Multi-Task Federated Learning for Personalised Deep Neural Networks in Edge Computing

Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed (non-IID) user data harms the convergence speed of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 33; no. 3; pp. 630 - 641
Main Authors Mills, Jed, Hu, Jia, Min, Geyong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1045-9219
1558-2183
DOI10.1109/TPDS.2021.3098467

Cover

Loading…
Abstract Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed (non-IID) user data harms the convergence speed of the FL algorithms. Furthermore, most existing work on FL measures global-model accuracy, but in many cases, such as user content-recommendation, improving individual User model Accuracy (UA) is the real objective. To address these issues, we propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization (BN) layers into the federated DNN. MTFL benefits UA and convergence speed by allowing users to train models personalised to their own data. MTFL is compatible with popular iterative FL optimisation algorithms such as Federated Averaging (FedAvg), and we show empirically that a distributed form of Adam optimisation (FedAvg-Adam) benefits convergence speed even further when used as the optimisation strategy within MTFL. Experiments using MNIST and CIFAR10 demonstrate that MTFL is able to significantly reduce the number of rounds required to reach a target UA, by up to <inline-formula><tex-math notation="LaTeX">5\times</tex-math> <mml:math><mml:mrow><mml:mn>5</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hu-ieq1-3098467.gif"/> </inline-formula> when using existing FL optimisation strategies, and with a further <inline-formula><tex-math notation="LaTeX">3\times</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hu-ieq2-3098467.gif"/> </inline-formula> improvement when using FedAvg-Adam. We compare MTFL to competing personalised FL algorithms, showing that it is able to achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally, we evaluate MTFL with FedAvg-Adam on an edge-computing testbed, showing that its convergence and UA benefits outweigh its overhead.
AbstractList Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed (non-IID) user data harms the convergence speed of the FL algorithms. Furthermore, most existing work on FL measures global-model accuracy, but in many cases, such as user content-recommendation, improving individual User model Accuracy (UA) is the real objective. To address these issues, we propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization (BN) layers into the federated DNN. MTFL benefits UA and convergence speed by allowing users to train models personalised to their own data. MTFL is compatible with popular iterative FL optimisation algorithms such as Federated Averaging (FedAvg), and we show empirically that a distributed form of Adam optimisation (FedAvg-Adam) benefits convergence speed even further when used as the optimisation strategy within MTFL. Experiments using MNIST and CIFAR10 demonstrate that MTFL is able to significantly reduce the number of rounds required to reach a target UA, by up to [Formula Omitted] when using existing FL optimisation strategies, and with a further [Formula Omitted] improvement when using FedAvg-Adam. We compare MTFL to competing personalised FL algorithms, showing that it is able to achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally, we evaluate MTFL with FedAvg-Adam on an edge-computing testbed, showing that its convergence and UA benefits outweigh its overhead.
Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed (non-IID) user data harms the convergence speed of the FL algorithms. Furthermore, most existing work on FL measures global-model accuracy, but in many cases, such as user content-recommendation, improving individual User model Accuracy (UA) is the real objective. To address these issues, we propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization (BN) layers into the federated DNN. MTFL benefits UA and convergence speed by allowing users to train models personalised to their own data. MTFL is compatible with popular iterative FL optimisation algorithms such as Federated Averaging (FedAvg), and we show empirically that a distributed form of Adam optimisation (FedAvg-Adam) benefits convergence speed even further when used as the optimisation strategy within MTFL. Experiments using MNIST and CIFAR10 demonstrate that MTFL is able to significantly reduce the number of rounds required to reach a target UA, by up to <inline-formula><tex-math notation="LaTeX">5\times</tex-math> <mml:math><mml:mrow><mml:mn>5</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hu-ieq1-3098467.gif"/> </inline-formula> when using existing FL optimisation strategies, and with a further <inline-formula><tex-math notation="LaTeX">3\times</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hu-ieq2-3098467.gif"/> </inline-formula> improvement when using FedAvg-Adam. We compare MTFL to competing personalised FL algorithms, showing that it is able to achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally, we evaluate MTFL with FedAvg-Adam on an edge-computing testbed, showing that its convergence and UA benefits outweigh its overhead.
Author Hu, Jia
Mills, Jed
Min, Geyong
Author_xml – sequence: 1
  givenname: Jed
  orcidid: 0000-0001-6344-9364
  surname: Mills
  fullname: Mills, Jed
  email: jm729@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 2
  givenname: Jia
  orcidid: 0000-0001-5406-8420
  surname: Hu
  fullname: Hu, Jia
  email: j.hu@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 3
  givenname: Geyong
  orcidid: 0000-0003-1395-7314
  surname: Min
  fullname: Min, Geyong
  email: g.min@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
BookMark eNp9kE1Lw0AQhhepYFv9AeIl4Dl1P5PsUfqhQtWC7TlsspOybZqNuxvEf29KiwcPnmZg3udleEZo0NgGELoleEIIlg_r1exjQjElE4ZlxpP0Ag2JEFlMScYG_Y65iCUl8gqNvN9hTLjAfIg2r10dTLxWfh8tQINTAXS0BOUa02yjyrpoBc7bRtXG95cZQBu9QedU3Y_wZd3eR6aJ5noL0dQe2i703DW6rFTt4eY8x2izmK-nz_Hy_ell-riMS8aSEGupKlJVZZGyjGqCGdOl5EziosS8UCmlNJGYFTrhZUoZZSBEqhOpS42V4AUbo_tTb-vsZwc-5Dvbuf5Xn1ORYImzvq1PpadU6az3Dqq8NEEFY5vglKlzgvOjw_zoMD86zM8Oe5L8IVtnDsp9_8vcnRgDAL95ySVNhWA_uTF-XQ
CODEN ITDSEO
CitedBy_id crossref_primary_10_3390_s22124394
crossref_primary_10_1002_int_22951
crossref_primary_10_1007_s10462_024_11082_w
crossref_primary_10_3390_app132312962
crossref_primary_10_3390_info15090550
crossref_primary_10_1109_TMLCN_2023_3302811
crossref_primary_10_1016_j_future_2023_11_006
crossref_primary_10_1109_TNSM_2023_3278023
crossref_primary_10_26599_BDMA_2022_9020046
crossref_primary_10_3390_jsan11040070
crossref_primary_10_1186_s13677_024_00721_w
crossref_primary_10_26599_BDMA_2024_9020001
crossref_primary_10_1109_TMC_2024_3504271
crossref_primary_10_3390_app13179813
crossref_primary_10_1088_1742_6596_2456_1_012035
crossref_primary_10_1109_JIOT_2024_3524469
crossref_primary_10_1109_TCSS_2023_3259431
crossref_primary_10_1109_TPDS_2024_3396133
crossref_primary_10_1109_TII_2022_3192882
crossref_primary_10_1109_OJCOMS_2024_3458088
crossref_primary_10_1109_TSP_2024_3459808
crossref_primary_10_1109_JIOT_2023_3299308
crossref_primary_10_3390_math12142229
crossref_primary_10_1109_JIOT_2024_3447036
crossref_primary_10_1109_TCBB_2022_3184319
crossref_primary_10_1007_s10723_023_09730_6
crossref_primary_10_1016_j_aej_2024_08_048
crossref_primary_10_1007_s00779_024_01820_w
crossref_primary_10_1016_j_comnet_2024_110510
crossref_primary_10_1109_JIOT_2024_3486121
crossref_primary_10_1109_TNSE_2022_3185672
crossref_primary_10_3390_s22134909
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_3390_app13053083
crossref_primary_10_1016_j_artmed_2024_103024
crossref_primary_10_1109_JIOT_2023_3306778
crossref_primary_10_1016_j_future_2024_02_026
crossref_primary_10_1109_JIOT_2024_3376548
crossref_primary_10_1016_j_ijepes_2024_109905
crossref_primary_10_1007_s10489_022_04431_1
crossref_primary_10_1109_TPDS_2022_3157258
crossref_primary_10_1016_j_asoc_2024_111588
crossref_primary_10_1109_TMC_2024_3374706
crossref_primary_10_1109_TITS_2022_3209899
crossref_primary_10_1016_j_inffus_2023_102046
crossref_primary_10_1109_JIOT_2024_3399074
crossref_primary_10_1016_j_dcan_2022_07_006
crossref_primary_10_1109_TNNLS_2023_3323302
crossref_primary_10_1109_JIOT_2024_3446725
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_1016_j_future_2023_03_042
crossref_primary_10_1109_COMST_2022_3202047
crossref_primary_10_1109_JIOT_2023_3276865
crossref_primary_10_1109_COMST_2023_3244674
crossref_primary_10_2139_ssrn_4627317
crossref_primary_10_1038_s41598_024_84797_z
crossref_primary_10_1016_j_neucom_2023_126897
crossref_primary_10_1109_MCOM_001_2300155
crossref_primary_10_1109_JIOT_2024_3524005
crossref_primary_10_1109_TWC_2023_3301611
crossref_primary_10_1016_j_neunet_2025_107199
crossref_primary_10_1109_JIOT_2024_3434627
crossref_primary_10_1016_j_jksuci_2024_101996
crossref_primary_10_1109_TIFS_2024_3515814
crossref_primary_10_1109_MGRS_2023_3272825
crossref_primary_10_1109_TMC_2024_3484493
crossref_primary_10_1109_TMC_2024_3449129
crossref_primary_10_1016_j_eswa_2022_119159
crossref_primary_10_1080_00207543_2024_2432469
crossref_primary_10_1109_TBC_2023_3332012
crossref_primary_10_1109_TGCN_2023_3260199
crossref_primary_10_1109_IOTM_001_2200266
crossref_primary_10_1109_TC_2024_3353455
crossref_primary_10_1364_OE_544542
crossref_primary_10_1109_TMC_2024_3361876
crossref_primary_10_1109_TPDS_2022_3225185
crossref_primary_10_1109_TMC_2024_3464512
crossref_primary_10_1109_JIOT_2023_3298814
crossref_primary_10_1109_TVT_2022_3188324
crossref_primary_10_1109_TII_2022_3203395
crossref_primary_10_1109_TIM_2023_3341116
crossref_primary_10_1109_TITS_2022_3161986
crossref_primary_10_1109_TWC_2023_3286990
crossref_primary_10_1109_JIOT_2025_3531884
crossref_primary_10_1109_JIOT_2024_3461853
crossref_primary_10_3390_s24165141
crossref_primary_10_3390_s25010233
crossref_primary_10_1109_COMST_2023_3282264
crossref_primary_10_1109_LGRS_2024_3437743
crossref_primary_10_1109_JSTSP_2022_3223526
crossref_primary_10_1109_TCDS_2023_3288985
crossref_primary_10_1109_OJCOMS_2024_3381545
crossref_primary_10_1016_j_segan_2024_101537
crossref_primary_10_3233_JIFS_231880
crossref_primary_10_1007_s10489_023_04753_8
crossref_primary_10_1109_TSC_2023_3268990
crossref_primary_10_1109_JSEN_2022_3165042
crossref_primary_10_1007_s11063_025_11724_2
crossref_primary_10_1109_TITS_2023_3336823
crossref_primary_10_1016_j_comcom_2022_09_008
crossref_primary_10_1016_j_engappai_2023_107125
crossref_primary_10_1109_TSC_2024_3387734
crossref_primary_10_1016_j_future_2024_03_020
crossref_primary_10_1016_j_jpdc_2024_104948
crossref_primary_10_1109_JIOT_2023_3277632
crossref_primary_10_26599_TST_2023_9010066
crossref_primary_10_1109_ACCESS_2024_3442014
crossref_primary_10_1109_TMC_2024_3357874
crossref_primary_10_1109_TPDS_2023_3240883
crossref_primary_10_3390_electronics12122689
crossref_primary_10_1016_j_comcom_2022_07_010
crossref_primary_10_1109_TCE_2024_3424574
crossref_primary_10_1016_j_sysarc_2024_103258
crossref_primary_10_1109_TPDS_2023_3240767
crossref_primary_10_1109_TNNLS_2024_3362974
crossref_primary_10_1109_TPDS_2023_3289444
crossref_primary_10_1371_journal_pone_0302539
crossref_primary_10_26599_BDMA_2024_9020035
crossref_primary_10_1109_JSAC_2023_3345431
crossref_primary_10_1109_TIFS_2024_3484946
Cites_doi 10.1109/ICC.2019.8761212
10.1109/TPDS.2020.3009406
10.1109/ICC.2019.8761315
10.1109/TMC.2019.2934103
10.1109/ICASSP.2019.8683546
10.1109/COMST.2017.2745201
10.1109/ICDCS.2019.00099
10.1109/TPDS.2020.3023905
10.1109/MSP.2020.2975749
10.1109/PIMRC.2019.8904164
10.1109/TPDS.2020.2975189
10.1109/TMC.2019.2941492
10.1016/j.jbi.2019.103291
10.1109/TCOMM.2019.2944169
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2021.3098467
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 641
ExternalDocumentID 10_1109_TPDS_2021_3098467
9492755
Genre orig-research
GrantInformation_xml – fundername: EU Horizon 2020 INITIATE
  grantid: 101008297
– fundername: EPSRC DTP Studentship
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-d9af1ffcb7382d1033dc94390bc04ba72226903bd64c72323e557d69dcd0a54b3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 04:33:29 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 03:58:39 EDT 2025
Wed Aug 27 02:26:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-d9af1ffcb7382d1033dc94390bc04ba72226903bd64c72323e557d69dcd0a54b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5406-8420
0000-0003-1395-7314
0000-0001-6344-9364
OpenAccessLink http://hdl.handle.net/10871/126748
PQID 2560908439
PQPubID 85437
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TPDS_2021_3098467
proquest_journals_2560908439
crossref_primary_10_1109_TPDS_2021_3098467
ieee_primary_9492755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References dinh (ref20) 2021
ref15
lecun and (ref33) 0
ref31
konstantinov (ref30) 2019
ammad-ud-din (ref9) 2019
ref2
ref1
yu (ref32) 2020
mcmahan (ref5) 2017
hard (ref8) 2018
kingma (ref17) 2014
krizhevsky (ref34) 2019
jiang (ref11) 2019
ref24
ref23
ref26
ref25
ref21
roy (ref6) 2019
mudrakarta (ref14) 2019
bonawitz (ref22) 2019
ref28
ref27
huang (ref19) 2021
ref7
smith (ref13) 2017
ref4
dinh (ref10) 2020; 33
ref3
fallah (ref12) 2020; 33
reddi (ref16) 2021
zhao (ref29) 2018
hanzely (ref18) 2020
References_xml – year: 2020
  ident: ref32
  article-title: Salvaging federated learning by local adaptation
– year: 2019
  ident: ref9
  article-title: Federated collaborative filtering for privacy-preserving personalized recommendation system
– year: 0
  ident: ref33
  article-title: Mnist handwritten digit database
– ident: ref2
  doi: 10.1109/ICC.2019.8761212
– ident: ref23
  doi: 10.1109/TPDS.2020.3009406
– volume: 33
  start-page: 21394
  year: 2020
  ident: ref10
  article-title: Personalized federated learning with moreau envelopes
  publication-title: Proc Conf Neural Inf Process Syst
– start-page: 1273
  year: 2017
  ident: ref5
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Stat
– year: 2021
  ident: ref20
  article-title: Fedu: A unified framework for federated multi-task learning with laplacian regularization
– ident: ref27
  doi: 10.1109/ICC.2019.8761315
– ident: ref3
  doi: 10.1109/TMC.2019.2934103
– ident: ref15
  doi: 10.1109/ICASSP.2019.8683546
– ident: ref1
  doi: 10.1109/COMST.2017.2745201
– ident: ref31
  doi: 10.1109/ICDCS.2019.00099
– year: 2019
  ident: ref14
  article-title: K for the price of 1: Parameter efficient multi-task and transfer learning
  publication-title: Proc Int Conf Learn Representations
– start-page: 3488
  year: 2019
  ident: ref30
  article-title: Robust learning from untrusted sources
  publication-title: Proc Int Conf Mach Learn
– ident: ref26
  doi: 10.1109/TPDS.2020.3023905
– year: 2019
  ident: ref34
  article-title: Learning multiple layers of features from tiny images
– year: 2018
  ident: ref8
  article-title: Federated learning for mobile keyboard prediction
– year: 2021
  ident: ref16
  article-title: Adaptive federated optimization
  publication-title: Proc Int Conf Learn Representations
– year: 2019
  ident: ref22
  article-title: Towards federated learning at scale: System design
  publication-title: Proc Syst Mach Learn Conf
– year: 2014
  ident: ref17
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– year: 2018
  ident: ref29
  article-title: Federated learning with non-IID data
– year: 2019
  ident: ref11
  article-title: Improving federated learing personalization via model agnostic meta learning
– year: 2019
  ident: ref6
  article-title: Braintorrent: A peer-to-peer environment for decentralized federated learning
– volume: 33
  start-page: 3557
  year: 2020
  ident: ref12
  article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/MSP.2020.2975749
– ident: ref25
  doi: 10.1109/PIMRC.2019.8904164
– ident: ref28
  doi: 10.1109/TPDS.2020.2975189
– start-page: 7865
  year: 2021
  ident: ref19
  article-title: Personalized cross-silo federated learning on non-IID data
  publication-title: Proc Assoc Adv Artif Intell
– ident: ref21
  doi: 10.1109/TMC.2019.2941492
– year: 2020
  ident: ref18
  article-title: Federated learning of a mixture of global and local models
– start-page: 4427
  year: 2017
  ident: ref13
  article-title: Federated multi-task learning
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref7
  doi: 10.1016/j.jbi.2019.103291
– ident: ref24
  doi: 10.1109/TCOMM.2019.2944169
SSID ssj0014504
Score 2.66418
Snippet Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 630
SubjectTerms Adaptation models
adaptive optimization
Algorithms
Artificial neural networks
Computational modeling
Convergence
Customization
Data models
deep learning
Edge computing
Electronic devices
Federated learning
Iterative methods
Machine learning
Model accuracy
multi-task learning
Neural networks
Optimization
Servers
Training
Title Multi-Task Federated Learning for Personalised Deep Neural Networks in Edge Computing
URI https://ieeexplore.ieee.org/document/9492755
https://www.proquest.com/docview/2560908439
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQvlp1C0U-9FQ1ixPbSXxEwAohgZC6K3GLYs8EVVQLYncv_fWMHWdblariZim27Oh54jfxzBuAL0ExvMQ6z0jllGld-KzNuYWdR2OlLagK-c5X1-XFTF_emtsN-LbOhSGiGHxG49CMd_n44FfhV9mx1baojNmETXbc-lyt9Y2BNrFUIHsXJrNshukGM5f2eHpz9p09wSIfK2nrvqT87zMoFlV58SWOx8tkG66GhfVRJffj1dKN_a-_NBtfu_IdeJd4pjjpN8YubNB8D7aHGg4imfQevP1DkHAfZjEfN5u2i3sxCTITzERRJA3WO8EEV9wM7H3BT86IHkXQ9-CprvuA8oX4MRfneEein4zHvYfZ5Hx6epGlwguZV6pcZmjbLu867ypVF5hLpdBbZi7SealdWzGnYKdaOSy1r5iSKTKmwtKiR9ka7dQH2Jo_zOkjiA5dh2yI2Fakc9ItOcSOSaPtCizregRygKLxSZU8FMf42UTvRNomoNcE9JqE3gi-roc89pIc_-u8H9BYd0xAjOBwwLtJRrtoAvuzsuYX_fTvUQfwpgjZDzEE7RC2lk8r-sycZOmO4mZ8BoPI3YQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH5i7LBxgA02UWCbD5zQUpzYTuIjGlTdRiskWolbFPu9IMRUEG0v_HpsxykTm6bdLMWWHX1-8ffi974HcOgVw3Ms04RESomUmU3q1LWwsag01xkVPt95NM6HU_njSl2twddVLgwRheAz6vtmuMvHO7v0v8qOtdRZodQreK18Mm6brbW6M5AqFAt0_oVKtDPEeIeZcn08uTi9dL5glvYF12VbVP75FAplVf74FocDZrAFo25pbVzJbX-5MH37-EK18X_X_g42I9NkJ-3WeA9rNNuGra6KA4tGvQ0bv0kS7sA0ZOQmk3p-ywZeaMJxUWRRhfWaOYrLLjr-PndPTonumVf4cFON25DyObuZsTO8JtZO5sZ9gOngbPJtmMTSC4kVIl8kqOsmbRprClFmmHIh0GrHXbixXJq6cKzCudXCYC5t4UiZIKUKzDVa5LWSRnyE9dndjHaBNWgadKaIdUEyJVmTQWwcbdRNhnlZ9oB3UFQ26pL78hi_quCfcF159CqPXhXR68HRash9K8rxr847Ho1VxwhEDw46vKtotvPK8z_NS_eie38f9QXeDCej8-r8-_jnPrzNfC5ECEg7gPXFw5I-OYayMJ_DxnwCN_ngzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Task+Federated+Learning+for+Personalised+Deep+Neural+Networks+in+Edge+Computing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Mills%2C+Jed&rft.au=Hu%2C+Jia&rft.au=Min%2C+Geyong&rft.date=2022-03-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=3&rft.spage=630&rft.epage=641&rft_id=info:doi/10.1109%2FTPDS.2021.3098467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2021_3098467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon