Electrochemical behaviors of polyaniline-poly(styrene-sulfonic acid) complexes and related films
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical po...
Saved in:
Published in | Journal of applied polymer science Vol. 100; no. 5; pp. 4023 - 4044 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
05.06.2006
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8995 1097-4628 |
DOI | 10.1002/app.23231 |
Cover
Loading…
Abstract | This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10−2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ∼3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006 |
---|---|
AbstractList | This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1
M
HCl solution. Polyaniline (PANI), poly(
o
‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10
−2
S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO
3
) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ∼3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline,
o
‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1
M
HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline,
o
‐phenetidine, 2‐ethylaniline) concentration (0.6
M)
with PSSA (0.15
M)
, the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (OC
2
H
5
or C
2
H
5)
group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (OC
2
H
5
or C
2
H
5
) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006 This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10−2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ∼3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (OC2H5 or C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006 |
Author | Chen, Yu-Wen Yang, Sze-Ming Kuo, Kung-Tu Lin, Der-Shyu Chou, Cheng-Tung |
Author_xml | – sequence: 1 givenname: Der-Shyu surname: Lin fullname: Lin, Der-Shyu email: 77740271@alumni.tku.edu.tw organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China – sequence: 2 givenname: Cheng-Tung surname: Chou fullname: Chou, Cheng-Tung organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China – sequence: 3 givenname: Yu-Wen surname: Chen fullname: Chen, Yu-Wen organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China – sequence: 4 givenname: Kung-Tu surname: Kuo fullname: Kuo, Kung-Tu organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China – sequence: 5 givenname: Sze-Ming surname: Yang fullname: Yang, Sze-Ming organization: Department of Chemical and Materials Engineering, National Central University, Chung-Li, Taiwan 320, Republic of China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17729335$$DView record in Pascal Francis |
BookMark | eNp9kE1P3DAQhq0KpC60h_6DXJDgENafcXJEQAGBCogiju7EGQu33jiyQ9n99w0sbSUkOM2M5nlGmneLbPSxR0K-MLrPKOVzGIZ9LrhgH8iM0UaXsuL1BplNO1bWTaM-kq2cf1LKmKLVjPw4DmjHFO09LryFULR4D799TLmIrhhiWEHvg--xfOp387hKOA35IbjYe1uA9d1eYeNiCLjEXEDfFQkDjNgVzodF_kQ2HYSMn1_qNrn9evz98LS8uDw5Ozy4KK0QmpUdVVpBW7u2ArROIoWmk1xQRy2zWCnecekqjbLpUIHiLZd1batWUqk7LcU22VnfHSBPf7gEvfXZDMkvIK0M05o3QqiJ21tzNsWcE7r_CDVPEZopQvMc4cTOX7HWjzD62I8JfHjPePQBV2-fNgdXV3-Ncm34POLynwHpl6m00MrcfTsx4kZda3Ukzbn4AxlzlRU |
CODEN | JAPNAB |
CitedBy_id | crossref_primary_10_1016_j_electacta_2013_12_025 crossref_primary_10_1016_j_synthmet_2011_12_002 crossref_primary_10_33961_JECST_2018_9_2_93 crossref_primary_10_3390_polym13142349 crossref_primary_10_1002_pen_20972 crossref_primary_10_1007_s10965_008_9207_1 crossref_primary_10_1016_j_eurpolymj_2022_111714 crossref_primary_10_1007_s11696_016_0087_2 crossref_primary_10_1007_s10008_010_1261_z crossref_primary_10_3390_polym14153201 crossref_primary_10_1002_adma_202301080 crossref_primary_10_1002_mabi_201000256 crossref_primary_10_1007_s10008_017_3556_9 crossref_primary_10_1039_C5RA07504A crossref_primary_10_1007_s00289_021_03647_4 crossref_primary_10_1155_2011_467170 crossref_primary_10_1002_app_31624 |
Cites_doi | 10.1016/0379-6779(93)91004-L 10.1002/polb.1994.090320204 10.1016/S0379-6779(01)00354-X 10.1021/ac00294a003 10.1016/0379-6779(89)90300-7 10.1039/c39910001529 10.1016/S0927-0248(98)00065-8 10.1016/S0379-6779(97)80659-5 10.1149/1.2097220 10.1016/0379-6779(91)91177-C 10.1016/0013-4686(92)87010-W 10.1149/1.2096626 10.1016/0379-6779(89)90297-X 10.1149/1.2221126 10.1016/0038-1098(94)90788-9 10.1143/JJAP.20.581 10.1007/BF01016210 10.1016/0921-5107(92)90171-5 10.1021/j100287a050 10.1016/0379-6779(91)91183-B 10.1016/0379-6779(94)02414-T 10.1016/0167-2738(88)90448-1 10.1016/0379-6779(92)90359-Q 10.1016/S0379-6779(96)03839-8 10.1016/0379-6779(96)80126-3 10.1016/S0379-6779(00)01039-0 10.1016/0927-0248(94)90240-2 10.1016/0379-6779(93)91076-E 10.1021/j100817a004 10.1149/1.2131429 10.1016/0040-6090(85)90171-3 10.1149/1.1837756 10.1016/0013-4686(94)80062-6 10.1557/PROC-247-601 10.1007/978-94-011-1568-1 10.1016/S0379-6779(96)03844-1 10.1149/1.2059144 10.1016/0032-3861(94)90533-9 10.1149/1.2123487 10.1149/1.2115674 10.1016/0379-6779(90)90185-N 10.1016/S0927-0248(98)00145-7 10.1364/AO.26.003489 10.1016/S0379-6779(96)04156-2 10.1007/BF00882886 10.1016/0378-7753(87)80118-0 10.1016/0165-1633(84)90024-8 10.1016/0379-6779(93)90462-6 10.1016/S0167-2738(98)00513-X 10.1016/0379-6779(91)91178-D 10.1143/JJAP.25.1073 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley Periodicals, Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: 2007 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1002/app.23231 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1097-4628 |
EndPage | 4044 |
ExternalDocumentID | 17729335 10_1002_app_23231 APP23231 ark_67375_WNG_3S5Q75D4_K |
Genre | article |
GrantInformation_xml | – fundername: The National Science Council of Republic of China |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION 6TJ ABDEX ABDPE ABEML ACSCC ADMLS AFFNX AGHNM AI. GYXMG HF~ H~9 IQODW M6T NEJ PALCI RIWAO RJQFR SAMSI VH1 |
ID | FETCH-LOGICAL-c3371-d0575ab8fb6aecf4e0a9d4230f0c1ce652d24f67e49de5a52b2488c6b4047d743 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Wed Apr 02 07:15:29 EDT 2025 Tue Jul 01 02:57:00 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 Wed Oct 30 09:50:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Composite film Aniline derivative polymer Electrical conductivity Property composition relationship Electrochromism Electrochromic device Electrochemical polymerization Structure composition relationship Conjugated polymer Optical properties water- soluble polymers Optical absorption conjugated polymers Aniline polymer Electrical properties Use Experimental study polyelectrolytes Acrylamide derivative polymer Conducting polymers Polyelectrolyte Sulfonate polymer Electrochemical properties Morphology Preparation Styrenesulfonic acid polymer Soluble compound |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3371-d0575ab8fb6aecf4e0a9d4230f0c1ce652d24f67e49de5a52b2488c6b4047d743 |
Notes | istex:574B895EFB47889ABC65092DD6D7D7627D22CD7D ArticleID:APP23231 The National Science Council of Republic of China ark:/67375/WNG-3S5Q75D4-K |
PageCount | 22 |
ParticipantIDs | pascalfrancis_primary_17729335 crossref_primary_10_1002_app_23231 crossref_citationtrail_10_1002_app_23231 wiley_primary_10_1002_app_23231_APP23231 istex_primary_ark_67375_WNG_3S5Q75D4_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 5 June 2006 |
PublicationDateYYYYMMDD | 2006-06-05 |
PublicationDate_xml | – month: 06 year: 2006 text: 5 June 2006 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY |
PublicationTitle | Journal of applied polymer science |
PublicationTitleAlternate | J. Appl. Polym. Sci |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Jelle, B. P.; Hagen, G.; Sunde, S.; Odegard, R. Synth Met 1993, 54, 315. Liu, J. M.; Yang, S. C. J Chem Soc Chem Commun 1991, 1529. Noufi, R.; Nozik, A. J.; White, J.; Warren, L. F. J Electrochem Soc 1982, 129, 226. Yang, C. Y.; Reghu, M.; Heeger, A. J.; Cao, Y. Synth Met 1996, 79, 27. Jelle, B. P.; Hagen, G.; Hesjevik, S. M.; Odegard, R. Mater Sci Eng B 1992, 13, 239. Yang, S. M.; Li, C. P. Synth Met 1993, 55, 636. Drago, R. S. Physical Method in Chemistry; Saunders College Publishing: Philadelphia, 1977. Heinze, J. Synth Met 1991, 41, 2805. Angelopoulos, M.; Dipietro, R.; Zheng, W. G.; MacDiarmid, A. G.; Epstein, A. J. Synth Met 1997, 84, 35. Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. RCA Rev 1975, 36, 177. Hyodo, K. Electrochim Acta 1994, 39, 265. Cushman, R. J.; McManus, P. M.; Yang, S. C. J Electroanal Chem 1986, 291, 235. Sun, L. F.; Yang, S. C.; Liu, T. M.; Abstr Paper Am Chem Soc 1992, 204, 137. Sun, L. F.; Liu, H. B.; Clark, R.; Yang, S. C. Synth Met 1997, 84, 67. Liu, J. M.; Sun, L.; Hwang, J. H.; Yang, S. C. Mater Res Soc Symp Proc 1992, 247, 601. Yang, C. H.; Wen, T. C. J Electrochem Soc 1994, 141, 2624. Jelle, B. P.; Hagen, G.; Odegard, R. Electrochim Acta 1992, 37, 1377. Goto, F.; Okabayashi, K.; Yoshida, T.; Morimoto, H. J Power Sources 1987, 20, 243. Mohapatra, S. K. J Electrochem Soc 1978, 125, 284. Larderich, T.; Tranayrd, P. Acad CR Sci Ser 1963, C84, 257. Ozer, N.; Lampert, C. M. Sol Energy Mater Sol Cells 1998, 54, 147. Morita, M. J Polym Sci Part B: Polym Phys 1994, 32, 231. Jelle, B. P.; Hagen, G. J Electrochem Soc 1993, 140, 3560. Lampert, C. M. Sol Energy Mater Sol Cells 1984, 11, 1. Ohsawa, T.; Kabata, T.; Kimura, O. Synth Met 1989, 29, E203. Nechtschein, M.; Genoud, F. Solid State Commun 1994, 91, 471. Nguyen, M. T.; Dao, L. H. J Electrochem Soc 1989, 136, 2131. Phol, H. A.; Engelhardt, E. H. J Phys Chem 1962, 66 2085. Yang, S. M.; Shiah, W. M.; Lai, J. J. Synth Met 1991, 41, 757. Weil, J. A.; Botton, J. R.; Wertz, J. E. Electron Spin Resonance: Elementary Theory and Practical Applications; Wiely-Interscience: New York, 1994. Lee, W.; Du, G.; Long, S. M.; Epstein, A. J.; Shimizu, S.; Saitoh, T.; Uzawa, M. Synth Met 1997, 84, 807. Somasini, N. L. D.; MacDiarmid, A. G. J Appl Electrochem 1988, 18, 92. Vaivars, G.; Azens, A.; Granqvit, C. G. Solid State Ionics 1999, 119, 269. Shizukuishi, M.; Inoue, E.; Kaga, E.; Kokado, H.; Shimizu, I. J Appl Phys 1981, 20, 581. Lin, D. S.; Yang, S. M. Synth Met 2001, 119, 111. Scrosati, B. In Applications of Electroactive Polymers; Scrosati, B., Ed.; Chapman & Hall: London, 1993; p 267. Osaka, T.; Ogano, S.; Naoi, K. J Electrochem Soc 1989, 136, 306. Yang, S. M.; Chen, W. M.; You, K. S. Synth Met 1997, 84, 77. Josowiaz, M.; Janata, J. J Anal Chem 1986, 58, 514. Denesuk, M.; Cronin, J. P.; Kennedy, S. R.; Uhlmann, D. R. J Electrochem Soc 1997, 144, 2154. Cao, Y.; Heeger, A. J. Synth Met 1990, 39, 205. Bull, R. A.; Fan, F. R.; Bard, A. J. J Electrochem Soc 1984, 131, 687. Zeller, H. Z.; Beyeler, H. U. Appl Phys 1977, 13, 231. Stevens, J. R.; Sevensson, J. S. E. M.; Granqvist, C. G.; Spinder, R. Appl Opt 1987, 26, 3489. Lampert, C. M. Sol Energy Mater Sol Cells 1994, 33, 389. Svensson, J. S. E. M.; Granqvist, C. G. Thin Solid Films 1985, 126, 31. Jozefowica, M. E.; Epstein, A. J.; Tang, X. Synth Met 1992, 46, 337. Yang, S. M.; Lin, T. S. Synth Met 1989, 29, E227. Zoppi, R. A.; De Paoli, M. A. Quim Nova 1993, 16, 560. Heeger, A. J Synth Met 1993, 55, 3471. Goldner, R. B.; Haas, T. E.; Seward, G.; Wong, K. K.; Norton, P.; Foley, G.; Berera, G.; Wei, G.; Schulz, S.; Chapman, R. Solid State Ionics 1988, 28, 1715. McManus, P. M.; Cushman, R. J.; Yang, S. C. J Phys Chem 1987, 91, 744. Yang, S. M.; Chiang, J. H.; Shiah, W. M. Synth Met 1991, 41, 753. Yamanaka, K. J. J Appl Phys 1986, 25, 1073. Yang, S. C. Large-area Chromogenics: Materials and Devices for Transmittance Control; Lampert, C. M., Granqvist, C. G., Ed.; SPIE Press: Washington, 1990; p 335. Aasmundtveit, K.; Genoud, F.; Houze, E.; Nechtschein, M. Synth Met 1995, 69, 193. Lampert, C. M. Sol Energy Mater Sol Cells 1998, 55, 301. Andrei, M.; Roggero, A.; Marchese, L.; Passerini, S. Polymer 1994, 35, 3592. Zhang, Q.; Jin, H.; Wang, X.; Jing, X. Synth Met 2001, 123, 481. 1997; 84 1992; 247 1992; 204 1985; 126 1992; 13 1996; 79 1977 1990 1995; 69 1991; 41 1994; 141 1984; 11 1997; 144 1994; 33 1994; 35 1992; 46 1994; 39 1998; 54 1998; 55 1994; 32 2001; 123 1988; 18 1989; 136 1990; 39 1987; 91 1982; 129 1986; 58 1996 1993; 140 1975; 36 1994 1993 1992; 37 1991 1981; 20 1989; 29 1987; 20 1984; 131 1993; 16 1993; 55 1993; 54 1986; 25 1988; 28 1986; 291 1977; 13 1978; 125 1963; C84 1962; 66 2001; 119 1994; 91 1987; 26 1999; 119 1990; 4 e_1_2_6_51_2 e_1_2_6_30_2 Drago R. S. (e_1_2_6_54_2) 1977 Zoppi R. A. (e_1_2_6_13_2) 1993; 16 Scrosati B. (e_1_2_6_14_2) 1993 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_20_2 Inganas O. (e_1_2_6_34_2) 1990 e_1_2_6_41_2 e_1_2_6_60_2 Larderich T. (e_1_2_6_36_2) 1963; 84 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 Faughnan B. W. (e_1_2_6_26_2) 1975; 36 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 Dao L. H. (e_1_2_6_18_2) 1990 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_45_2 Cushman R. J. (e_1_2_6_50_2) 1986; 291 e_1_2_6_31_2 Weil J. A. (e_1_2_6_53_2) 1994 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 Sun L. F. (e_1_2_6_52_2) 1992; 204 e_1_2_6_8_2 Yang S. C. (e_1_2_6_19_2) 1990 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Stevens, J. R.; Sevensson, J. S. E. M.; Granqvist, C. G.; Spinder, R. Appl Opt 1987, 26, 3489. – reference: Phol, H. A.; Engelhardt, E. H. J Phys Chem 1962, 66 2085. – reference: Goldner, R. B.; Haas, T. E.; Seward, G.; Wong, K. K.; Norton, P.; Foley, G.; Berera, G.; Wei, G.; Schulz, S.; Chapman, R. Solid State Ionics 1988, 28, 1715. – reference: Liu, J. M.; Sun, L.; Hwang, J. H.; Yang, S. C. Mater Res Soc Symp Proc 1992, 247, 601. – reference: Denesuk, M.; Cronin, J. P.; Kennedy, S. R.; Uhlmann, D. R. J Electrochem Soc 1997, 144, 2154. – reference: Jelle, B. P.; Hagen, G.; Sunde, S.; Odegard, R. Synth Met 1993, 54, 315. – reference: Yang, C. H.; Wen, T. C. J Electrochem Soc 1994, 141, 2624. – reference: Drago, R. S. Physical Method in Chemistry; Saunders College Publishing: Philadelphia, 1977. – reference: Josowiaz, M.; Janata, J. J Anal Chem 1986, 58, 514. – reference: Mohapatra, S. K. J Electrochem Soc 1978, 125, 284. – reference: Zeller, H. Z.; Beyeler, H. U. Appl Phys 1977, 13, 231. – reference: Zhang, Q.; Jin, H.; Wang, X.; Jing, X. Synth Met 2001, 123, 481. – reference: Lee, W.; Du, G.; Long, S. M.; Epstein, A. J.; Shimizu, S.; Saitoh, T.; Uzawa, M. Synth Met 1997, 84, 807. – reference: Nechtschein, M.; Genoud, F. Solid State Commun 1994, 91, 471. – reference: Morita, M. J Polym Sci Part B: Polym Phys 1994, 32, 231. – reference: Yang, S. M.; Chen, W. M.; You, K. S. Synth Met 1997, 84, 77. – reference: Sun, L. F.; Yang, S. C.; Liu, T. M.; Abstr Paper Am Chem Soc 1992, 204, 137. – reference: Lampert, C. M. Sol Energy Mater Sol Cells 1984, 11, 1. – reference: Yang, S. M.; Shiah, W. M.; Lai, J. J. Synth Met 1991, 41, 757. – reference: Yang, C. Y.; Reghu, M.; Heeger, A. J.; Cao, Y. Synth Met 1996, 79, 27. – reference: Sun, L. F.; Liu, H. B.; Clark, R.; Yang, S. C. Synth Met 1997, 84, 67. – reference: Lampert, C. M. Sol Energy Mater Sol Cells 1994, 33, 389. – reference: Zoppi, R. A.; De Paoli, M. A. Quim Nova 1993, 16, 560. – reference: Andrei, M.; Roggero, A.; Marchese, L.; Passerini, S. Polymer 1994, 35, 3592. – reference: Larderich, T.; Tranayrd, P. Acad CR Sci Ser 1963, C84, 257. – reference: Osaka, T.; Ogano, S.; Naoi, K. J Electrochem Soc 1989, 136, 306. – reference: Svensson, J. S. E. M.; Granqvist, C. G. Thin Solid Films 1985, 126, 31. – reference: Jelle, B. P.; Hagen, G. J Electrochem Soc 1993, 140, 3560. – reference: Shizukuishi, M.; Inoue, E.; Kaga, E.; Kokado, H.; Shimizu, I. J Appl Phys 1981, 20, 581. – reference: Yamanaka, K. J. J Appl Phys 1986, 25, 1073. – reference: Ozer, N.; Lampert, C. M. Sol Energy Mater Sol Cells 1998, 54, 147. – reference: Jelle, B. P.; Hagen, G.; Odegard, R. Electrochim Acta 1992, 37, 1377. – reference: Somasini, N. L. D.; MacDiarmid, A. G. J Appl Electrochem 1988, 18, 92. – reference: McManus, P. M.; Cushman, R. J.; Yang, S. C. J Phys Chem 1987, 91, 744. – reference: Aasmundtveit, K.; Genoud, F.; Houze, E.; Nechtschein, M. Synth Met 1995, 69, 193. – reference: Scrosati, B. In Applications of Electroactive Polymers; Scrosati, B., Ed.; Chapman & Hall: London, 1993; p 267. – reference: Yang, S. M.; Chiang, J. H.; Shiah, W. M. Synth Met 1991, 41, 753. – reference: Bull, R. A.; Fan, F. R.; Bard, A. J. J Electrochem Soc 1984, 131, 687. – reference: Ohsawa, T.; Kabata, T.; Kimura, O. Synth Met 1989, 29, E203. – reference: Cushman, R. J.; McManus, P. M.; Yang, S. C. J Electroanal Chem 1986, 291, 235. – reference: Angelopoulos, M.; Dipietro, R.; Zheng, W. G.; MacDiarmid, A. G.; Epstein, A. J. Synth Met 1997, 84, 35. – reference: Jelle, B. P.; Hagen, G.; Hesjevik, S. M.; Odegard, R. Mater Sci Eng B 1992, 13, 239. – reference: Cao, Y.; Heeger, A. J. Synth Met 1990, 39, 205. – reference: Noufi, R.; Nozik, A. J.; White, J.; Warren, L. F. J Electrochem Soc 1982, 129, 226. – reference: Jozefowica, M. E.; Epstein, A. J.; Tang, X. Synth Met 1992, 46, 337. – reference: Yang, S. M.; Lin, T. S. Synth Met 1989, 29, E227. – reference: Vaivars, G.; Azens, A.; Granqvit, C. G. Solid State Ionics 1999, 119, 269. – reference: Weil, J. A.; Botton, J. R.; Wertz, J. E. Electron Spin Resonance: Elementary Theory and Practical Applications; Wiely-Interscience: New York, 1994. – reference: Liu, J. M.; Yang, S. C. J Chem Soc Chem Commun 1991, 1529. – reference: Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. RCA Rev 1975, 36, 177. – reference: Yang, S. C. Large-area Chromogenics: Materials and Devices for Transmittance Control; Lampert, C. M., Granqvist, C. G., Ed.; SPIE Press: Washington, 1990; p 335. – reference: Goto, F.; Okabayashi, K.; Yoshida, T.; Morimoto, H. J Power Sources 1987, 20, 243. – reference: Nguyen, M. T.; Dao, L. H. J Electrochem Soc 1989, 136, 2131. – reference: Lampert, C. M. Sol Energy Mater Sol Cells 1998, 55, 301. – reference: Hyodo, K. Electrochim Acta 1994, 39, 265. – reference: Yang, S. M.; Li, C. P. Synth Met 1993, 55, 636. – reference: Heeger, A. J Synth Met 1993, 55, 3471. – reference: Heinze, J. Synth Met 1991, 41, 2805. – reference: Lin, D. S.; Yang, S. M. Synth Met 2001, 119, 111. – start-page: 246 year: 1990 – volume: 39 start-page: 205 year: 1990 publication-title: Synth Met – start-page: 267 year: 1993 – volume: 18 start-page: 92 year: 1988 publication-title: J Appl Electrochem – volume: 54 start-page: 315 year: 1993 publication-title: Synth Met – volume: 25 start-page: 1073 year: 1986 publication-title: J Appl Phys – volume: 26 start-page: 3489 year: 1987 publication-title: Appl Opt – volume: 11 start-page: 1 year: 1984 publication-title: Sol Energy Mater Sol Cells – volume: 129 start-page: 226 year: 1982 publication-title: J Electrochem Soc – volume: 35 start-page: 3592 year: 1994 publication-title: Polymer – year: 1994 – volume: 84 start-page: 67 year: 1997 publication-title: Synth Met – volume: 144 start-page: 2154 year: 1997 publication-title: J Electrochem Soc – volume: 41 start-page: 757 year: 1991 publication-title: Synth Met – volume: 29 start-page: E203 year: 1989 publication-title: Synth Met – volume: 119 start-page: 269 year: 1999 publication-title: Solid State Ionics – volume: 66 start-page: 2085 year: 1962 publication-title: J Phys Chem – start-page: 1529 year: 1991 publication-title: J Chem Soc Chem Commun – volume: C84 start-page: 257 year: 1963 publication-title: Acad CR Sci Ser – volume: 13 start-page: 239 year: 1992 publication-title: Mater Sci Eng B – volume: 291 start-page: 235 year: 1986 publication-title: J Electroanal Chem – volume: 16 start-page: 560 year: 1993 publication-title: Quim Nova – volume: 33 start-page: 389 year: 1994 publication-title: Sol Energy Mater Sol Cells – volume: 123 start-page: 481 year: 2001 publication-title: Synth Met – volume: 54 start-page: 147 year: 1998 publication-title: Sol Energy Mater Sol Cells – volume: 69 start-page: 193 year: 1995 publication-title: Synth Met – volume: 20 start-page: 243 year: 1987 publication-title: J Power Sources – volume: 29 start-page: E227 year: 1989 publication-title: Synth Met – volume: 247 start-page: 601 year: 1992 publication-title: Mater Res Soc Symp Proc – volume: 136 start-page: 2131 year: 1989 publication-title: J Electrochem Soc – volume: 46 start-page: 337 year: 1992 publication-title: Synth Met – volume: 55 start-page: 301 year: 1998 publication-title: Sol Energy Mater Sol Cells – volume: 136 start-page: 306 year: 1989 publication-title: J Electrochem Soc – start-page: 335 year: 1990 – volume: 141 start-page: 2624 year: 1994 publication-title: J Electrochem Soc – volume: 140 start-page: 3560 year: 1993 publication-title: J Electrochem Soc – volume: 39 start-page: 265 year: 1994 publication-title: Electrochim Acta – volume: 125 start-page: 284 year: 1978 publication-title: J Electrochem Soc – volume: 13 start-page: 231 year: 1977 publication-title: Appl Phys – volume: 204 start-page: 137 year: 1992 publication-title: Abstr Paper Am Chem Soc – volume: 28 start-page: 1715 year: 1988 publication-title: Solid State Ionics – volume: 36 start-page: 177 year: 1975 publication-title: RCA Rev – year: 1996 – volume: 55 start-page: 636 year: 1993 publication-title: Synth Met – volume: 32 start-page: 231 year: 1994 publication-title: J Polym Sci Part B: Polym Phys – volume: 37 start-page: 1377 year: 1992 publication-title: Electrochim Acta – volume: 4 start-page: 328 year: 1990 – volume: 79 start-page: 27 year: 1996 publication-title: Synth Met – volume: 20 start-page: 581 year: 1981 publication-title: J Appl Phys – volume: 126 start-page: 31 year: 1985 publication-title: Thin Solid Films – year: 1977 – volume: 41 start-page: 753 year: 1991 publication-title: Synth Met – volume: 84 start-page: 77 year: 1997 publication-title: Synth Met – volume: 41 start-page: 2805 year: 1991 publication-title: Synth Met – volume: 84 start-page: 35 year: 1997 publication-title: Synth Met – volume: 58 start-page: 514 year: 1986 publication-title: J Anal Chem – volume: 84 start-page: 807 year: 1997 publication-title: Synth Met – volume: 131 start-page: 687 year: 1984 publication-title: J Electrochem Soc – volume: 119 start-page: 111 year: 2001 publication-title: Synth Met – volume: 55 start-page: 3471 year: 1993 publication-title: J Synth Met – volume: 91 start-page: 744 year: 1987 publication-title: J Phys Chem – volume: 91 start-page: 471 year: 1994 publication-title: Solid State Commun – ident: e_1_2_6_40_2 doi: 10.1016/0379-6779(93)91004-L – ident: e_1_2_6_61_2 doi: 10.1002/polb.1994.090320204 – volume-title: Electron Spin Resonance: Elementary Theory and Practical Applications year: 1994 ident: e_1_2_6_53_2 – ident: e_1_2_6_58_2 doi: 10.1016/S0379-6779(01)00354-X – ident: e_1_2_6_10_2 doi: 10.1021/ac00294a003 – ident: e_1_2_6_43_2 doi: 10.1016/0379-6779(89)90300-7 – volume: 16 start-page: 560 year: 1993 ident: e_1_2_6_13_2 publication-title: Quim Nova – ident: e_1_2_6_25_2 doi: 10.1039/c39910001529 – ident: e_1_2_6_4_2 doi: 10.1016/S0927-0248(98)00065-8 – ident: e_1_2_6_32_2 doi: 10.1016/S0379-6779(97)80659-5 – ident: e_1_2_6_17_2 doi: 10.1149/1.2097220 – ident: e_1_2_6_41_2 doi: 10.1016/0379-6779(91)91177-C – ident: e_1_2_6_21_2 doi: 10.1016/0013-4686(92)87010-W – ident: e_1_2_6_6_2 doi: 10.1149/1.2096626 – ident: e_1_2_6_30_2 doi: 10.1016/0379-6779(89)90297-X – ident: e_1_2_6_22_2 doi: 10.1149/1.2221126 – ident: e_1_2_6_55_2 doi: 10.1016/0038-1098(94)90788-9 – ident: e_1_2_6_60_2 doi: 10.1143/JJAP.20.581 – volume: 204 start-page: 137 year: 1992 ident: e_1_2_6_52_2 publication-title: Abstr Paper Am Chem Soc – ident: e_1_2_6_7_2 doi: 10.1007/BF01016210 – ident: e_1_2_6_23_2 doi: 10.1016/0921-5107(92)90171-5 – ident: e_1_2_6_49_2 doi: 10.1021/j100287a050 – start-page: 246 year: 1990 ident: e_1_2_6_18_2 – ident: e_1_2_6_12_2 doi: 10.1016/0379-6779(91)91183-B – ident: e_1_2_6_56_2 doi: 10.1016/0379-6779(94)02414-T – ident: e_1_2_6_16_2 doi: 10.1016/0167-2738(88)90448-1 – start-page: 335 volume-title: Large‐area Chromogenics: Materials and Devices for Transmittance Control year: 1990 ident: e_1_2_6_19_2 – ident: e_1_2_6_33_2 doi: 10.1016/0379-6779(92)90359-Q – ident: e_1_2_6_44_2 doi: 10.1016/S0379-6779(96)03839-8 – ident: e_1_2_6_39_2 doi: 10.1016/0379-6779(96)80126-3 – ident: e_1_2_6_47_2 doi: 10.1016/S0379-6779(00)01039-0 – volume: 291 start-page: 235 year: 1986 ident: e_1_2_6_50_2 publication-title: J Electroanal Chem – ident: e_1_2_6_5_2 doi: 10.1016/0927-0248(94)90240-2 – ident: e_1_2_6_24_2 doi: 10.1016/0379-6779(93)91076-E – ident: e_1_2_6_37_2 doi: 10.1021/j100817a004 – ident: e_1_2_6_27_2 doi: 10.1149/1.2131429 – ident: e_1_2_6_15_2 doi: 10.1016/0040-6090(85)90171-3 – ident: e_1_2_6_62_2 doi: 10.1149/1.1837756 – ident: e_1_2_6_20_2 doi: 10.1016/0013-4686(94)80062-6 – volume: 84 start-page: 257 year: 1963 ident: e_1_2_6_36_2 publication-title: Acad CR Sci Ser – ident: e_1_2_6_46_2 doi: 10.1557/PROC-247-601 – volume-title: Physical Method in Chemistry year: 1977 ident: e_1_2_6_54_2 – start-page: 267 volume-title: Applications of Electroactive Polymers year: 1993 ident: e_1_2_6_14_2 doi: 10.1007/978-94-011-1568-1 – ident: e_1_2_6_51_2 doi: 10.1016/S0379-6779(96)03844-1 – ident: e_1_2_6_63_2 doi: 10.1149/1.2059144 – ident: e_1_2_6_59_2 doi: 10.1016/0032-3861(94)90533-9 – ident: e_1_2_6_9_2 doi: 10.1149/1.2123487 – ident: e_1_2_6_11_2 doi: 10.1149/1.2115674 – ident: e_1_2_6_35_2 doi: 10.1016/0379-6779(90)90185-N – start-page: 328 year: 1990 ident: e_1_2_6_34_2 – ident: e_1_2_6_3_2 doi: 10.1016/S0927-0248(98)00145-7 – ident: e_1_2_6_31_2 doi: 10.1364/AO.26.003489 – ident: e_1_2_6_45_2 – volume: 36 start-page: 177 year: 1975 ident: e_1_2_6_26_2 publication-title: RCA Rev – ident: e_1_2_6_57_2 doi: 10.1016/S0379-6779(96)04156-2 – ident: e_1_2_6_29_2 doi: 10.1007/BF00882886 – ident: e_1_2_6_8_2 doi: 10.1016/0378-7753(87)80118-0 – ident: e_1_2_6_2_2 doi: 10.1016/0165-1633(84)90024-8 – ident: e_1_2_6_38_2 doi: 10.1016/0379-6779(93)90462-6 – ident: e_1_2_6_48_2 doi: 10.1016/S0167-2738(98)00513-X – ident: e_1_2_6_42_2 doi: 10.1016/0379-6779(91)91178-D – ident: e_1_2_6_28_2 doi: 10.1143/JJAP.25.1073 |
SSID | ssj0011506 |
Score | 1.9069341 |
SecondaryResourceType | review_article |
Snippet | This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 4023 |
SubjectTerms | Applied sciences conducting polymers conjugated polymers Electronics Exact sciences and technology Optoelectronic devices Organic polymers Physicochemistry of polymers polyelectrolytes Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices water-soluble polymers |
Title | Electrochemical behaviors of polyaniline-poly(styrene-sulfonic acid) complexes and related films |
URI | https://api.istex.fr/ark:/67375/WNG-3S5Q75D4-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.23231 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA6iL_bBqq10vRFKEX0YnckkmR36JF4qFsXaij4IQ66wuJ0VZxfUp_4EwX_oLzEn2RldUSjCPEzgzCQ5J5cv4ZzvIPStLXPhgIGINKEmoqkykeTCRDlJRGZprgmHaOSDQ753QvfP2NkY-l7HwgR-iObCDWaGX69hggtZbTyRhkIaLAcHfAw1-GoBIDpuqKMA6PDg3pFE7kzBalahmGw0X47sRROg1mvwjRSVU48NeS1GMavfdHY_ovO6ucHX5GJ90Jfr6vYFk-M7-zONpoZgFG-G0TODxkw5iz48oyj8hPROyJOjhsQCuI7rr3DP4ste90aUHaj84d89lFYruNaG4l016Fog3sVCdfQa9s7r5tpUWJQa-xgao7HtdP9Wn9HJ7s6frb1omJkhUmmaJZEGlCdk24JdlaUmFrl2wCy2sUqU4Yw401ueGWdswwQjkriFQnFJY5ppB1rm0HjZK80XhA2Xwkk7YKMYlSrOScxtomRmTc7bMm6h1dpGhRrSlkP2jG4RCJdJ4RRXeMW10NdG9DJwdbwmtOIN3UiIqwtwbstYcXr4o0h_s18Z26bFzxZaHhkJT7-EA0maMtcyb8-36yo2j478y_z_iy6gyXDL4x62iMb7VwOz5HBPXy77Af4ItdEB-A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5K-6A-WOsF19Z2EJH6kDaZzEw24EvpxdW2S9UW-yLDXGHpNluaXag--RME_2F_SefMbFJXFETIQwZOksk5c_nmcM53EHrZVaX0wEAmhlCb0FzbRHFpk5JksnC0NIRDNvJhn_dO6PtTdjqH3jS5MJEfonW4wcwI6zVMcHBIb96yhkIdLI8HIIl6ASp6hwPVx5Y8CqAOjwEeWeJPFazhFUrJZvvozG60AIq9guhIWXsFuVjZYha1hm1nbxF9aToco03ONiZjtaG__cbl-L9_9ADdn-JRvBUH0BKas9VDdO8XlsJHyOzGUjl6yi2Am9T-Go8cvhgNv8pqAF-__v4TWus1eLah-aOeDB1w72KpB-Y1DvHr9srWWFYGhzQaa7AbDM_rx-hkb_d4u5dMizMkOs-LLDEA9KTqOjCtdtSmsjQem6Uu1Zm2nBFvfccL6-1tmWREEb9WaK5oSgvjccsTNF-NKvsUYcuV9NIe22hGlU5LknKXaVU4W_KuSjtovTGS0FPmciigMRSRc5kIrzgRFNdBL1rRi0jX8SehV8HSrYS8PIP4toKJz_23Iv_EPhRsh4r9DlqdGQq3r4QzSZ4z37Ng0L9_S2wdHYWbZ_8uuobu9I4PD8TBu_7-MrobnT7-Yitofnw5sc89DBqr1TDabwC7_gYT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lBdEH6xXX1hpEpD5Mm8kkmR18Km7XanVZL8U-CCFXWLqdXTq70PbJnyD4D_0l5kx2pq4oiDAPEzgzkznnJPkSzvkOQk-7ulABGKjEUuYSlhmXaKFcUtBU5Z4VlgrIRn43EAdH7M0xP15BL5pcmMgP0R64wcio52sY4FPrd69IQ6EMVoADkEO9xgTpgkv3PrTcUYB0RIzvSJOwqeANrRChu-2jS4vRGuj1HIIjVRX042Nhi2XQWq86_XX0pelvDDY52ZnP9I65_I3K8T9_6Ba6uUCjeC-6z2204so76MYvHIV3kd2PhXLMglkAN4n9FZ54PJ2ML1Q5go__-PodWtsVnGtD81s1H3tg3sXKjOxzXEevu3NXYVVaXCfROIv9aHxa3UNH_f1PLw-SRWmGxGRZniYWYJ7SXQ-GNZ45ogobkBnxxKTGCU6D7b3IXbC244pTTcNMYYRmhOU2oJb7aLWclO4Bwk5oFaQDsjGcaUMKSoRPjc69K0RXkw7abmwkzYK3HMpnjGVkXKYyKE7WiuugJ63oNJJ1_EnoWW3oVkKdnUB0W87l58ErmX3k73PeY_Kwg7aWPOHqlbAjyTIeelbb8-_fknvDYX3z8N9FH6Nrw15fvn09ONxA1-OJT7j4Jlqdnc3do4CBZnqr9vWfz2sEyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+behaviors+of+polyaniline-poly%28styrene-sulfonic+acid%29+complexes+and+related+films&rft.jtitle=Journal+of+applied+polymer+science&rft.au=LIN%2C+Der-Shyu&rft.au=CHOU%2C+Cheng-Tung&rft.au=CHEN%2C+Yu-Wen&rft.au=KUO%2C+Kung-Tu&rft.date=2006-06-05&rft.pub=Wiley&rft.issn=0021-8995&rft.volume=100&rft.issue=5&rft.spage=4023&rft.epage=4044&rft_id=info:doi/10.1002%2Fapp.23231&rft.externalDBID=n%2Fa&rft.externalDocID=17729335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |