 crossref_primary_10_3390_insects13020134 crossref_primary_10_1093_conphys_coac073 crossref_primary_10_1242_jeb_228031 crossref_primary_10_1242_jeb_213405 crossref_primary_10_1038_s41598_020_73391_8 crossref_primary_10_1016_j_cois_2021_10_006 crossref_primary_10_1007_s00442_022_05115_w crossref_primary_10_1016_j_cois_2020_02_006 crossref_primary_10_1111_gcb_17205 crossref_primary_10_1007_s10841_023_00546_z crossref_primary_10_1002_ecy_3598 crossref_primary_10_1016_j_cris_2022_100048 crossref_primary_10_1016_j_jtherbio_2023_103677 crossref_primary_10_1093_jeb_voad009 crossref_primary_10_1111_1365_2435_14284 crossref_primary_10_1016_j_jtherbio_2021_103119 crossref_primary_10_1016_j_jtherbio_2023_103550 crossref_primary_10_3390_insects15020081 crossref_primary_10_1093_conphys_coaa067 crossref_primary_10_1038_s41598_020_61040_z crossref_primary_10_1093_evolut_qpad154 crossref_primary_10_1242_jeb_244514 crossref_primary_10_1016_j_jtherbio_2023_103673 crossref_primary_10_1016_j_cbpa_2022_111261 crossref_primary_10_1038_s41598_023_49815_6 |
Cites_doi | 10.1209/0295-5075/122/38001 10.1046/j.1365-2486.2000.00322.x 10.1111/mec.14262 10.1673/031.009.6801 10.1111/j.1365-2435.2011.01928.x 10.1111/j.1439-0469.1999.tb00983.x 10.1111/evo.13070 10.1016/j.cois.2015.09.013 10.1086/419266 10.1046/j.1420-9101.1993.6050643.x 10.1111/j.1365-2656.2007.01303.x 10.1007/s00360-016-0980-6 10.1146/annurev.en.25.010180.000245 10.1093/acprof:oso/9780198570875.001.1 10.1111/j.1420-9101.2012.02506.x 10.1111/ele.12696 10.1126/science.1131002 10.1098/rstb.2012.0005 10.1017/S0007485314000352 10.1046/j.1466-822X.2003.00053.x 10.1002/ece3.3588 10.1111/j.0014-3820.2003.tb00592.x 10.1111/j.1365-2435.2012.02036.x 10.1146/annurev-ento-010715-023859 10.1038/hdy.2015.8 10.1073/pnas.241391498 10.1038/hdy.1987.113 10.1111/j.0014-3820.2005.tb01821.x 10.1038/nclimate1717 10.1016/j.jinsphys.2015.05.003 10.1126/science.aaa7031 10.1093/icb/icw014 10.4039/tce.2017.51 10.1086/662551 10.1016/j.jinsphys.2017.03.003 10.1111/aen.12215 10.1126/science.1175443 10.1098/rspb.2000.1065 10.1007/978-94-009-3127-5 10.1016/j.cois.2016.07.002 10.1111/j.1466-8238.2010.00594.x 10.1111/j.1365-2486.2010.02308.x 10.1073/pnas.1714511115 10.1242/jeb.092502 10.1002/ece3.2355 10.1016/0022-1910(91)90110-L 10.1111/gcb.13313 10.1016/S0169-5347(03)00036-3 10.1038/nature18608 10.1016/j.jinsphys.2017.12.002 10.1038/nature01286 10.1098/rspb.2017.0447 10.1371/journal.pbio.1000585 10.1002/9781119070894.ch3 10.1073/pnas.0709472105 10.1126/science.1083073 10.2307/2409882 10.1111/j.1365-2435.2008.01481.x 10.1086/285797 10.1111/j.1420-9101.2005.00914.x 10.1111/jeb.13018 10.1111/j.1420-9101.2010.02110.x 10.1890/10-1594.1 10.1371/journal.pbio.2001104 10.1111/jeb.12832 10.1098/rspb.2001.1787 10.1016/j.jinsphys.2012.12.001 10.1303/aez.28.161 10.1016/j.jinsphys.2011.05.004 10.1093/jhered/esn082 10.3389/fphys.2011.00074 10.1073/pnas.1207553109 10.1111/j.1420-9101.2011.02227.x 10.1111/gcb.12929 10.1111/j.1558-5646.1985.tb00391.x 10.1098/rspb.2009.1910 10.1007/s00442-017-3986-1 10.1111/gcb.12521 10.1111/mec.13000 10.1098/rspb.2009.1355 10.1093/genetics/140.2.659 10.1111/1365-2435.12499 10.1029/2008JD010536 10.1016/j.cois.2016.08.003 10.1111/j.0014-3820.2004.tb01726.x 10.1146/annurev-ento-010814-021017 10.1038/sdata.2018.22 10.1038/35079066 10.1111/j.1365-2435.2009.01666.x 10.1046/j.1420-9101.2003.00560.x 10.1111/evo.12843 10.1046/j.1570-7458.1999.00480.x 10.1038/sj.hdy.6800168 10.1111/j.1439-0418.2011.01658.x 10.1111/j.1365-2435.2008.01538.x 10.1073/pnas.92.7.2994 10.1111/j.1752-4571.2011.00214.x 10.1126/science.aag2773 10.1093/conphys/cov056 10.1111/een.12127 10.1111/1365-2435.12858 10.1242/jeb.00233 10.1242/jeb.061283 10.1111/j.1365-2656.2009.01611.x 10.1093/icb/icj003 10.1038/s41558-018-0067-3 10.1111/jeb.12436 10.1111/eea.12466 10.1007/s00442-018-4166-7 10.1111/gcb.12014 10.1086/675302 10.1086/431314 10.1111/een.12120 10.1016/j.cbpa.2013.05.012 10.1111/jeb.13231 10.1038/nature09407 10.1186/s12983-016-0147-z 10.1038/hdy.2013.33 10.1086/285369 10.1111/1365-2435.12818 10.1111/1365-2435.12288 10.1086/303381 10.1007/s10682-016-9880-1 10.1016/S0306-4565(02)00057-8 10.1111/j.1365-294X.2011.05155.x 10.1098/rspb.2018.0048 10.1007/s10709-012-9635-z 10.1371/journal.pbio.1000357 10.1098/rstb.2016.0146 10.1111/evo.12617 10.1098/rspb.2007.0997 10.1111/j.1461-0248.2006.00928.x 10.1890/10-1885.1 10.1007/s11692-016-9375-6 10.1098/rspb.2014.0396 10.1046/j.1420-9101.1992.5010041.x 10.1007/s10584-017-2037-6 10.1111/j.1365-2435.2010.01804.x 10.1111/ecog.00967 10.1111/j.1558-5646.2008.00367.x 10.1038/nature09670 10.1073/pnas.052131199 10.1038/nclimate2457 10.1111/jeb.12969 10.1111/j.1365-2486.2011.02542.x 10.1093/icb/icr015 10.1016/0022-1910(90)90176-G 10.1093/icb/icx032 10.1111/j.1420-9101.2009.01725.x 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2 10.1093/biolinnean/blw047 10.1111/eva.12137 10.1111/1365-2435.12687 10.1111/ele.12686 10.1046/j.1365-2699.2000.00217.x 10.1111/aec.12037 10.1086/683252 10.1016/S0306-4565(00)00022-X 10.1111/jeb.13303 10.1086/664709 10.1111/evo.12221 10.1242/jeb.065730 10.1073/pnas.0708074105 10.1111/gcb.13553 10.1038/srep18654 10.1007/978-3-642-81105-0 10.1111/evo.12285 10.1111/nyas.13223 10.1016/j.jinsphys.2007.06.011 10.1086/321314 10.1093/genetics/109.4.665 10.1111/j.1558-5646.1993.tb02151.x 10.1111/j.1558-5646.2012.01685.x 10.1111/j.1365-2486.2012.02640.x 10.1890/0012-9658(1997)078[0969:HODTAP]2.0.CO;2 10.1098/rspb.2015.0401 10.1242/jeb.02201 10.1073/pnas.0911841107 10.1046/j.1365-2540.1999.00533.x 10.1111/eva.12116 |
ContentType | Journal Article |
Copyright | 2019 The Royal Entomological Society |
Copyright_xml | – notice: 2019 The Royal Entomological Society |
DBID | AAYXX CITATION 7QG 7QR 7SS 8FD F1W FR3 H95 L.G P64 RC3 |
DOI | 10.1111/phen.12282 |
DatabaseName | CrossRef Animal Behavior Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Chemoreception Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1365-3032 |
EndPage | 115 |
ExternalDocumentID | 10_1111_phen_12282 PHEN12282 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council – fundername: Monash University |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TWZ UB1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZY4 ZZTAW ~IA ~KM ~WT AAYXX CITATION 7QG 7QR 7SS 8FD F1W FR3 H95 L.G P64 RC3 |
ID | FETCH-LOGICAL-c3372-1ca404609891635af84655545497a290f88cad384884b00d425da936afc469533 |
IEDL.DBID | DR2 |
ISSN | 0307-6962 |
IngestDate | Thu Oct 10 15:51:30 EDT 2024 Fri Aug 23 02:50:57 EDT 2024 Sat Aug 24 00:55:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3372-1ca404609891635af84655545497a290f88cad384884b00d425da936afc469533 |
ORCID | 0000-0002-9859-9642 |
OpenAccessLink | http://minerva-access.unimelb.edu.au/bitstreams/613bb5c1-9902-5133-a6f2-4e7d607ad8ce/download |
PQID | 2221889191 |
PQPubID | 37955 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2221889191 crossref_primary_10_1111_phen_12282 wiley_primary_10_1111_phen_12282_PHEN12282 |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Physiological entomology |
PublicationYear | 2019 |
Publisher | The Royal Entomological Society Wiley Subscription Services, Inc |
Publisher_xml | – name: The Royal Entomological Society – name: Wiley Subscription Services, Inc |
References | 2015; 79 2018; 285 2013; 3 1993; 28 2010; 107 2017; 1389 2013; 67 2010; 467 2002; 99 2014; 27 2003; 57 1996; 71 2016; 30 2011; 57 2012; 18 2008; 105 2014; 28 2012; 367 2011; 470 2014; 23 2001; 268 1977 2014; 20 2010; 23 2018; 9 2018; 8 2013; 59 2003; 206 2018; 5 2012; 135 2010; 24 2006; 209 2002; 89 1987 2016; 43 2017; 284 2008; 113 2018; 31 2001; 411 2010; 8 1998; 13 1992; 5 1993; 47 2018; 187 2011; 2 2016; 19 2011; 139 1990; 36 2018; 107 2012a; 66 2011; 81 2011; 84 1997 2001; 26 2017; 372 2012b; 26 2016; 160 2016; 17 2016; 14 2016; 13 1987; 59 2011; 9 2016; 6 2015; 69 2015; 60 2015; 115 2006; 46 2011; 92 2017; 57 2018; 115 1999; 37 2013; 216 2017; 56 2016b; 70 2009; 100 1992; 139 2000; 81 1995; 146 2003; 28 2014; 39 2016; 29 2017; 144 1995; 140 2005; 18 2001; 158 2016; 22 2016a; 30 2018; 122 2017; 7 2015; 38 2013; 27 2000; 6 2015; 186 2013; 166 2014; 68 2008; 77 2003; 18 2015; 349 2016; 70 1999; 83 2011; 17 2017; 355 2016; 186 1993; 6 2003; 12 2017; 31 2017; 30 2001; 294 2012; 179 1991; 45 2010; 277 1999; 14 2011; 20 2005; 308 2011; 24 2017; 121 2014; 281 2011; 25 2008; 62 2014; 7 2012; 215 2008; 275 2009; 325 2001; 98 2009; 23 2012a; 25 2009; 22 2011; 214 2015; 282 1980; 25 1995; 92 2015; 5 2010; 79 2015; 3 1991; 37 1985; 109 2017; 26 2015; 11 2017; 23 2009 2012b; 109 2000; 156 2007; 53 2006; 313 2014; 112 2016; 56 1985; 39 2018; 150 2013; 38 2000; 267 2005; 166 2017; 99 2017; 13 2011; 51 1997; 78 2015; 21 2009; 9 2017 2014; 183 2016; 61 2016; 535 2017; 185 2005; 59 2003; 301 2003; 421 2012; 5 2014; 104 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 Hoffmann A.A. (e_1_2_9_80_1) 2017; 13 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_161_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 275 start-page: 649 year: 2008 end-page: 659 article-title: Keeping up with a warming world; assessing the rate of adaptation to climate change publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 281 start-page: 20140396 year: 2014 article-title: Is adaptation to climate change really constrained in niche specialists? publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 56 start-page: 85 year: 2016 end-page: 97 article-title: The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity publication-title: Integrative and Comparative Biology – volume: 31 start-page: 1647 year: 2017 end-page: 1658 article-title: Impact of predicted precipitation scenarios on multitrophic interactions publication-title: Functional Ecology – volume: 37 start-page: 195 year: 1999 end-page: 202 article-title: Climatic selection of starvation and desiccation resistance in populations of some tropical drosophilids publication-title: Journal of Zoological Systematics and Evolutionary Research – volume: 26 start-page: 6510 year: 2017 end-page: 6523 article-title: Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance publication-title: Molecular Ecology – volume: 6 start-page: 643 year: 1993 end-page: 657 article-title: Direct and correlated response to selection for desiccation resistance: a comparison of and publication-title: Journal of Evolutionary Biology – volume: 25 start-page: 527 year: 2011 end-page: 536 article-title: Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle publication-title: Functional Ecology – volume: 83 start-page: 15 year: 1999 end-page: 29 article-title: The direct response of to selection on knockdown temperature publication-title: Heredity – volume: 9 start-page: 68 year: 2009 article-title: High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, and publication-title: Journal of Insect Science – volume: 6 start-page: 407 year: 2000 end-page: 416 article-title: Phenology of British butterflies and climate change publication-title: Global Change Biology – volume: 69 start-page: 803 year: 2015 end-page: 814 article-title: Low evolutionary potential for egg‐to‐adult viability in at high temperatures publication-title: Evolution – volume: 8 start-page: 224 year: 2018 end-page: 228 article-title: A global synthesis of animal phenological responses to climate change publication-title: Nature Climate Change – volume: 45 start-page: 1317 year: 1991 end-page: 1331 article-title: Evolution of generalists and specialists in spatially hetergeneous environments publication-title: Evolution – volume: 139 start-page: 1331 year: 2011 end-page: 1337 article-title: Genetic variation in heat‐stress tolerance among South American populations publication-title: Genetica – volume: 81 start-page: 469 year: 2011 end-page: 491 article-title: An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows publication-title: Ecological Monographs – volume: 107 start-page: 12581 year: 2010 end-page: 12586 article-title: Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 411 start-page: 577 year: 2001 end-page: 581 article-title: Ecological and evolutionary processes at expanding range margins publication-title: Nature – volume: 9 start-page: e1000585 year: 2011 article-title: Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population publication-title: PLoS Biology – volume: 179 start-page: 490 year: 2012 end-page: 500 article-title: Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient publication-title: American Naturalist – volume: 109 start-page: 16228 year: 2012b end-page: 16233 article-title: Upper thermal limits of are linked to species distributions and strongly constrained phylogenetically publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 282 start-page: 20150401 year: 2015 article-title: Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 285 start-page: 20180048 year: 2018 article-title: Plasticity for desiccation tolerance across species is affected by phylogeny and climate in complex ways publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 18 start-page: 1833 year: 2012 end-page: 1842 article-title: Degrees of disruption: projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm publication-title: Global Change Biology – volume: 39 start-page: 453 year: 2014 end-page: 461 article-title: Effects of altered precipitation on insect community composition and structure in a meadow steppe publication-title: Ecological Entomology – volume: 367 start-page: 1665 year: 2012 end-page: 1679 article-title: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation publication-title: Philosophical Transactions of the Royal Society B, Biological Sciences – volume: 59 start-page: 1721 year: 2005 end-page: 1732 article-title: Geographic variation in diapause incidence, life‐history traits, and climatic adaptation in publication-title: Evolution – volume: 30 start-page: 442 year: 2016 end-page: 452 article-title: Evolutionary potential of multiple measures of upper thermal tolerance in publication-title: Functional Ecology – volume: 84 start-page: 543 year: 2011 end-page: 552 article-title: The mean and variance of environmental temperature interact to determine physiological tolerance and fitness publication-title: Physiological and Biochemical Zoology – volume: 12 start-page: 403 year: 2003 end-page: 410 article-title: Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale publication-title: Global Ecology and Biogeography – volume: 18 start-page: 448 year: 2012 end-page: 456 article-title: Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants publication-title: Global Change Biology – volume: 3 start-page: 244 year: 2013 end-page: 248 article-title: Evolutionary response of the egg hatching date of a herbivorous insect under climate change publication-title: Nature Climate Change – volume: 23 start-page: 2484 year: 2010 end-page: 2493 article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia publication-title: Journal of Evolutionary Biology – volume: 216 start-page: 4601 year: 2013 end-page: 4607 article-title: Stress‐induced plastic responses in following exposure to combinations of temperature and humidity levels publication-title: Journal of Experimental Biology – volume: 3 start-page: cov056 year: 2015 article-title: Mechanistic species distribution modelling as a link between physiology and conservation publication-title: Conservation Physiology – volume: 135 start-page: 332 year: 2012 end-page: 346 article-title: Effects of acclimation and latitude on the activity thresholds of the aphid in Europe publication-title: Journal of Applied Entomology – volume: 46 start-page: 5 year: 2006 end-page: 17 article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited publication-title: Integrative and Comparative Biology – volume: 31 start-page: 93 year: 2017 end-page: 117 article-title: Sibling species ( and ) show divergence for thermotolerance along a latitudinal gradient publication-title: Evolutionary Ecology – volume: 156 start-page: 121 year: 2000 end-page: 130 article-title: The evolution of plasticity and non plastic spatial and temporal adaptations in the presence of imperfect environmental cues publication-title: American Naturalist – volume: 57 start-page: 1070 year: 2011 end-page: 1084 article-title: Water loss in insects: an environmental change perspective publication-title: Journal of Insect Physiology – volume: 77 start-page: 145 year: 2008 end-page: 155 article-title: Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect publication-title: Journal of Animal Ecology – year: 1987 – volume: 70 start-page: 2583 year: 2016 end-page: 2594 article-title: Reasons for success: rapid evolution for desiccation resistance and life‐history changes in the polyphagous fly publication-title: Evolution – volume: 29 start-page: 900 year: 2016 end-page: 915 article-title: Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? publication-title: Journal of Evolutionary Biology – volume: 18 start-page: 838 year: 2005 end-page: 846 article-title: Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding climatic adaptations publication-title: Journal of Evolutionary Biology – volume: 268 start-page: 2163 year: 2001 end-page: 2168 article-title: Postponed reproduction as an adaptation to winter conditions in : evidence for clinal variation under semi‐natural conditions publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 38 start-page: 942 year: 2013 end-page: 951 article-title: Foraging patterns and strategies in an Australian desert ant publication-title: Austral Ecology – volume: 113 start-page: D22104 year: 2008 article-title: Relationships between global precipitation and surface temperature on interannual and longer timescales (1979‐2006) publication-title: Journal of Geophysical Research – Atmospheres – volume: 185 start-page: 607 year: 2017 end-page: 618 article-title: Using eco‐physiological traits to understand the realized niche: the role of desiccation tolerance in disease vectors publication-title: Oecologia – volume: 28 start-page: 1449 year: 2014 end-page: 1458 article-title: Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods publication-title: Functional Ecology – volume: 66 start-page: 3377 year: 2012a end-page: 3389 article-title: Phylogenetic constraints in key functional traits behind species' climate niches: patterns of desiccation and cold resistance across 95 species publication-title: Evolution – volume: 68 start-page: 587 year: 2014 end-page: 594 article-title: Does environmental robustness play a role in fluctuating environments? publication-title: Evolution – volume: 421 start-page: 37 year: 2003 end-page: 42 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – volume: 13 year: 2017 article-title: Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? publication-title: Intergrative Zoology – volume: 36 start-page: 885 year: 1990 end-page: 891 article-title: Acclimation for desiccation resistance in and the assocation between acclimation responses and genetic variation publication-title: Journal of Insect Physiology – volume: 60 start-page: 123 year: 2015 end-page: 140 article-title: Insects in fluctuating thermal environments publication-title: Annual Review of Entomology – volume: 67 start-page: 3573 year: 2013 end-page: 3587 article-title: Variation in thermal performance and reaction norms among populations of publication-title: Evolution – volume: 13 start-page: 77 year: 1998 end-page: 81 article-title: Costs and limits of phenotypic plasticity publication-title: Trends in Ecology & Evolution – volume: 28 start-page: 175 year: 2003 end-page: 216 article-title: Adaptation of to temperature extremes: bringing together quantitative and molecular approaches publication-title: Journal of Thermal Biology – volume: 38 start-page: 15 year: 2015 end-page: 28 article-title: Climate‐related range shifts – a global multidimensional synthesis and new research directions publication-title: Ecography – volume: 21 start-page: 3356 year: 2015 end-page: 3366 article-title: Revealing hidden evolutionary capacity to cope with global change publication-title: Global Change Biology – volume: 158 start-page: 204 year: 2001 end-page: 210 article-title: Temperature, demography, and ectotherm fitness publication-title: American Naturalist – volume: 23 start-page: 1847 year: 2017 end-page: 1860 article-title: Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest : beyond laboratory estimates publication-title: Global Change Biology – volume: 25 start-page: 1180 year: 2012a end-page: 1188 article-title: Humidity affects genetic architecture of heat resistance in publication-title: Journal of Evolutionary Biology – volume: 7 start-page: 56 year: 2014 end-page: 67 article-title: Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes publication-title: Evolutionary Applications – volume: 18 start-page: 228 year: 2003 end-page: 233 article-title: Phenotypic flexibility and the evolution of organismal design publication-title: Trends in Ecology & Evolution – volume: 78 start-page: 969 year: 1997 end-page: 976 article-title: Heritability of development time and protandry in the pitcher‐plant mosquito, publication-title: Ecology – volume: 27 start-page: 934 year: 2013 end-page: 949 article-title: Upper thermal limits in terrestrial ectotherms: how constrained are they? publication-title: Functional Ecology – volume: 140 start-page: 659 year: 1995 end-page: 666 article-title: Cellular basis and developmental timing in a size cline of Drosophila melanogaster publication-title: Genetics – volume: 71 start-page: 3 year: 1996 end-page: 35 article-title: The evolution of threshold traits in animals publication-title: Quarterly Review of Biology – volume: 5 start-page: 61 year: 2015 end-page: 66 article-title: Physiological plasticity increases resilience of ectothermic animals to climate change publication-title: Nature Climate Change – volume: 166 start-page: 277 year: 2005 end-page: 289 article-title: Variation in continuous reaction norms: quantifying directions of biological interest publication-title: American Naturalist – volume: 105 start-page: 6668 year: 2008 end-page: 6672 article-title: Impacts of climate warming on terrestrial ectotherms across latitude publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 start-page: 3543 year: 2012 end-page: 3557 article-title: Atmospheric change alters performance of an invasive forest insect publication-title: Global Change Biology – volume: 355 start-page: 959 year: 2017 end-page: 962 article-title: Precipitation drives global variation in natural selection publication-title: Science – volume: 59 start-page: 248 year: 2013 end-page: 254 article-title: Heat stress affects male reproduction in a parasitoid wasp publication-title: Journal of Insect Physiology – volume: 39 start-page: 519 year: 2014 end-page: 526 article-title: Survivability and post‐diapause fitness in a beetle as a function of overwintering developmental stage and the implications for population dynamics publication-title: Ecological Entomology – volume: 301 start-page: 65 year: 2003 end-page: 65 article-title: Acclimation capacity underlies susceptibility to climate change publication-title: Science – volume: 1389 start-page: 5 year: 2017 end-page: 19 article-title: Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change publication-title: Annals of the New York Academy of Sciences – volume: 277 start-page: 503 year: 2010 end-page: 511 article-title: Re‐evaluating the costs and limits of adaptive phenotypic plasticity publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 79 start-page: 194 year: 2010 end-page: 204 article-title: What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles ( : ) publication-title: Journal of Animal Ecology – volume: 144 start-page: 237 year: 2017 end-page: 255 article-title: The power of the transplant: direct assessment of climate change impacts publication-title: Climatic Change – volume: 467 start-page: 704 year: 2010 end-page: U788 article-title: Global metabolic impacts of recent climate warming publication-title: Nature – volume: 183 start-page: 453 year: 2014 end-page: 467 article-title: Evolutionary change in continuous reaction norms publication-title: American Naturalist – volume: 28 start-page: 161 year: 1993 end-page: 168 article-title: Response to selection for desiccation resistance in eggs (Diptera, Culicidae) publication-title: Applied Entomology and Zoology – year: 2009 – volume: 5 start-page: 18654 year: 2015 article-title: Responses of community‐level plant‐insect interactions to climate warming in a meadow steppe publication-title: Scientific Reports – volume: 17 start-page: 49 year: 2016 end-page: 54 article-title: Complex responses of insect phenology to climate change publication-title: Current Opinion in Insect Science – volume: 31 year: 2018 article-title: Evidence for lower plasticity in CTMAX at warmer developmental temperatures publication-title: Journal of Evolutionary Biology – volume: 215 start-page: 2181 year: 2012 end-page: 2191 article-title: Divergence of desiccation‐related traits in two species of the subgroup from the western Himalayas publication-title: Journal of Experimental Biology – volume: 26 start-page: 29 year: 2001 end-page: 39 article-title: Viability and rate of development at different temperatures in : a comparison of constant and alternating thermal regimes publication-title: Journal of Thermal Biology – volume: 61 year: 2016 article-title: What can plasticity contribute to insect responses to climate change? publication-title: Annual Review of Entomology – volume: 39 start-page: 505 year: 1985 end-page: 522 article-title: Genotype environment interaction and the evolution of phenotypic plasticity publication-title: Evolution – volume: 57 start-page: 988 year: 2017 end-page: 998 article-title: Insect development, thermal plasticity and fitness implications in changing, seasonal environments publication-title: Integrative and Comparative Biology – volume: 24 start-page: 965 year: 2011 end-page: 975 article-title: Quantitative genetic variation for thermal performance curves within and among natural populations of publication-title: Journal of Evolutionary Biology – volume: 6 start-page: 6282 year: 2016 end-page: 6291 article-title: Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community publication-title: Ecology and Evolution – volume: 20 start-page: 1738 year: 2014 end-page: 1750 article-title: Sensitivity to thermal extremes in Australian implies similar impacts of climate change on the distribution of widespread and tropical species publication-title: Global Change Biology – volume: 57 start-page: 1846 year: 2003 end-page: 1851 article-title: Evolution of additive and nonadditive genetic variance in development time along a cline in publication-title: Evolution – volume: 14 start-page: 96 year: 1999 end-page: 101 article-title: Heritable variation and evolution under favourable and unfavourable conditions publication-title: Trends in Ecology & Evolution – volume: 8 start-page: E1000357 year: 2010 article-title: Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory publication-title: PLoS Biology – volume: 146 start-page: 252 year: 1995 end-page: 270 article-title: Specialists and geeralists in changing environments 1. Fitness landscapes of thermal sensitivity publication-title: American Naturalist – volume: 150 start-page: 66 year: 2018 end-page: 79 article-title: Bioclimatic approach to assessing factors influencing shifts in geographic distribution and relative abundance of two flea beetle species (Coleoptera: Chrysomelidae) in North America publication-title: Canadian Entomologist – volume: 294 start-page: 151 year: 2001 end-page: 154 article-title: Constraint to adaptive evolution in response to global warming publication-title: Science – volume: 20 start-page: 2973 year: 2011 end-page: 2984 article-title: Polymorphism in the couch potato gene clines in eastern Australia but is not associated with ovarian dormancy in publication-title: Molecular Ecology – volume: 13 start-page: 15 year: 2016 article-title: Physiological mechanisms of dehydration tolerance contribute to the invasion potential of (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners publication-title: Frontiers in Zoology – volume: 25 start-page: 1 year: 1980 end-page: 25 article-title: Summer diapause publication-title: Annual Review of Entomology – volume: 81 start-page: 443 year: 2000 end-page: 450 article-title: Impacts of extreme weather and climate on terrestrial biota publication-title: Bulletin of the American Meteorological Society – volume: 17 start-page: 1289 year: 2011 end-page: 1300 article-title: Predicting insect phenology across space and time publication-title: Global Change Biology – volume: 23 start-page: 528 year: 2009 end-page: 538 article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito in Australia publication-title: Functional Ecology – volume: 56 start-page: 104 year: 2017 end-page: 114 article-title: Effects of microclimate and species identity on body temperature and thermal tolerance of ants (Hymenoptera: Formicidae) publication-title: Austral Entomology – volume: 31 start-page: 1091 year: 2017 end-page: 1100 article-title: Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants publication-title: Functional Ecology – volume: 19 start-page: 1468 year: 2016 end-page: 1478 article-title: Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change publication-title: Ecology Letters – volume: 89 start-page: 473 year: 2002 end-page: 479 article-title: The common quantitative genetic basis of wing morphology and diapause occurrence in the cricket publication-title: Heredity – volume: 43 start-page: 356 year: 2016 end-page: 367 article-title: Response of development and body mass to daily temperature fluctuations: a study on publication-title: Evolutionary Biology – volume: 22 start-page: 1111 year: 2009 end-page: 1122 article-title: Local adaptation of stress related traits in and in spite of high gene flow publication-title: Journal of Evolutionary Biology – volume: 29 start-page: 2447 year: 2016 end-page: 2463 article-title: Thermal plasticity in from eastern Australia: quantitative traits to transcripts publication-title: Journal of Evolutionary Biology – volume: 99 start-page: 1 year: 2017 end-page: 7 article-title: Life stages of an aphid living under similar thermal conditions differ in thermal performance publication-title: Journal of Insect Physiology – volume: 59 start-page: 181 year: 1987 end-page: 197 article-title: Natural selection and the heritability of fitness components publication-title: Heredity – year: 1997 – volume: 17 start-page: 98 year: 2016 end-page: 104 article-title: Evolutionary and ecological patterns of thermal acclimation capacity in : is it important for keeping up with climate change? publication-title: Current Opinion in Insect Science – volume: 105 start-page: 216 year: 2008 end-page: 221 article-title: Costs and benefits of cold acclimation in field‐released publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 277 start-page: 1281 year: 2010 end-page: 1287 article-title: Climatic warming increases voltinism in European butterflies and moths publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 186 start-page: 581 year: 2016 end-page: 587 article-title: Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly publication-title: Journal of Comparative Physiology B – Biochemical Systemic and Environmental Physiology – volume: 115 start-page: 5211 year: 2018 end-page: 5216 article-title: Global shifts in the phenological synchrony of species interactions over recent decades publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 187 start-page: 851 year: 2018 end-page: 862 article-title: Largely flat latitudinal life history clines in the dung fly across Europe (Diptera: Sepsidae) publication-title: Oecologia – volume: 37 start-page: 757 year: 1991 end-page: 762 article-title: Acclimation for desiccation resistance in species and population comparisons publication-title: Journal of Insect Physiology – volume: 14 start-page: 18 year: 2016 article-title: Climate‐related local extinctions are already widespread among plant and animal species publication-title: PLoS Biology – volume: 5 start-page: 117 year: 2012 end-page: 129 article-title: Genetic erosion impedes adaptive responses to stressful environments publication-title: Evolutionary Applications – volume: 2 start-page: 74 year: 2011 article-title: Complex interactions between temperature and relative humidity on water balance of adult tsetse (Glossinidae, Diptera): implications for climate change publication-title: Frontiers in Physiology – volume: 92 start-page: 1005 year: 2011 end-page: 1012 article-title: Species' traits predict phenological responses to climate change in butterflies publication-title: Ecology – volume: 20 start-page: 34 year: 2011 end-page: 45 article-title: Asymmetric boundary shifts of tropical montane over four decades of climate warming publication-title: Global Ecology and Biogeography – volume: 51 start-page: 719 year: 2011 end-page: 732 article-title: Complex life cycles and the responses of insects to climate change publication-title: Integrative and Comparative Biology – volume: 23 start-page: 133 year: 2009 end-page: 140 article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context publication-title: Functional Ecology – volume: 166 start-page: 81 year: 2013 end-page: 90 article-title: Rapid effects of humidity acclimation on stress resistance in publication-title: Comparative Biochemistry and Physiology A – Molecular & Integrative Physiology – volume: 112 start-page: 4 year: 2014 end-page: 12 article-title: The evolution of quantitative traits in complex environments publication-title: Heredity – volume: 470 start-page: 479 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – volume: 53 start-page: 1199 year: 2007 end-page: 1205 article-title: Impact of mild temperature hardening on thermo tolerance, fecundity, and Hsp gene expression in publication-title: Journal of Insect Physiology – volume: 19 start-page: 1372 year: 2016 end-page: 1385 article-title: Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? publication-title: Ecology Letters – volume: 160 start-page: 147 year: 2016 end-page: 155 article-title: Rapid responses to a strong experimental selection for heat hardening in the invasive whitefly MEAM 1 publication-title: Entomologia Experimentalis et Applicata – volume: 214 start-page: 3713 year: 2011 end-page: 3725 article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures publication-title: Journal of Experimental Biology – volume: 107 start-page: 276 year: 2018 end-page: 283 article-title: Behavioural thermoregulation in a small herbivore avoids direct UVB damage publication-title: Journal of Insect Physiology – volume: 98 start-page: 14509 year: 2001 end-page: 14511 article-title: Genetic shift in photoperiodic response correlated with global warming publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 79 start-page: 1 year: 2015 end-page: 9 article-title: Adult plasticity of cold tolerance in a continental‐temperate population of publication-title: Journal of Insect Physiology – volume: 139 start-page: 971 year: 1992 end-page: 989 article-title: The evolutionary maintenance of alternative phenotypes publication-title: American Naturalist – volume: 186 start-page: 582 year: 2015 end-page: 593 article-title: Experimental evolution under fluctuating thermal conditions does not reproduce patterns of adaptive clinal differentiation in publication-title: American Naturalist – volume: 284 start-page: 20170447 year: 2017 article-title: How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 209 start-page: 1837 year: 2006 end-page: 1847 article-title: A new set of laboratory‐selected lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses publication-title: Journal of Experimental Biology – volume: 121 start-page: 248 year: 2017 end-page: 257 article-title: Rapid evolution of ant thermal tolerance across an urban‐rural temperature cline publication-title: Biological Journal of the Linnean Society – volume: 349 start-page: 177 year: 2015 end-page: 180 article-title: Climate change impacts on bumblebees converge across continents publication-title: Science – volume: 11 start-page: 84 year: 2015 end-page: 89 article-title: Microclimate‐based macrophysiology: implications for insects in a warming world publication-title: Current Opinion in Insect Science – volume: 30 start-page: 1947 year: 2016a end-page: 1956 article-title: Limited scope for plasticity to increase upper thermal limits publication-title: Functional Ecology – volume: 325 start-page: 1244 year: 2009 end-page: 1246 article-title: Fundamental evolutionary limits in ecological traits drive species distributions publication-title: Science – volume: 70 start-page: 456 year: 2016b end-page: 464 article-title: Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest species publication-title: Evolution – year: 1977 – volume: 47 start-page: 1255 year: 1993 end-page: 1270 article-title: The genetics of central and marginal populations of I. Genetic variation for stress resistance and species borders publication-title: Evolution – volume: 9 year: 2018 publication-title: Nature communications – volume: 30 start-page: 422 year: 2017 end-page: 429 article-title: Local adaptation of reproductive performance during thermal stress publication-title: Journal of Evolutionary Biology – volume: 5 start-page: 180022 year: 2018 article-title: GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms publication-title: Scientific Data – volume: 31 start-page: 405 year: 2018 end-page: 415 article-title: Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest publication-title: Journal of Evolutionary Biology – volume: 24 start-page: 694 year: 2010 end-page: 700 article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in publication-title: Functional Ecology – volume: 27 start-page: 1859 year: 2014 end-page: 1868 article-title: A laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future publication-title: Journal of Evolutionary Biology – volume: 62 start-page: 1345 year: 2008 end-page: 1357 article-title: Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life‐history timing in publication-title: Evolution – volume: 267 start-page: 739 year: 2000 end-page: 745 article-title: Thermal tolerance, climatic variability and latitude publication-title: Proceedings of the Royal Society of London Series B, Biological Sciences – volume: 109 start-page: 665 year: 1985 end-page: 689 article-title: Temperature related divergence in experimental populations of . 1. Genetic and developmental basis of wing size and shape variation publication-title: Genetics – volume: 100 start-page: 251 year: 2009 end-page: 255 article-title: Mendelian inheritance of pupal diapause in the flesh fly, publication-title: Journal of Heredity – volume: 313 start-page: 1773 year: 2006 end-page: 1775 article-title: Global genetic change tracks global climate warming in publication-title: Science – volume: 104 start-page: 586 year: 2014 end-page: 591 article-title: A genetic analysis of diapause in crosses of a southern and a northern strain of the cabbage beetle (Coleoptera: chrysomelidae) publication-title: Bulletin of Entomological Research – volume: 22 start-page: 3829 year: 2016 end-page: 3842 article-title: Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities publication-title: Global Change Biology – volume: 115 start-page: 293 year: 2015 end-page: 301 article-title: Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity publication-title: Heredity – volume: 122 start-page: 38001 year: 2018 article-title: Playing evolution in the laboratory: from the first major evolutionary transition to global warming publication-title: Europhysics Letters – volume: 206 start-page: 1183 year: 2003 end-page: 1192 article-title: Evolution of water conservation mechanisms in publication-title: Journal of Experimental Biology – volume: 99 start-page: 6070 year: 2002 end-page: 6074 article-title: Climate change hastens population extinctions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 92 start-page: 2994 year: 1995 end-page: 2998 article-title: Heat shock protein synthesis and thermotolerance in , an ant from the sahara desert publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 308 start-page: 691 year: 2005 end-page: 693 article-title: A rapid shift in a classic clinal pattern in reflecting climate change publication-title: Science – year: 2017 – volume: 535 start-page: 241 year: 2016 end-page: U294 article-title: Phenological sensitivity to climate across taxa and trophic levels publication-title: Nature – volume: 26 start-page: 245 year: 2012b end-page: 253 article-title: Plastic responses to four environmental stresses and cross‐resistance in a laboratory population of publication-title: Functional Ecology – volume: 5 start-page: 41 year: 1992 end-page: 59 article-title: The selective advantage of reaction norms for environmental tolerance publication-title: Journal of Evolutionary Biology – volume: 7 start-page: 10871 year: 2017 end-page: 10879 article-title: Effects of temperature and drought on early life stages in three species of butterflies: mortality of early life stages as a key determinant of vulnerability to climate change? publication-title: Ecology and Evolution – volume: 23 start-page: 6135 year: 2014 end-page: 6151 article-title: Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits publication-title: Molecular Ecology – volume: 372 start-page: 20160146 year: 2017 article-title: Evolution caused by extreme events publication-title: Philosophical Transactions of the Royal Society B‐Biological Sciences – volume: 7 start-page: 1 year: 2014 end-page: 14 article-title: Climate change, adaptation, and phenotypic plasticity: the problem and the evidence publication-title: Evolutionary Applications – ident: e_1_2_9_59_1 doi: 10.1209/0295-5075/122/38001 – ident: e_1_2_9_145_1 doi: 10.1046/j.1365-2486.2000.00322.x – ident: e_1_2_9_152_1 doi: 10.1111/mec.14262 – ident: e_1_2_9_179_1 doi: 10.1673/031.009.6801 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-2435.2011.01928.x – ident: e_1_2_9_131_1 doi: 10.1111/j.1439-0469.1999.tb00983.x – ident: e_1_2_9_163_1 doi: 10.1111/evo.13070 – ident: e_1_2_9_50_1 doi: 10.1016/j.cois.2015.09.013 – ident: e_1_2_9_143_1 doi: 10.1086/419266 – ident: e_1_2_9_75_1 doi: 10.1046/j.1420-9101.1993.6050643.x – ident: e_1_2_9_117_1 doi: 10.1111/j.1365-2656.2007.01303.x – ident: e_1_2_9_18_1 doi: 10.1007/s00360-016-0980-6 – ident: e_1_2_9_114_1 doi: 10.1146/annurev.en.25.010180.000245 – ident: e_1_2_9_8_1 doi: 10.1093/acprof:oso/9780198570875.001.1 – ident: e_1_2_9_21_1 doi: 10.1111/j.1420-9101.2012.02506.x – ident: e_1_2_9_27_1 doi: 10.1111/ele.12696 – ident: e_1_2_9_11_1 doi: 10.1126/science.1131002 – ident: e_1_2_9_85_1 doi: 10.1098/rstb.2012.0005 – ident: e_1_2_9_31_1 doi: 10.1017/S0007485314000352 – ident: e_1_2_9_105_1 doi: 10.1046/j.1466-822X.2003.00053.x – ident: e_1_2_9_104_1 doi: 10.1002/ece3.3588 – ident: e_1_2_9_155_1 doi: 10.1111/j.0014-3820.2003.tb00592.x – ident: e_1_2_9_82_1 doi: 10.1111/j.1365-2435.2012.02036.x – ident: e_1_2_9_157_1 doi: 10.1146/annurev-ento-010715-023859 – ident: e_1_2_9_124_1 doi: 10.1038/hdy.2015.8 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.241391498 – ident: e_1_2_9_121_1 doi: 10.1038/hdy.1987.113 – ident: e_1_2_9_150_1 doi: 10.1111/j.0014-3820.2005.tb01821.x – ident: e_1_2_9_9_1 doi: 10.1038/nclimate1717 – ident: e_1_2_9_88_1 doi: 10.1016/j.jinsphys.2015.05.003 – ident: e_1_2_9_98_1 doi: 10.1126/science.aaa7031 – ident: e_1_2_9_139_1 doi: 10.1093/icb/icw014 – ident: e_1_2_9_128_1 doi: 10.4039/tce.2017.51 – ident: e_1_2_9_17_1 doi: 10.1086/662551 – ident: e_1_2_9_181_1 doi: 10.1016/j.jinsphys.2017.03.003 – ident: e_1_2_9_73_1 doi: 10.1111/aen.12215 – ident: e_1_2_9_92_1 doi: 10.1126/science.1175443 – ident: e_1_2_9_2_1 doi: 10.1098/rspb.2000.1065 – ident: e_1_2_9_40_1 doi: 10.1007/978-94-009-3127-5 – ident: e_1_2_9_57_1 doi: 10.1016/j.cois.2016.07.002 – ident: e_1_2_9_32_1 doi: 10.1111/j.1466-8238.2010.00594.x – ident: e_1_2_9_74_1 doi: 10.1111/j.1365-2486.2010.02308.x – ident: e_1_2_9_100_1 doi: 10.1073/pnas.1714511115 – ident: e_1_2_9_23_1 doi: 10.1242/jeb.092502 – ident: e_1_2_9_26_1 doi: 10.1002/ece3.2355 – ident: e_1_2_9_77_1 doi: 10.1016/0022-1910(91)90110-L – ident: e_1_2_9_24_1 doi: 10.1111/gcb.13313 – ident: e_1_2_9_137_1 doi: 10.1016/S0169-5347(03)00036-3 – ident: e_1_2_9_167_1 doi: 10.1038/nature18608 – ident: e_1_2_9_178_1 doi: 10.1016/j.jinsphys.2017.12.002 – ident: e_1_2_9_133_1 doi: 10.1038/nature01286 – volume: 13 year: 2017 ident: e_1_2_9_80_1 article-title: Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? publication-title: Intergrative Zoology contributor: fullname: Hoffmann A.A. – ident: e_1_2_9_96_1 doi: 10.1098/rspb.2017.0447 – ident: e_1_2_9_86_1 doi: 10.1371/journal.pbio.1000585 – ident: e_1_2_9_113_1 doi: 10.1002/9781119070894.ch3 – ident: e_1_2_9_43_1 doi: 10.1073/pnas.0709472105 – ident: e_1_2_9_162_1 doi: 10.1126/science.1083073 – ident: e_1_2_9_169_1 doi: 10.2307/2409882 – ident: e_1_2_9_35_1 doi: 10.1111/j.1365-2435.2008.01481.x – ident: e_1_2_9_64_1 doi: 10.1086/285797 – ident: e_1_2_9_42_1 doi: 10.1111/j.1420-9101.2005.00914.x – ident: e_1_2_9_140_1 doi: 10.1111/jeb.13018 – ident: e_1_2_9_156_1 doi: 10.1111/j.1420-9101.2010.02110.x – ident: e_1_2_9_46_1 doi: 10.1890/10-1594.1 – ident: e_1_2_9_177_1 doi: 10.1371/journal.pbio.2001104 – ident: e_1_2_9_53_1 doi: 10.1111/jeb.12832 – ident: e_1_2_9_119_1 doi: 10.1098/rspb.2001.1787 – ident: e_1_2_9_125_1 doi: 10.1016/j.jinsphys.2012.12.001 – ident: e_1_2_9_161_1 doi: 10.1303/aez.28.161 – ident: e_1_2_9_36_1 doi: 10.1016/j.jinsphys.2011.05.004 – ident: e_1_2_9_68_1 doi: 10.1093/jhered/esn082 – ident: e_1_2_9_103_1 doi: 10.3389/fphys.2011.00074 – ident: e_1_2_9_94_1 doi: 10.1073/pnas.1207553109 – ident: e_1_2_9_110_1 doi: 10.1111/j.1420-9101.2011.02227.x – ident: e_1_2_9_34_1 doi: 10.1111/gcb.12929 – ident: e_1_2_9_173_1 doi: 10.1111/j.1558-5646.1985.tb00391.x – ident: e_1_2_9_6_1 doi: 10.1098/rspb.2009.1910 – ident: e_1_2_9_109_1 doi: 10.1007/s00442-017-3986-1 – ident: e_1_2_9_130_1 doi: 10.1111/gcb.12521 – ident: e_1_2_9_165_1 doi: 10.1111/mec.13000 – ident: e_1_2_9_10_1 doi: 10.1098/rspb.2009.1355 – ident: e_1_2_9_89_1 doi: 10.1093/genetics/140.2.659 – ident: e_1_2_9_69_1 doi: 10.1111/1365-2435.12499 – ident: e_1_2_9_3_1 doi: 10.1029/2008JD010536 – ident: e_1_2_9_160_1 doi: 10.1016/j.cois.2016.08.003 – ident: e_1_2_9_144_1 doi: 10.1111/j.0014-3820.2004.tb01726.x – ident: e_1_2_9_39_1 doi: 10.1146/annurev-ento-010814-021017 – ident: e_1_2_9_13_1 doi: 10.1038/sdata.2018.22 – ident: e_1_2_9_168_1 doi: 10.1038/35079066 – ident: e_1_2_9_118_1 doi: 10.1111/j.1365-2435.2009.01666.x – ident: e_1_2_9_171_1 doi: 10.1046/j.1420-9101.2003.00560.x – ident: e_1_2_9_72_1 doi: 10.1111/evo.12843 – ident: e_1_2_9_44_1 doi: 10.1046/j.1570-7458.1999.00480.x – ident: e_1_2_9_12_1 doi: 10.1038/sj.hdy.6800168 – ident: e_1_2_9_5_1 doi: 10.1111/j.1439-0418.2011.01658.x – ident: e_1_2_9_90_1 doi: 10.1111/j.1365-2435.2008.01538.x – ident: e_1_2_9_61_1 doi: 10.1073/pnas.92.7.2994 – ident: e_1_2_9_14_1 doi: 10.1111/j.1752-4571.2011.00214.x – ident: e_1_2_9_158_1 doi: 10.1126/science.aag2773 – ident: e_1_2_9_55_1 doi: 10.1093/conphys/cov056 – ident: e_1_2_9_51_1 doi: 10.1111/een.12127 – ident: e_1_2_9_175_1 doi: 10.1111/1365-2435.12858 – ident: e_1_2_9_63_1 doi: 10.1242/jeb.00233 – ident: e_1_2_9_166_1 doi: 10.1242/jeb.061283 – ident: e_1_2_9_29_1 doi: 10.1111/j.1365-2656.2009.01611.x – ident: e_1_2_9_62_1 doi: 10.1093/icb/icj003 – ident: e_1_2_9_38_1 doi: 10.1038/s41558-018-0067-3 – ident: e_1_2_9_151_1 doi: 10.1111/jeb.12436 – ident: e_1_2_9_122_1 doi: 10.1111/eea.12466 – ident: e_1_2_9_146_1 doi: 10.1007/s00442-018-4166-7 – ident: e_1_2_9_41_1 doi: 10.1111/gcb.12014 – ident: e_1_2_9_123_1 doi: 10.1086/675302 – ident: e_1_2_9_87_1 doi: 10.1086/431314 – ident: e_1_2_9_182_1 doi: 10.1111/een.12120 – ident: e_1_2_9_4_1 doi: 10.1016/j.cbpa.2013.05.012 – ident: e_1_2_9_148_1 doi: 10.1111/jeb.13231 – ident: e_1_2_9_49_1 doi: 10.1038/nature09407 – ident: e_1_2_9_176_1 doi: 10.1186/s12983-016-0147-z – ident: e_1_2_9_7_1 doi: 10.1038/hdy.2013.33 – ident: e_1_2_9_120_1 doi: 10.1086/285369 – ident: e_1_2_9_135_1 doi: 10.1111/1365-2435.12818 – ident: e_1_2_9_28_1 doi: 10.1111/1365-2435.12288 – ident: e_1_2_9_170_1 doi: 10.1086/303381 – ident: e_1_2_9_142_1 doi: 10.1007/s10682-016-9880-1 – ident: e_1_2_9_81_1 doi: 10.1016/S0306-4565(02)00057-8 – ident: e_1_2_9_111_1 doi: 10.1111/j.1365-294X.2011.05155.x – ident: e_1_2_9_97_1 doi: 10.1098/rspb.2018.0048 – ident: e_1_2_9_56_1 doi: 10.1007/s10709-012-9635-z – ident: e_1_2_9_33_1 doi: 10.1371/journal.pbio.1000357 – ident: e_1_2_9_66_1 doi: 10.1098/rstb.2016.0146 – ident: e_1_2_9_108_1 doi: 10.1111/evo.12617 – ident: e_1_2_9_174_1 doi: 10.1098/rspb.2007.0997 – ident: e_1_2_9_54_1 doi: 10.1111/j.1461-0248.2006.00928.x – ident: e_1_2_9_58_1 doi: 10.1890/10-1885.1 – ident: e_1_2_9_106_1 doi: 10.1007/s11692-016-9375-6 – ident: e_1_2_9_70_1 doi: 10.1098/rspb.2014.0396 – ident: e_1_2_9_60_1 doi: 10.1046/j.1420-9101.1992.5010041.x – ident: e_1_2_9_126_1 doi: 10.1007/s10584-017-2037-6 – ident: e_1_2_9_138_1 doi: 10.1111/j.1365-2435.2010.01804.x – ident: e_1_2_9_112_1 doi: 10.1111/ecog.00967 – ident: e_1_2_9_129_1 – ident: e_1_2_9_141_1 doi: 10.1111/j.1558-5646.2008.00367.x – ident: e_1_2_9_79_1 doi: 10.1038/nature09670 – ident: e_1_2_9_115_1 doi: 10.1073/pnas.052131199 – ident: e_1_2_9_154_1 doi: 10.1038/nclimate2457 – ident: e_1_2_9_37_1 doi: 10.1111/jeb.12969 – ident: e_1_2_9_47_1 doi: 10.1111/j.1365-2486.2011.02542.x – ident: e_1_2_9_101_1 doi: 10.1093/icb/icr015 – ident: e_1_2_9_76_1 doi: 10.1016/0022-1910(90)90176-G – ident: e_1_2_9_25_1 doi: 10.1093/icb/icx032 – ident: e_1_2_9_147_1 doi: 10.1111/j.1420-9101.2009.01725.x – ident: e_1_2_9_134_1 doi: 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2 – ident: e_1_2_9_48_1 doi: 10.1093/biolinnean/blw047 – ident: e_1_2_9_116_1 doi: 10.1111/eva.12137 – ident: e_1_2_9_71_1 doi: 10.1111/1365-2435.12687 – ident: e_1_2_9_159_1 doi: 10.1111/ele.12686 – ident: e_1_2_9_78_1 doi: 10.1046/j.1365-2699.2000.00217.x – ident: e_1_2_9_153_1 doi: 10.1111/aec.12037 – ident: e_1_2_9_95_1 doi: 10.1086/683252 – ident: e_1_2_9_136_1 doi: 10.1016/S0306-4565(00)00022-X – ident: e_1_2_9_91_1 doi: 10.1111/jeb.13303 – ident: e_1_2_9_172_1 doi: 10.1086/664709 – ident: e_1_2_9_102_1 doi: 10.1111/evo.12221 – ident: e_1_2_9_132_1 doi: 10.1242/jeb.065730 – ident: e_1_2_9_107_1 doi: 10.1073/pnas.0708074105 – ident: e_1_2_9_127_1 doi: 10.1111/gcb.13553 – ident: e_1_2_9_183_1 doi: 10.1038/srep18654 – ident: e_1_2_9_52_1 doi: 10.1007/978-3-642-81105-0 – ident: e_1_2_9_99_1 doi: 10.1111/evo.12285 – ident: e_1_2_9_45_1 doi: 10.1111/nyas.13223 – ident: e_1_2_9_83_1 doi: 10.1016/j.jinsphys.2007.06.011 – ident: e_1_2_9_84_1 doi: 10.1086/321314 – ident: e_1_2_9_30_1 doi: 10.1093/genetics/109.4.665 – ident: e_1_2_9_15_1 doi: 10.1111/j.1558-5646.1993.tb02151.x – ident: e_1_2_9_93_1 doi: 10.1111/j.1558-5646.2012.01685.x – ident: e_1_2_9_180_1 doi: 10.1111/j.1365-2486.2012.02640.x – ident: e_1_2_9_20_1 doi: 10.1890/0012-9658(1997)078[0969:HODTAP]2.0.CO;2 – ident: e_1_2_9_67_1 doi: 10.1098/rspb.2015.0401 – ident: e_1_2_9_164_1 doi: 10.1242/jeb.02201 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.0911841107 – ident: e_1_2_9_65_1 doi: 10.1046/j.1365-2540.1999.00533.x – ident: e_1_2_9_149_1 doi: 10.1111/eva.12116 |
SSID | ssj0006016 |
Score | 2.5872016 |
Snippet | Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity... Abstract Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 99 |
SubjectTerms | Adaptation Agricultural conservation Agricultural management Biodiversity Climate change Climate models Complexity CTmax evolutionary potential Field tests Fitness Fruit flies heat heritability Insects latitude phenology phenotypic plasticity Predictions Reproductive fitness Resilience Shape Species stress resistance Terrestrial environments thermal performance curves upper thermal limits Wildlife conservation |
Title | Terrestrial insects and climate change: adaptive responses in key traits |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphen.12282 https://www.proquest.com/docview/2221889191 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jIPjitzidEtAnoWP9TsQX0Y3iwxDZYAhS8lUYSjfW7sVf771p66YPgr4V2ob0JufmJD05IeRKsYhpHktHxplyYIQKHR5yz8HdKpnSHJsd1RajKJkEj9Nw2iK3zV6Yyh_ia8ENkWHzNQJcyGID5CiB6rkeTBkgAbt-jHquh-e1dxT6jDQuiBGPvNqbFGU861e_j0ZrirlJVO1IM9wlr00dK4HJW29Vyp76-GHf-N-P2CM7NQWld1Wf2Sctkx-QrZe5XWA_JMnY2AM7sGfSWV6g3IOKXFP1PgN6a2i1V_iGCi0WmCzpstLZmgIep5AUKJ47URZHZDIcjO8Tpz5vwVG-H0P7KBHgf1LOgDP6ocgYmqsBxQp4LDzezxhTQvsMMB8AWjXAXQvuRyJTMMkG3nhM2vk8NyeECsNDBjf6kZFYpoy19UbzhHZlGOkOuWzini4qW420mY5gTFIbkw7pNk2S1tAqUiA0LoMacrdDrm1sfykhfUoGI3t1-peHz8g2ECNeScK6pF0uV-YcyEcpL2wn-wQmqNM6 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA06EX3xW5xODeiT0LF-J76JblSdQ2SD4UtJkxSG0o21e_HXe2_auemDoG-FpqG9yUlO0pNzCbmULGCKh4mVhKm0YIbyLe5zx8LTKqlUHJsd1Ra9IBp4D0N_WGlz8CxM6Q_xteGGyDDjNQIcN6SXUI4aqKbtwJphlawB3l3M3HD3snCPQqeRuQ9iwAOncidFIc_i2e_z0YJkLlNVM9d0tsuEqrmxKESJyVtzViRN-fHDwPHfn7FDtioWSm_KbrNLVnS2R9Zfx2aPfZ9EfW1ydmDnpKMsR8UHFZmi8n0EDFfT8rjwNRVKTHC8pNNSaqtzKE5hXKCYeqLID8ig0-7fRlaVcsGSrhtCE0nh4a9SzoA2ur5IGfqrAcvyeCgc3koZk0K5DGDvAWAVIF4J7gYilbDOBup4SGrZONNHhArNfQY3WoFOsM4kVMYezRHKTvxA1cnFPPDxpHTWiOcrEoxJbGJSJ415m8QVuvIYOI3N4A25XSdXJri_1BA_R-2euTr-S-FzshH1n7px9773eEI2gSfxUiHWILViOtOnwEWK5Mz0uE9iYNdS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGP2YE8UX7-J0akCfhI71nogvohvzwhiywRCkpEkLQ-nGLi_-er8vXd30QdC3QtOQfslJTpKTE4ALxQOuRRhbcZgqC0co3xK-cCw6rZIqLajaSW3RDlo976Hv90twXZyFyf0hvhbcCBmmvyaAj3S6BHKSQNVsB6cMK7DqBUh9iRI9L8yjyGiksEEMRODMzUlJx7P49vtwtOCYy0zVDDXNLXgtCpkrTN5qs2lcUx8__Bv_-xfbsDnnoOwmbzQ7UEqyXVh7GZoV9j1odRNzYwc1TTbIJqT3YDLTTL0PkN8mLD8sfMWkliPqLdk4F9omE0zOsFdgdPHEdLIPvWaje9uy5hcuWMp1Q6wgJT3aKBUcSaPry5STuxpyLE-E0hH1lHMltcsR9B7CVSPetRRuIFOFs2wkjgdQzoZZcghMJsLn-KIeJDHlGYfamKM5UtuxH-gKnBdxj0a5r0ZUzEcoJpGJSQWqRZVEc2xNImQ0NscSCrsClya2v-QQdVqNtnk6-kviM1jv3DWjp_v24zFsIEkSuTysCuXpeJacIBGZxqemvX0C_1XWAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+insects+and+climate+change%3A+adaptive+responses+in+key+traits&rft.jtitle=Physiological+entomology&rft.au=Kellermann%2C+Vanessa&rft.au=Belinda+van+Heerwaarden&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0307-6962&rft.eissn=1365-3032&rft.volume=44&rft.issue=2&rft.spage=99&rft.epage=115&rft_id=info:doi/10.1111%2Fphen.12282&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-6962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-6962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-6962&client=summon |