Electrochemical behaviors of polyaniline-poly(styrene-sulfonic acid) complexes and related films

This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical po...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 100; no. 5; pp. 4023 - 4044
Main Authors Lin, Der-Shyu, Chou, Cheng-Tung, Chen, Yu-Wen, Kuo, Kung-Tu, Yang, Sze-Ming
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 05.06.2006
Wiley
Subjects
Online AccessGet full text
ISSN0021-8995
1097-4628
DOI10.1002/app.23231

Cover

Loading…
Abstract This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10−2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ∼3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006
AbstractList This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1 M HCl solution. Polyaniline (PANI), poly( o ‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10 −2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO 3 ) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ∼3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o ‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1 M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o ‐phenetidine, 2‐ethylaniline) concentration (0.6 M) with PSSA (0.15 M) , the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (OC 2 H 5 or C 2 H 5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (OC 2 H 5 or C 2 H 5 ) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10−2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ∼3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006
Author Chen, Yu-Wen
Yang, Sze-Ming
Kuo, Kung-Tu
Lin, Der-Shyu
Chou, Cheng-Tung
Author_xml – sequence: 1
  givenname: Der-Shyu
  surname: Lin
  fullname: Lin, Der-Shyu
  email: 77740271@alumni.tku.edu.tw
  organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China
– sequence: 2
  givenname: Cheng-Tung
  surname: Chou
  fullname: Chou, Cheng-Tung
  organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China
– sequence: 3
  givenname: Yu-Wen
  surname: Chen
  fullname: Chen, Yu-Wen
  organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China
– sequence: 4
  givenname: Kung-Tu
  surname: Kuo
  fullname: Kuo, Kung-Tu
  organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China
– sequence: 5
  givenname: Sze-Ming
  surname: Yang
  fullname: Yang, Sze-Ming
  organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17729335$$DView record in Pascal Francis
BookMark eNp9kE1P3DAQhq0KpC60h_6DXJDgENafcXJEQAGBCogiju7EGQu33jiyQ9n99w0sbSUkOM2M5nlGmneLbPSxR0K-MLrPKOVzGIZ9LrhgH8iM0UaXsuL1BplNO1bWTaM-kq2cf1LKmKLVjPw4DmjHFO09LryFULR4D799TLmIrhhiWEHvg--xfOp387hKOA35IbjYe1uA9d1eYeNiCLjEXEDfFQkDjNgVzodF_kQ2HYSMn1_qNrn9evz98LS8uDw5Ozy4KK0QmpUdVVpBW7u2ArROIoWmk1xQRy2zWCnecekqjbLpUIHiLZd1batWUqk7LcU22VnfHSBPf7gEvfXZDMkvIK0M05o3QqiJ21tzNsWcE7r_CDVPEZopQvMc4cTOX7HWjzD62I8JfHjPePQBV2-fNgdXV3-Ncm34POLynwHpl6m00MrcfTsx4kZda3Ukzbn4AxlzlRU
CODEN JAPNAB
CitedBy_id crossref_primary_10_1016_j_electacta_2013_12_025
crossref_primary_10_1016_j_synthmet_2011_12_002
crossref_primary_10_33961_JECST_2018_9_2_93
crossref_primary_10_3390_polym13142349
crossref_primary_10_1002_pen_20972
crossref_primary_10_1007_s10965_008_9207_1
crossref_primary_10_1016_j_eurpolymj_2022_111714
crossref_primary_10_1007_s11696_016_0087_2
crossref_primary_10_1007_s10008_010_1261_z
crossref_primary_10_3390_polym14153201
crossref_primary_10_1002_adma_202301080
crossref_primary_10_1002_mabi_201000256
crossref_primary_10_1007_s10008_017_3556_9
crossref_primary_10_1039_C5RA07504A
crossref_primary_10_1007_s00289_021_03647_4
crossref_primary_10_1155_2011_467170
crossref_primary_10_1002_app_31624
Cites_doi 10.1016/0379-6779(93)91004-L
10.1002/polb.1994.090320204
10.1016/S0379-6779(01)00354-X
10.1021/ac00294a003
10.1016/0379-6779(89)90300-7
10.1039/c39910001529
10.1016/S0927-0248(98)00065-8
10.1016/S0379-6779(97)80659-5
10.1149/1.2097220
10.1016/0379-6779(91)91177-C
10.1016/0013-4686(92)87010-W
10.1149/1.2096626
10.1016/0379-6779(89)90297-X
10.1149/1.2221126
10.1016/0038-1098(94)90788-9
10.1143/JJAP.20.581
10.1007/BF01016210
10.1016/0921-5107(92)90171-5
10.1021/j100287a050
10.1016/0379-6779(91)91183-B
10.1016/0379-6779(94)02414-T
10.1016/0167-2738(88)90448-1
10.1016/0379-6779(92)90359-Q
10.1016/S0379-6779(96)03839-8
10.1016/0379-6779(96)80126-3
10.1016/S0379-6779(00)01039-0
10.1016/0927-0248(94)90240-2
10.1016/0379-6779(93)91076-E
10.1021/j100817a004
10.1149/1.2131429
10.1016/0040-6090(85)90171-3
10.1149/1.1837756
10.1016/0013-4686(94)80062-6
10.1557/PROC-247-601
10.1007/978-94-011-1568-1
10.1016/S0379-6779(96)03844-1
10.1149/1.2059144
10.1016/0032-3861(94)90533-9
10.1149/1.2123487
10.1149/1.2115674
10.1016/0379-6779(90)90185-N
10.1016/S0927-0248(98)00145-7
10.1364/AO.26.003489
10.1016/S0379-6779(96)04156-2
10.1007/BF00882886
10.1016/0378-7753(87)80118-0
10.1016/0165-1633(84)90024-8
10.1016/0379-6779(93)90462-6
10.1016/S0167-2738(98)00513-X
10.1016/0379-6779(91)91178-D
10.1143/JJAP.25.1073
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
2007 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: 2007 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/app.23231
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1097-4628
EndPage 4044
ExternalDocumentID 17729335
10_1002_app_23231
APP23231
ark_67375_WNG_3S5Q75D4_K
Genre article
GrantInformation_xml – fundername: The National Science Council of Republic of China
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
6TJ
ABDEX
ABDPE
ABEML
ACSCC
ADMLS
AFFNX
AGHNM
AI.
GYXMG
HF~
H~9
IQODW
M6T
NEJ
PALCI
RIWAO
RJQFR
SAMSI
VH1
ID FETCH-LOGICAL-c3371-d0575ab8fb6aecf4e0a9d4230f0c1ce652d24f67e49de5a52b2488c6b4047d743
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Wed Apr 02 07:15:29 EDT 2025
Tue Jul 01 02:57:00 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
Wed Oct 30 09:50:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Composite film
Aniline derivative polymer
Electrical conductivity
Property composition relationship
Electrochromism
Electrochromic device
Electrochemical polymerization
Structure composition relationship
Conjugated polymer
Optical properties
water- soluble polymers
Optical absorption
conjugated polymers
Aniline polymer
Electrical properties
Use
Experimental study
polyelectrolytes
Acrylamide derivative polymer
Conducting polymers
Polyelectrolyte
Sulfonate polymer
Electrochemical properties
Morphology
Preparation
Styrenesulfonic acid polymer
Soluble compound
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3371-d0575ab8fb6aecf4e0a9d4230f0c1ce652d24f67e49de5a52b2488c6b4047d743
Notes istex:574B895EFB47889ABC65092DD6D7D7627D22CD7D
ArticleID:APP23231
The National Science Council of Republic of China
ark:/67375/WNG-3S5Q75D4-K
PageCount 22
ParticipantIDs pascalfrancis_primary_17729335
crossref_primary_10_1002_app_23231
crossref_citationtrail_10_1002_app_23231
wiley_primary_10_1002_app_23231_APP23231
istex_primary_ark_67375_WNG_3S5Q75D4_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 5 June 2006
PublicationDateYYYYMMDD 2006-06-05
PublicationDate_xml – month: 06
  year: 2006
  text: 5 June 2006
  day: 05
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
PublicationTitle Journal of applied polymer science
PublicationTitleAlternate J. Appl. Polym. Sci
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Jelle, B. P.; Hagen, G.; Sunde, S.; Odegard, R. Synth Met 1993, 54, 315.
Liu, J. M.; Yang, S. C. J Chem Soc Chem Commun 1991, 1529.
Noufi, R.; Nozik, A. J.; White, J.; Warren, L. F. J Electrochem Soc 1982, 129, 226.
Yang, C. Y.; Reghu, M.; Heeger, A. J.; Cao, Y. Synth Met 1996, 79, 27.
Jelle, B. P.; Hagen, G.; Hesjevik, S. M.; Odegard, R. Mater Sci Eng B 1992, 13, 239.
Yang, S. M.; Li, C. P. Synth Met 1993, 55, 636.
Drago, R. S. Physical Method in Chemistry; Saunders College Publishing: Philadelphia, 1977.
Heinze, J. Synth Met 1991, 41, 2805.
Angelopoulos, M.; Dipietro, R.; Zheng, W. G.; MacDiarmid, A. G.; Epstein, A. J. Synth Met 1997, 84, 35.
Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. RCA Rev 1975, 36, 177.
Hyodo, K. Electrochim Acta 1994, 39, 265.
Cushman, R. J.; McManus, P. M.; Yang, S. C. J Electroanal Chem 1986, 291, 235.
Sun, L. F.; Yang, S. C.; Liu, T. M.; Abstr Paper Am Chem Soc 1992, 204, 137.
Sun, L. F.; Liu, H. B.; Clark, R.; Yang, S. C. Synth Met 1997, 84, 67.
Liu, J. M.; Sun, L.; Hwang, J. H.; Yang, S. C. Mater Res Soc Symp Proc 1992, 247, 601.
Yang, C. H.; Wen, T. C. J Electrochem Soc 1994, 141, 2624.
Jelle, B. P.; Hagen, G.; Odegard, R. Electrochim Acta 1992, 37, 1377.
Goto, F.; Okabayashi, K.; Yoshida, T.; Morimoto, H. J Power Sources 1987, 20, 243.
Mohapatra, S. K. J Electrochem Soc 1978, 125, 284.
Larderich, T.; Tranayrd, P. Acad CR Sci Ser 1963, C84, 257.
Ozer, N.; Lampert, C. M. Sol Energy Mater Sol Cells 1998, 54, 147.
Morita, M. J Polym Sci Part B: Polym Phys 1994, 32, 231.
Jelle, B. P.; Hagen, G. J Electrochem Soc 1993, 140, 3560.
Lampert, C. M. Sol Energy Mater Sol Cells 1984, 11, 1.
Ohsawa, T.; Kabata, T.; Kimura, O. Synth Met 1989, 29, E203.
Nechtschein, M.; Genoud, F. Solid State Commun 1994, 91, 471.
Nguyen, M. T.; Dao, L. H. J Electrochem Soc 1989, 136, 2131.
Phol, H. A.; Engelhardt, E. H. J Phys Chem 1962, 66 2085.
Yang, S. M.; Shiah, W. M.; Lai, J. J. Synth Met 1991, 41, 757.
Weil, J. A.; Botton, J. R.; Wertz, J. E. Electron Spin Resonance: Elementary Theory and Practical Applications; Wiely-Interscience: New York, 1994.
Lee, W.; Du, G.; Long, S. M.; Epstein, A. J.; Shimizu, S.; Saitoh, T.; Uzawa, M. Synth Met 1997, 84, 807.
Somasini, N. L. D.; MacDiarmid, A. G. J Appl Electrochem 1988, 18, 92.
Vaivars, G.; Azens, A.; Granqvit, C. G. Solid State Ionics 1999, 119, 269.
Shizukuishi, M.; Inoue, E.; Kaga, E.; Kokado, H.; Shimizu, I. J Appl Phys 1981, 20, 581.
Lin, D. S.; Yang, S. M. Synth Met 2001, 119, 111.
Scrosati, B. In Applications of Electroactive Polymers; Scrosati, B., Ed.; Chapman & Hall: London, 1993; p 267.
Osaka, T.; Ogano, S.; Naoi, K. J Electrochem Soc 1989, 136, 306.
Yang, S. M.; Chen, W. M.; You, K. S. Synth Met 1997, 84, 77.
Josowiaz, M.; Janata, J. J Anal Chem 1986, 58, 514.
Denesuk, M.; Cronin, J. P.; Kennedy, S. R.; Uhlmann, D. R. J Electrochem Soc 1997, 144, 2154.
Cao, Y.; Heeger, A. J. Synth Met 1990, 39, 205.
Bull, R. A.; Fan, F. R.; Bard, A. J. J Electrochem Soc 1984, 131, 687.
Zeller, H. Z.; Beyeler, H. U. Appl Phys 1977, 13, 231.
Stevens, J. R.; Sevensson, J. S. E. M.; Granqvist, C. G.; Spinder, R. Appl Opt 1987, 26, 3489.
Lampert, C. M. Sol Energy Mater Sol Cells 1994, 33, 389.
Svensson, J. S. E. M.; Granqvist, C. G. Thin Solid Films 1985, 126, 31.
Jozefowica, M. E.; Epstein, A. J.; Tang, X. Synth Met 1992, 46, 337.
Yang, S. M.; Lin, T. S. Synth Met 1989, 29, E227.
Zoppi, R. A.; De Paoli, M. A. Quim Nova 1993, 16, 560.
Heeger, A. J Synth Met 1993, 55, 3471.
Goldner, R. B.; Haas, T. E.; Seward, G.; Wong, K. K.; Norton, P.; Foley, G.; Berera, G.; Wei, G.; Schulz, S.; Chapman, R. Solid State Ionics 1988, 28, 1715.
McManus, P. M.; Cushman, R. J.; Yang, S. C. J Phys Chem 1987, 91, 744.
Yang, S. M.; Chiang, J. H.; Shiah, W. M. Synth Met 1991, 41, 753.
Yamanaka, K. J. J Appl Phys 1986, 25, 1073.
Yang, S. C. Large-area Chromogenics: Materials and Devices for Transmittance Control; Lampert, C. M., Granqvist, C. G., Ed.; SPIE Press: Washington, 1990; p 335.
Aasmundtveit, K.; Genoud, F.; Houze, E.; Nechtschein, M. Synth Met 1995, 69, 193.
Lampert, C. M. Sol Energy Mater Sol Cells 1998, 55, 301.
Andrei, M.; Roggero, A.; Marchese, L.; Passerini, S. Polymer 1994, 35, 3592.
Zhang, Q.; Jin, H.; Wang, X.; Jing, X. Synth Met 2001, 123, 481.
1997; 84
1992; 247
1992; 204
1985; 126
1992; 13
1996; 79
1977
1990
1995; 69
1991; 41
1994; 141
1984; 11
1997; 144
1994; 33
1994; 35
1992; 46
1994; 39
1998; 54
1998; 55
1994; 32
2001; 123
1988; 18
1989; 136
1990; 39
1987; 91
1982; 129
1986; 58
1996
1993; 140
1975; 36
1994
1993
1992; 37
1991
1981; 20
1989; 29
1987; 20
1984; 131
1993; 16
1993; 55
1993; 54
1986; 25
1988; 28
1986; 291
1977; 13
1978; 125
1963; C84
1962; 66
2001; 119
1994; 91
1987; 26
1999; 119
1990; 4
e_1_2_6_51_2
e_1_2_6_30_2
Drago R. S. (e_1_2_6_54_2) 1977
Zoppi R. A. (e_1_2_6_13_2) 1993; 16
Scrosati B. (e_1_2_6_14_2) 1993
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_20_2
Inganas O. (e_1_2_6_34_2) 1990
e_1_2_6_41_2
e_1_2_6_60_2
Larderich T. (e_1_2_6_36_2) 1963; 84
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
Faughnan B. W. (e_1_2_6_26_2) 1975; 36
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
Dao L. H. (e_1_2_6_18_2) 1990
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_45_2
Cushman R. J. (e_1_2_6_50_2) 1986; 291
e_1_2_6_31_2
Weil J. A. (e_1_2_6_53_2) 1994
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
Sun L. F. (e_1_2_6_52_2) 1992; 204
e_1_2_6_8_2
Yang S. C. (e_1_2_6_19_2) 1990
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Stevens, J. R.; Sevensson, J. S. E. M.; Granqvist, C. G.; Spinder, R. Appl Opt 1987, 26, 3489.
– reference: Phol, H. A.; Engelhardt, E. H. J Phys Chem 1962, 66 2085.
– reference: Goldner, R. B.; Haas, T. E.; Seward, G.; Wong, K. K.; Norton, P.; Foley, G.; Berera, G.; Wei, G.; Schulz, S.; Chapman, R. Solid State Ionics 1988, 28, 1715.
– reference: Liu, J. M.; Sun, L.; Hwang, J. H.; Yang, S. C. Mater Res Soc Symp Proc 1992, 247, 601.
– reference: Denesuk, M.; Cronin, J. P.; Kennedy, S. R.; Uhlmann, D. R. J Electrochem Soc 1997, 144, 2154.
– reference: Jelle, B. P.; Hagen, G.; Sunde, S.; Odegard, R. Synth Met 1993, 54, 315.
– reference: Yang, C. H.; Wen, T. C. J Electrochem Soc 1994, 141, 2624.
– reference: Drago, R. S. Physical Method in Chemistry; Saunders College Publishing: Philadelphia, 1977.
– reference: Josowiaz, M.; Janata, J. J Anal Chem 1986, 58, 514.
– reference: Mohapatra, S. K. J Electrochem Soc 1978, 125, 284.
– reference: Zeller, H. Z.; Beyeler, H. U. Appl Phys 1977, 13, 231.
– reference: Zhang, Q.; Jin, H.; Wang, X.; Jing, X. Synth Met 2001, 123, 481.
– reference: Lee, W.; Du, G.; Long, S. M.; Epstein, A. J.; Shimizu, S.; Saitoh, T.; Uzawa, M. Synth Met 1997, 84, 807.
– reference: Nechtschein, M.; Genoud, F. Solid State Commun 1994, 91, 471.
– reference: Morita, M. J Polym Sci Part B: Polym Phys 1994, 32, 231.
– reference: Yang, S. M.; Chen, W. M.; You, K. S. Synth Met 1997, 84, 77.
– reference: Sun, L. F.; Yang, S. C.; Liu, T. M.; Abstr Paper Am Chem Soc 1992, 204, 137.
– reference: Lampert, C. M. Sol Energy Mater Sol Cells 1984, 11, 1.
– reference: Yang, S. M.; Shiah, W. M.; Lai, J. J. Synth Met 1991, 41, 757.
– reference: Yang, C. Y.; Reghu, M.; Heeger, A. J.; Cao, Y. Synth Met 1996, 79, 27.
– reference: Sun, L. F.; Liu, H. B.; Clark, R.; Yang, S. C. Synth Met 1997, 84, 67.
– reference: Lampert, C. M. Sol Energy Mater Sol Cells 1994, 33, 389.
– reference: Zoppi, R. A.; De Paoli, M. A. Quim Nova 1993, 16, 560.
– reference: Andrei, M.; Roggero, A.; Marchese, L.; Passerini, S. Polymer 1994, 35, 3592.
– reference: Larderich, T.; Tranayrd, P. Acad CR Sci Ser 1963, C84, 257.
– reference: Osaka, T.; Ogano, S.; Naoi, K. J Electrochem Soc 1989, 136, 306.
– reference: Svensson, J. S. E. M.; Granqvist, C. G. Thin Solid Films 1985, 126, 31.
– reference: Jelle, B. P.; Hagen, G. J Electrochem Soc 1993, 140, 3560.
– reference: Shizukuishi, M.; Inoue, E.; Kaga, E.; Kokado, H.; Shimizu, I. J Appl Phys 1981, 20, 581.
– reference: Yamanaka, K. J. J Appl Phys 1986, 25, 1073.
– reference: Ozer, N.; Lampert, C. M. Sol Energy Mater Sol Cells 1998, 54, 147.
– reference: Jelle, B. P.; Hagen, G.; Odegard, R. Electrochim Acta 1992, 37, 1377.
– reference: Somasini, N. L. D.; MacDiarmid, A. G. J Appl Electrochem 1988, 18, 92.
– reference: McManus, P. M.; Cushman, R. J.; Yang, S. C. J Phys Chem 1987, 91, 744.
– reference: Aasmundtveit, K.; Genoud, F.; Houze, E.; Nechtschein, M. Synth Met 1995, 69, 193.
– reference: Scrosati, B. In Applications of Electroactive Polymers; Scrosati, B., Ed.; Chapman & Hall: London, 1993; p 267.
– reference: Yang, S. M.; Chiang, J. H.; Shiah, W. M. Synth Met 1991, 41, 753.
– reference: Bull, R. A.; Fan, F. R.; Bard, A. J. J Electrochem Soc 1984, 131, 687.
– reference: Ohsawa, T.; Kabata, T.; Kimura, O. Synth Met 1989, 29, E203.
– reference: Cushman, R. J.; McManus, P. M.; Yang, S. C. J Electroanal Chem 1986, 291, 235.
– reference: Angelopoulos, M.; Dipietro, R.; Zheng, W. G.; MacDiarmid, A. G.; Epstein, A. J. Synth Met 1997, 84, 35.
– reference: Jelle, B. P.; Hagen, G.; Hesjevik, S. M.; Odegard, R. Mater Sci Eng B 1992, 13, 239.
– reference: Cao, Y.; Heeger, A. J. Synth Met 1990, 39, 205.
– reference: Noufi, R.; Nozik, A. J.; White, J.; Warren, L. F. J Electrochem Soc 1982, 129, 226.
– reference: Jozefowica, M. E.; Epstein, A. J.; Tang, X. Synth Met 1992, 46, 337.
– reference: Yang, S. M.; Lin, T. S. Synth Met 1989, 29, E227.
– reference: Vaivars, G.; Azens, A.; Granqvit, C. G. Solid State Ionics 1999, 119, 269.
– reference: Weil, J. A.; Botton, J. R.; Wertz, J. E. Electron Spin Resonance: Elementary Theory and Practical Applications; Wiely-Interscience: New York, 1994.
– reference: Liu, J. M.; Yang, S. C. J Chem Soc Chem Commun 1991, 1529.
– reference: Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. RCA Rev 1975, 36, 177.
– reference: Yang, S. C. Large-area Chromogenics: Materials and Devices for Transmittance Control; Lampert, C. M., Granqvist, C. G., Ed.; SPIE Press: Washington, 1990; p 335.
– reference: Goto, F.; Okabayashi, K.; Yoshida, T.; Morimoto, H. J Power Sources 1987, 20, 243.
– reference: Nguyen, M. T.; Dao, L. H. J Electrochem Soc 1989, 136, 2131.
– reference: Lampert, C. M. Sol Energy Mater Sol Cells 1998, 55, 301.
– reference: Hyodo, K. Electrochim Acta 1994, 39, 265.
– reference: Yang, S. M.; Li, C. P. Synth Met 1993, 55, 636.
– reference: Heeger, A. J Synth Met 1993, 55, 3471.
– reference: Heinze, J. Synth Met 1991, 41, 2805.
– reference: Lin, D. S.; Yang, S. M. Synth Met 2001, 119, 111.
– start-page: 246
  year: 1990
– volume: 39
  start-page: 205
  year: 1990
  publication-title: Synth Met
– start-page: 267
  year: 1993
– volume: 18
  start-page: 92
  year: 1988
  publication-title: J Appl Electrochem
– volume: 54
  start-page: 315
  year: 1993
  publication-title: Synth Met
– volume: 25
  start-page: 1073
  year: 1986
  publication-title: J Appl Phys
– volume: 26
  start-page: 3489
  year: 1987
  publication-title: Appl Opt
– volume: 11
  start-page: 1
  year: 1984
  publication-title: Sol Energy Mater Sol Cells
– volume: 129
  start-page: 226
  year: 1982
  publication-title: J Electrochem Soc
– volume: 35
  start-page: 3592
  year: 1994
  publication-title: Polymer
– year: 1994
– volume: 84
  start-page: 67
  year: 1997
  publication-title: Synth Met
– volume: 144
  start-page: 2154
  year: 1997
  publication-title: J Electrochem Soc
– volume: 41
  start-page: 757
  year: 1991
  publication-title: Synth Met
– volume: 29
  start-page: E203
  year: 1989
  publication-title: Synth Met
– volume: 119
  start-page: 269
  year: 1999
  publication-title: Solid State Ionics
– volume: 66
  start-page: 2085
  year: 1962
  publication-title: J Phys Chem
– start-page: 1529
  year: 1991
  publication-title: J Chem Soc Chem Commun
– volume: C84
  start-page: 257
  year: 1963
  publication-title: Acad CR Sci Ser
– volume: 13
  start-page: 239
  year: 1992
  publication-title: Mater Sci Eng B
– volume: 291
  start-page: 235
  year: 1986
  publication-title: J Electroanal Chem
– volume: 16
  start-page: 560
  year: 1993
  publication-title: Quim Nova
– volume: 33
  start-page: 389
  year: 1994
  publication-title: Sol Energy Mater Sol Cells
– volume: 123
  start-page: 481
  year: 2001
  publication-title: Synth Met
– volume: 54
  start-page: 147
  year: 1998
  publication-title: Sol Energy Mater Sol Cells
– volume: 69
  start-page: 193
  year: 1995
  publication-title: Synth Met
– volume: 20
  start-page: 243
  year: 1987
  publication-title: J Power Sources
– volume: 29
  start-page: E227
  year: 1989
  publication-title: Synth Met
– volume: 247
  start-page: 601
  year: 1992
  publication-title: Mater Res Soc Symp Proc
– volume: 136
  start-page: 2131
  year: 1989
  publication-title: J Electrochem Soc
– volume: 46
  start-page: 337
  year: 1992
  publication-title: Synth Met
– volume: 55
  start-page: 301
  year: 1998
  publication-title: Sol Energy Mater Sol Cells
– volume: 136
  start-page: 306
  year: 1989
  publication-title: J Electrochem Soc
– start-page: 335
  year: 1990
– volume: 141
  start-page: 2624
  year: 1994
  publication-title: J Electrochem Soc
– volume: 140
  start-page: 3560
  year: 1993
  publication-title: J Electrochem Soc
– volume: 39
  start-page: 265
  year: 1994
  publication-title: Electrochim Acta
– volume: 125
  start-page: 284
  year: 1978
  publication-title: J Electrochem Soc
– volume: 13
  start-page: 231
  year: 1977
  publication-title: Appl Phys
– volume: 204
  start-page: 137
  year: 1992
  publication-title: Abstr Paper Am Chem Soc
– volume: 28
  start-page: 1715
  year: 1988
  publication-title: Solid State Ionics
– volume: 36
  start-page: 177
  year: 1975
  publication-title: RCA Rev
– year: 1996
– volume: 55
  start-page: 636
  year: 1993
  publication-title: Synth Met
– volume: 32
  start-page: 231
  year: 1994
  publication-title: J Polym Sci Part B: Polym Phys
– volume: 37
  start-page: 1377
  year: 1992
  publication-title: Electrochim Acta
– volume: 4
  start-page: 328
  year: 1990
– volume: 79
  start-page: 27
  year: 1996
  publication-title: Synth Met
– volume: 20
  start-page: 581
  year: 1981
  publication-title: J Appl Phys
– volume: 126
  start-page: 31
  year: 1985
  publication-title: Thin Solid Films
– year: 1977
– volume: 41
  start-page: 753
  year: 1991
  publication-title: Synth Met
– volume: 84
  start-page: 77
  year: 1997
  publication-title: Synth Met
– volume: 41
  start-page: 2805
  year: 1991
  publication-title: Synth Met
– volume: 84
  start-page: 35
  year: 1997
  publication-title: Synth Met
– volume: 58
  start-page: 514
  year: 1986
  publication-title: J Anal Chem
– volume: 84
  start-page: 807
  year: 1997
  publication-title: Synth Met
– volume: 131
  start-page: 687
  year: 1984
  publication-title: J Electrochem Soc
– volume: 119
  start-page: 111
  year: 2001
  publication-title: Synth Met
– volume: 55
  start-page: 3471
  year: 1993
  publication-title: J Synth Met
– volume: 91
  start-page: 744
  year: 1987
  publication-title: J Phys Chem
– volume: 91
  start-page: 471
  year: 1994
  publication-title: Solid State Commun
– ident: e_1_2_6_40_2
  doi: 10.1016/0379-6779(93)91004-L
– ident: e_1_2_6_61_2
  doi: 10.1002/polb.1994.090320204
– volume-title: Electron Spin Resonance: Elementary Theory and Practical Applications
  year: 1994
  ident: e_1_2_6_53_2
– ident: e_1_2_6_58_2
  doi: 10.1016/S0379-6779(01)00354-X
– ident: e_1_2_6_10_2
  doi: 10.1021/ac00294a003
– ident: e_1_2_6_43_2
  doi: 10.1016/0379-6779(89)90300-7
– volume: 16
  start-page: 560
  year: 1993
  ident: e_1_2_6_13_2
  publication-title: Quim Nova
– ident: e_1_2_6_25_2
  doi: 10.1039/c39910001529
– ident: e_1_2_6_4_2
  doi: 10.1016/S0927-0248(98)00065-8
– ident: e_1_2_6_32_2
  doi: 10.1016/S0379-6779(97)80659-5
– ident: e_1_2_6_17_2
  doi: 10.1149/1.2097220
– ident: e_1_2_6_41_2
  doi: 10.1016/0379-6779(91)91177-C
– ident: e_1_2_6_21_2
  doi: 10.1016/0013-4686(92)87010-W
– ident: e_1_2_6_6_2
  doi: 10.1149/1.2096626
– ident: e_1_2_6_30_2
  doi: 10.1016/0379-6779(89)90297-X
– ident: e_1_2_6_22_2
  doi: 10.1149/1.2221126
– ident: e_1_2_6_55_2
  doi: 10.1016/0038-1098(94)90788-9
– ident: e_1_2_6_60_2
  doi: 10.1143/JJAP.20.581
– volume: 204
  start-page: 137
  year: 1992
  ident: e_1_2_6_52_2
  publication-title: Abstr Paper Am Chem Soc
– ident: e_1_2_6_7_2
  doi: 10.1007/BF01016210
– ident: e_1_2_6_23_2
  doi: 10.1016/0921-5107(92)90171-5
– ident: e_1_2_6_49_2
  doi: 10.1021/j100287a050
– start-page: 246
  year: 1990
  ident: e_1_2_6_18_2
– ident: e_1_2_6_12_2
  doi: 10.1016/0379-6779(91)91183-B
– ident: e_1_2_6_56_2
  doi: 10.1016/0379-6779(94)02414-T
– ident: e_1_2_6_16_2
  doi: 10.1016/0167-2738(88)90448-1
– start-page: 335
  volume-title: Large‐area Chromogenics: Materials and Devices for Transmittance Control
  year: 1990
  ident: e_1_2_6_19_2
– ident: e_1_2_6_33_2
  doi: 10.1016/0379-6779(92)90359-Q
– ident: e_1_2_6_44_2
  doi: 10.1016/S0379-6779(96)03839-8
– ident: e_1_2_6_39_2
  doi: 10.1016/0379-6779(96)80126-3
– ident: e_1_2_6_47_2
  doi: 10.1016/S0379-6779(00)01039-0
– volume: 291
  start-page: 235
  year: 1986
  ident: e_1_2_6_50_2
  publication-title: J Electroanal Chem
– ident: e_1_2_6_5_2
  doi: 10.1016/0927-0248(94)90240-2
– ident: e_1_2_6_24_2
  doi: 10.1016/0379-6779(93)91076-E
– ident: e_1_2_6_37_2
  doi: 10.1021/j100817a004
– ident: e_1_2_6_27_2
  doi: 10.1149/1.2131429
– ident: e_1_2_6_15_2
  doi: 10.1016/0040-6090(85)90171-3
– ident: e_1_2_6_62_2
  doi: 10.1149/1.1837756
– ident: e_1_2_6_20_2
  doi: 10.1016/0013-4686(94)80062-6
– volume: 84
  start-page: 257
  year: 1963
  ident: e_1_2_6_36_2
  publication-title: Acad CR Sci Ser
– ident: e_1_2_6_46_2
  doi: 10.1557/PROC-247-601
– volume-title: Physical Method in Chemistry
  year: 1977
  ident: e_1_2_6_54_2
– start-page: 267
  volume-title: Applications of Electroactive Polymers
  year: 1993
  ident: e_1_2_6_14_2
  doi: 10.1007/978-94-011-1568-1
– ident: e_1_2_6_51_2
  doi: 10.1016/S0379-6779(96)03844-1
– ident: e_1_2_6_63_2
  doi: 10.1149/1.2059144
– ident: e_1_2_6_59_2
  doi: 10.1016/0032-3861(94)90533-9
– ident: e_1_2_6_9_2
  doi: 10.1149/1.2123487
– ident: e_1_2_6_11_2
  doi: 10.1149/1.2115674
– ident: e_1_2_6_35_2
  doi: 10.1016/0379-6779(90)90185-N
– start-page: 328
  year: 1990
  ident: e_1_2_6_34_2
– ident: e_1_2_6_3_2
  doi: 10.1016/S0927-0248(98)00145-7
– ident: e_1_2_6_31_2
  doi: 10.1364/AO.26.003489
– ident: e_1_2_6_45_2
– volume: 36
  start-page: 177
  year: 1975
  ident: e_1_2_6_26_2
  publication-title: RCA Rev
– ident: e_1_2_6_57_2
  doi: 10.1016/S0379-6779(96)04156-2
– ident: e_1_2_6_29_2
  doi: 10.1007/BF00882886
– ident: e_1_2_6_8_2
  doi: 10.1016/0378-7753(87)80118-0
– ident: e_1_2_6_2_2
  doi: 10.1016/0165-1633(84)90024-8
– ident: e_1_2_6_38_2
  doi: 10.1016/0379-6779(93)90462-6
– ident: e_1_2_6_48_2
  doi: 10.1016/S0167-2738(98)00513-X
– ident: e_1_2_6_42_2
  doi: 10.1016/0379-6779(91)91178-D
– ident: e_1_2_6_28_2
  doi: 10.1143/JJAP.25.1073
SSID ssj0011506
Score 1.9069341
SecondaryResourceType review_article
Snippet This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 4023
SubjectTerms Applied sciences
conducting polymers
conjugated polymers
Electronics
Exact sciences and technology
Optoelectronic devices
Organic polymers
Physicochemistry of polymers
polyelectrolytes
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
water-soluble polymers
Title Electrochemical behaviors of polyaniline-poly(styrene-sulfonic acid) complexes and related films
URI https://api.istex.fr/ark:/67375/WNG-3S5Q75D4-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.23231
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA6iL_bBqq10vRFKEX0YnckkmR36JF4qFsXaij4IQ66wuJ0VZxfUp_4EwX_oLzEn2RldUSjCPEzgzCQ5J5cv4ZzvIPStLXPhgIGINKEmoqkykeTCRDlJRGZprgmHaOSDQ753QvfP2NkY-l7HwgR-iObCDWaGX69hggtZbTyRhkIaLAcHfAw1-GoBIDpuqKMA6PDg3pFE7kzBalahmGw0X47sRROg1mvwjRSVU48NeS1GMavfdHY_ovO6ucHX5GJ90Jfr6vYFk-M7-zONpoZgFG-G0TODxkw5iz48oyj8hPROyJOjhsQCuI7rr3DP4ste90aUHaj84d89lFYruNaG4l016Fog3sVCdfQa9s7r5tpUWJQa-xgao7HtdP9Wn9HJ7s6frb1omJkhUmmaJZEGlCdk24JdlaUmFrl2wCy2sUqU4Yw401ueGWdswwQjkriFQnFJY5ppB1rm0HjZK80XhA2Xwkk7YKMYlSrOScxtomRmTc7bMm6h1dpGhRrSlkP2jG4RCJdJ4RRXeMW10NdG9DJwdbwmtOIN3UiIqwtwbstYcXr4o0h_s18Z26bFzxZaHhkJT7-EA0maMtcyb8-36yo2j478y_z_iy6gyXDL4x62iMb7VwOz5HBPXy77Af4ItdEB-A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5K-6A-WOsF19Z2EJH6kDaZzEw24EvpxdW2S9UW-yLDXGHpNluaXag--RME_2F_SefMbFJXFETIQwZOksk5c_nmcM53EHrZVaX0wEAmhlCb0FzbRHFpk5JksnC0NIRDNvJhn_dO6PtTdjqH3jS5MJEfonW4wcwI6zVMcHBIb96yhkIdLI8HIIl6ASp6hwPVx5Y8CqAOjwEeWeJPFazhFUrJZvvozG60AIq9guhIWXsFuVjZYha1hm1nbxF9aToco03ONiZjtaG__cbl-L9_9ADdn-JRvBUH0BKas9VDdO8XlsJHyOzGUjl6yi2Am9T-Go8cvhgNv8pqAF-__v4TWus1eLah-aOeDB1w72KpB-Y1DvHr9srWWFYGhzQaa7AbDM_rx-hkb_d4u5dMizMkOs-LLDEA9KTqOjCtdtSmsjQem6Uu1Zm2nBFvfccL6-1tmWREEb9WaK5oSgvjccsTNF-NKvsUYcuV9NIe22hGlU5LknKXaVU4W_KuSjtovTGS0FPmciigMRSRc5kIrzgRFNdBL1rRi0jX8SehV8HSrYS8PIP4toKJz_23Iv_EPhRsh4r9DlqdGQq3r4QzSZ4z37Ng0L9_S2wdHYWbZ_8uuobu9I4PD8TBu_7-MrobnT7-Yitofnw5sc89DBqr1TDabwC7_gYT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lBdEH6xXX1hpEpD5Mm8kkmR18Km7XanVZL8U-CCFXWLqdXTq70PbJnyD4D_0l5kx2pq4oiDAPEzgzkznnJPkSzvkOQk-7ulABGKjEUuYSlhmXaKFcUtBU5Z4VlgrIRn43EAdH7M0xP15BL5pcmMgP0R64wcio52sY4FPrd69IQ6EMVoADkEO9xgTpgkv3PrTcUYB0RIzvSJOwqeANrRChu-2jS4vRGuj1HIIjVRX042Nhi2XQWq86_XX0pelvDDY52ZnP9I65_I3K8T9_6Ba6uUCjeC-6z2204so76MYvHIV3kd2PhXLMglkAN4n9FZ54PJ2ML1Q5go__-PodWtsVnGtD81s1H3tg3sXKjOxzXEevu3NXYVVaXCfROIv9aHxa3UNH_f1PLw-SRWmGxGRZniYWYJ7SXQ-GNZ45ogobkBnxxKTGCU6D7b3IXbC244pTTcNMYYRmhOU2oJb7aLWclO4Bwk5oFaQDsjGcaUMKSoRPjc69K0RXkw7abmwkzYK3HMpnjGVkXKYyKE7WiuugJ63oNJJ1_EnoWW3oVkKdnUB0W87l58ErmX3k73PeY_Kwg7aWPOHqlbAjyTIeelbb8-_fknvDYX3z8N9FH6Nrw15fvn09ONxA1-OJT7j4Jlqdnc3do4CBZnqr9vWfz2sEyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+behaviors+of+polyaniline-poly%28styrene-sulfonic+acid%29+complexes+and+related+films&rft.jtitle=Journal+of+applied+polymer+science&rft.au=LIN%2C+Der-Shyu&rft.au=CHOU%2C+Cheng-Tung&rft.au=CHEN%2C+Yu-Wen&rft.au=KUO%2C+Kung-Tu&rft.date=2006-06-05&rft.pub=Wiley&rft.issn=0021-8995&rft.volume=100&rft.issue=5&rft.spage=4023&rft.epage=4044&rft_id=info:doi/10.1002%2Fapp.23231&rft.externalDBID=n%2Fa&rft.externalDocID=17729335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon