Wormlike Nanovector with Enhanced Drug Loading Using Blends of Biodegradable Block Copolymers
The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-...
Saved in:
Published in | Biomacromolecules Vol. 21; no. 6; pp. 2199 - 2207 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
08.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1525-7797 1526-4602 1526-4602 |
DOI | 10.1021/acs.biomac.0c00169 |
Cover
Loading…
Abstract | The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-assembly mechanisms by which block copolymers undergo so that we can control their morphology, tune their ability to be loaded with biofunctional cargoes, and optimize their interactions with target cells. To this end, we have developed a strategy by which blends of (biocompatible) amphiphilic block copolymers generate nonspherical nanovectors, simultaneously enhancing drug loading without the need for subsequent purification owing to the use of the biocompatible direct hydration approach. The principal morphology achieved using this blending strategy are wormlike nanovectors (nanoworms, NWs), with an elongated form known to have a profound effect on flow behavior and interactions with cells. Unloaded nanoworms are not toxic toward human retinal (ARPE-19) cells and can be effectively endocytosed even after varying the surface charge. In terms of drug loading, we demonstrate that uptake of dexamethasone (DEX; a clinically relevant therapeutic agent) in nanoworms (DEX@NWs) can be enhanced using this process, increasing drug content up to 0.5 mg/mL (10 wt % in particles). Furthermore, such nanoworms are stable for at least 5 months and are, therefore, a promising platform for nanomedicine applications. |
---|---|
AbstractList | The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-assembly mechanisms by which block copolymers undergo so that we can control their morphology, tune their ability to be loaded with biofunctional cargoes, and optimize their interactions with target cells. To this end, we have developed a strategy by which blends of (biocompatible) amphiphilic block copolymers generate nonspherical nanovectors, simultaneously enhancing drug loading without the need for subsequent purification owing to the use of the biocompatible direct hydration approach. The principal morphology achieved using this blending strategy are wormlike nanovectors (nanoworms, NWs), with an elongated form known to have a profound effect on flow behavior and interactions with cells. Unloaded nanoworms are not toxic toward human retinal (ARPE-19) cells and can be effectively endocytosed even after varying the surface charge. In terms of drug loading, we demonstrate that uptake of dexamethasone (DEX; a clinically relevant therapeutic agent) in nanoworms (DEX@NWs) can be enhanced using this process, increasing drug content up to 0.5 mg/mL (10 wt % in particles). Furthermore, such nanoworms are stable for at least 5 months and are, therefore, a promising platform for nanomedicine applications.The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-assembly mechanisms by which block copolymers undergo so that we can control their morphology, tune their ability to be loaded with biofunctional cargoes, and optimize their interactions with target cells. To this end, we have developed a strategy by which blends of (biocompatible) amphiphilic block copolymers generate nonspherical nanovectors, simultaneously enhancing drug loading without the need for subsequent purification owing to the use of the biocompatible direct hydration approach. The principal morphology achieved using this blending strategy are wormlike nanovectors (nanoworms, NWs), with an elongated form known to have a profound effect on flow behavior and interactions with cells. Unloaded nanoworms are not toxic toward human retinal (ARPE-19) cells and can be effectively endocytosed even after varying the surface charge. In terms of drug loading, we demonstrate that uptake of dexamethasone (DEX; a clinically relevant therapeutic agent) in nanoworms (DEX@NWs) can be enhanced using this process, increasing drug content up to 0.5 mg/mL (10 wt % in particles). Furthermore, such nanoworms are stable for at least 5 months and are, therefore, a promising platform for nanomedicine applications. The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-assembly mechanisms by which block copolymers undergo so that we can control their morphology, tune their ability to be loaded with biofunctional cargoes, and optimize their interactions with target cells. To this end, we have developed a strategy by which blends of (biocompatible) amphiphilic block copolymers generate nonspherical nanovectors, simultaneously enhancing drug loading without the need for subsequent purification owing to the use of the biocompatible direct hydration approach. The principal morphology achieved using this blending strategy are wormlike nanovectors (nanoworms, NWs), with an elongated form known to have a profound effect on flow behavior and interactions with cells. Unloaded nanoworms are not toxic toward human retinal (ARPE-19) cells and can be effectively endocytosed even after varying the surface charge. In terms of drug loading, we demonstrate that uptake of dexamethasone (DEX; a clinically relevant therapeutic agent) in nanoworms (DEX@NWs) can be enhanced using this process, increasing drug content up to 0.5 mg/mL (10 wt % in particles). Furthermore, such nanoworms are stable for at least 5 months and are, therefore, a promising platform for nanomedicine applications. |
Author | Ridolfo, Roxane Arends, Jeanrick J. van Hest, Jan C. M. Williams, David S. |
Author_xml | – sequence: 1 givenname: Roxane surname: Ridolfo fullname: Ridolfo, Roxane organization: Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands – sequence: 2 givenname: Jeanrick J. surname: Arends fullname: Arends, Jeanrick J. organization: Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands – sequence: 3 givenname: Jan C. M. orcidid: 0000-0001-7973-2404 surname: van Hest fullname: van Hest, Jan C. M. organization: Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands – sequence: 4 givenname: David S. orcidid: 0000-0002-8209-6899 surname: Williams fullname: Williams, David S. organization: Department of Chemistry, College of Science, Swansea University, Swansea, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32208660$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOwzAQRS0E4v0DLJCXbFImfsTJEspTqmBDxQpZju0UQ2IXOwXx96S0bFjAZmY0OnekuXcPbfrgLUJHOYxyIPmp0mlUu9ApPQINkBfVBtrNOSkyVgDZ_J55JkQldtBeSi8AUFHGt9EOJQTKooBd9PQYYte6V4vvlA_vVvch4g_XP-NL_6y8tgZfxMUMT4Iyzs_wNC3reWu9STg0-NwFY2dRGVW3dtgH_YrHYR7az87GdIC2GtUme7ju-2h6dfkwvskm99e347NJpikt-qzRZc6bkgtqjeBMs7rhvGIARAughlbClIqLquY546AVo7Uom4IPXzABhaD76GR1dx7D28KmXnYuadu2ytuwSJJwwujgUEX_R2lJ-QB-o8drdFF31sh5dJ2Kn_LHvQEoV4COIaVoG6ldr3oXfB-Va2UOchmUHIKSq6DkOqhBSn5Jf67_IfoCQKqX9g |
CitedBy_id | crossref_primary_10_1002_smll_202306482 crossref_primary_10_1002_wnan_1990 crossref_primary_10_1016_j_chroma_2024_465386 crossref_primary_10_1002_anbr_202100087 crossref_primary_10_1002_bip_70012 crossref_primary_10_1002_adtp_202400439 crossref_primary_10_1002_pat_5460 crossref_primary_10_1016_j_carbpol_2024_123207 crossref_primary_10_1016_j_polymer_2024_127058 crossref_primary_10_1016_j_ijpharm_2022_121800 crossref_primary_10_3390_pharmaceutics15010032 crossref_primary_10_1016_j_ijpharm_2024_124799 crossref_primary_10_1021_acs_macromol_1c00672 crossref_primary_10_1021_acs_langmuir_3c00864 crossref_primary_10_1021_acs_biomac_0c00726 crossref_primary_10_1039_D1SM00661D crossref_primary_10_1039_D0TB01670E |
Cites_doi | 10.1002/smll.201901849 10.1016/j.jbiomech.2009.05.012 10.1021/ar8000348 10.1016/j.jconrel.2017.02.030 10.1021/jacs.8b09861 10.1002/ange.201809614 10.1007/s11095-008-9697-x 10.1016/j.eurpolymj.2016.08.011 10.1021/acs.langmuir.7b00325 10.1021/acs.macromol.7b00438 10.1021/acsnano.7b07878 10.1039/c8mh01527a 10.1039/c6py00639f 10.1021/acs.chemrev.8b00199 10.1016/j.polymer.2016.06.067 10.1039/c5py01467k 10.1021/acs.macromol.5b00824 10.1002/ange.201909124 10.2147/IJN.S148359 10.1039/c3tb20431f 10.1186/s12951-020-0575-y 10.1021/la063014c 10.1021/acscentsci.8b00336 10.1039/b907628j 10.1016/B978-1-4377-0603-1.00020-X 10.1038/nnano.2007.70 10.1002/smll.201703774 10.1039/c9cc04445k 10.1021/ar900035f 10.1088/0957-4484/16/7/024 10.1021/ma035467j 10.1002/jps.21317 10.2147/IJN.S36111 10.1016/j.ijpharm.2016.06.051 10.1021/ma401634s 10.1021/bm500296n 10.1073/pnas.0600997103 10.1039/c0sm00938e 10.1021/ma400916k 10.1016/j.jbiomech.2008.03.021 10.1021/acs.langmuir.9b02346 10.1016/j.ijpharm.2015.03.032 10.1021/acsmacrolett.7b00723 10.1021/acs.macromol.6b02643 10.1016/j.jconrel.2005.12.001 10.1021/acsmacrolett.8b00807 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.0c00169 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 2207 |
ExternalDocumentID | 32208660 10_1021_acs_biomac_0c00169 |
Genre | Journal Article |
GroupedDBID | --- -~X 23N 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F XKZ ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c336t-fc815f8573ed754c4bf5594002c703d397d8a579b51450ca43b78f65220470673 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Fri Jul 11 15:21:29 EDT 2025 Fri Jul 11 09:48:50 EDT 2025 Thu Jan 02 22:58:49 EST 2025 Thu Apr 24 23:06:15 EDT 2025 Tue Jul 01 04:08:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-fc815f8573ed754c4bf5594002c703d397d8a579b51450ca43b78f65220470673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8209-6899 0000-0001-7973-2404 |
PMID | 32208660 |
PQID | 2383519393 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2524300193 proquest_miscellaneous_2383519393 pubmed_primary_32208660 crossref_citationtrail_10_1021_acs_biomac_0c00169 crossref_primary_10_1021_acs_biomac_0c00169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-08 |
PublicationDateYYYYMMDD | 2020-06-08 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2020 |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 Rodrigues E. B. (ref42/cit42) 2010 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1002/smll.201901849 – ident: ref10/cit10 doi: 10.1016/j.jbiomech.2009.05.012 – ident: ref43/cit43 – ident: ref40/cit40 doi: 10.1021/ar8000348 – ident: ref1/cit1 doi: 10.1016/j.jconrel.2017.02.030 – ident: ref23/cit23 doi: 10.1021/jacs.8b09861 – ident: ref25/cit25 doi: 10.1002/ange.201809614 – ident: ref4/cit4 doi: 10.1007/s11095-008-9697-x – ident: ref29/cit29 doi: 10.1016/j.eurpolymj.2016.08.011 – ident: ref26/cit26 doi: 10.1021/acs.langmuir.7b00325 – ident: ref33/cit33 doi: 10.1021/acs.macromol.7b00438 – ident: ref16/cit16 doi: 10.1021/acsnano.7b07878 – ident: ref3/cit3 doi: 10.1039/c8mh01527a – ident: ref14/cit14 doi: 10.1039/c6py00639f – ident: ref13/cit13 doi: 10.1021/acs.chemrev.8b00199 – ident: ref39/cit39 doi: 10.1016/j.polymer.2016.06.067 – ident: ref19/cit19 doi: 10.1039/c5py01467k – ident: ref38/cit38 doi: 10.1021/acs.macromol.5b00824 – ident: ref20/cit20 doi: 10.1002/ange.201909124 – ident: ref2/cit2 doi: 10.2147/IJN.S148359 – ident: ref15/cit15 doi: 10.1039/c3tb20431f – ident: ref46/cit46 doi: 10.1186/s12951-020-0575-y – ident: ref28/cit28 doi: 10.1021/la063014c – ident: ref30/cit30 doi: 10.1021/acscentsci.8b00336 – ident: ref27/cit27 doi: 10.1039/b907628j – start-page: 96 volume-title: Retinal Pharmacotherapy year: 2010 ident: ref42/cit42 doi: 10.1016/B978-1-4377-0603-1.00020-X – ident: ref12/cit12 doi: 10.1038/nnano.2007.70 – ident: ref6/cit6 doi: 10.1002/smll.201703774 – ident: ref31/cit31 doi: 10.1039/c9cc04445k – ident: ref5/cit5 doi: 10.1021/ar900035f – ident: ref18/cit18 doi: 10.1088/0957-4484/16/7/024 – ident: ref35/cit35 doi: 10.1021/ma035467j – ident: ref44/cit44 doi: 10.1002/jps.21317 – ident: ref47/cit47 doi: 10.2147/IJN.S36111 – ident: ref17/cit17 doi: 10.1016/j.ijpharm.2016.06.051 – ident: ref21/cit21 doi: 10.1021/ma401634s – ident: ref37/cit37 doi: 10.1021/bm500296n – ident: ref11/cit11 doi: 10.1073/pnas.0600997103 – ident: ref34/cit34 doi: 10.1039/c0sm00938e – ident: ref36/cit36 doi: 10.1021/ma400916k – ident: ref9/cit9 doi: 10.1016/j.jbiomech.2008.03.021 – ident: ref45/cit45 doi: 10.1021/acs.langmuir.9b02346 – ident: ref24/cit24 doi: 10.1016/j.ijpharm.2015.03.032 – ident: ref32/cit32 doi: 10.1021/acsmacrolett.7b00723 – ident: ref22/cit22 doi: 10.1021/acs.macromol.6b02643 – ident: ref41/cit41 doi: 10.1016/j.jconrel.2005.12.001 – ident: ref8/cit8 doi: 10.1021/acsmacrolett.8b00807 |
SSID | ssj0009345 |
Score | 2.4335299 |
Snippet | The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2199 |
SubjectTerms | biodegradability composite polymers dexamethasone humans nanomedicine therapeutics toxicity |
Title | Wormlike Nanovector with Enhanced Drug Loading Using Blends of Biodegradable Block Copolymers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32208660 https://www.proquest.com/docview/2383519393 https://www.proquest.com/docview/2524300193 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7iRS--H-uLCN60a9skbfeo64qI60VFL1KaaaLLLq3orqC_3pm0q4gP9FrSNEyTyTfPj7EdMNSk3OaetVHkSWG0lwEYz-jIiMwkkRVUjdw9j06u5OmNuplgez9E8MNgP4OnJpWi4_Q-EEJx1Xp48REOal98dNgVjpGY-HwQMrbiukLm-yk-30I_QEt3xRzPsu64UKfKLOk3R0PdhNevfRv_tPo5NlNjTX5QbY55NmGKBTbVHlO8LbLba0Ssg17fcFSy5bNz4HPyzPJOce9SA_jR4-iOn5Uu0567_AJ-OKA0Wl5aftgrc2o2kVP9FT5H3crbxLrwQt7wJXZ13Llsn3g134IHQkRDz0ISKJuoWJg8VhKktmhv4CEPAfVCjsglTzIVtzSCLOVDJoWOExshgvNlTIQ3y2yyKAuzyrj2bQghWMDzLWOQSWBBhRptGaNBa9VgwVj-KdTNyIkTY5C6oHgYpCi4tBJcWguuwXbf33moWnH8Onp7_FtTlCqFQbLClKOnFEEKsRKKlvhljAqlIPiLY1aqPfH-TVSBaAdG_tq_1rPOpkMy1cmBk2ywyeHjyGwinhnqLbeP3wD1OPLF |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wormlike+Nanovector+with+Enhanced+Drug+Loading+Using+Blends+of+Biodegradable+Block+Copolymers&rft.jtitle=Biomacromolecules&rft.au=Ridolfo%2C+Roxane&rft.au=Arends%2C+Jeanrick+J&rft.au=van+Hest%2C+Jan+C+M&rft.au=Williams%2C+David+S&rft.date=2020-06-08&rft.eissn=1526-4602&rft_id=info:doi/10.1021%2Facs.biomac.0c00169&rft_id=info%3Apmid%2F32208660&rft.externalDocID=32208660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |