Coleman–Gurtin type equations with dynamic boundary conditions
We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear...
Saved in:
Published in | Physica. D Vol. 292-293; pp. 29 - 45 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-2789 1872-8022 |
DOI | 10.1016/j.physd.2014.10.008 |
Cover
Abstract | We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel.
•We consider boundary conditions with temperature dependent sources/sinks and memory.•We consider memory functions on the boundary and in the interior that differ.•We consider nonlinear terms satisfying nonlinear balance conditions.•We develop a general framework allowing for both weak and smooth initial data.•We extend a Galerkin approximation scheme. |
---|---|
AbstractList | We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman-Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel. We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel. •We consider boundary conditions with temperature dependent sources/sinks and memory.•We consider memory functions on the boundary and in the interior that differ.•We consider nonlinear terms satisfying nonlinear balance conditions.•We develop a general framework allowing for both weak and smooth initial data.•We extend a Galerkin approximation scheme. |
Author | Gal, Ciprian G. Shomberg, Joseph L. |
Author_xml | – sequence: 1 givenname: Ciprian G. surname: Gal fullname: Gal, Ciprian G. email: cgal@fiu.edu organization: Department of Mathematics, Florida International University, Miami, FL 33199, USA – sequence: 2 givenname: Joseph L. orcidid: 0000-0002-5623-3140 surname: Shomberg fullname: Shomberg, Joseph L. email: jshomber@providence.edu organization: Department of Mathematics and Computer Science, Providence College, Providence, RI 02918, USA |
BookMark | eNqFkLtOwzAUQC1UJNrCF7BkZEmxncZ2BiRQBQWpEgvMluOH6iqxU9sBdeMf-EO-hLRlYoDpSlfnXF2dCRg57zQAlwjOEETkejPr1ruoZhii-bCZQchOwBgxinMGMR6B8UDRHFNWnYFJjBsIIaIFHYPbhW90K9zXx-eyD8m6LO06neltL5L1LmbvNq0ztXOitTKrfe-UCLtMeqfsATgHp0Y0UV_8zCl4fbh_WTzmq-fl0-JulcuiIClXFNYVYQhVrGaUFrhmButSsRIZUQqMJaGKyFKZecVQaZQhBaOwqgtjNKvLYgqujne74Le9jom3NkrdNMJp30eOCKnYnEIyH9DiiMrgYwza8C7YdnibI8j3vfiGH3rxfa_9cug1WNUvS9p0iJCCsM0_7s3R1UOBN6sDj9JqJ7WyQcvElbd_-t-vcYt_ |
CitedBy_id | crossref_primary_10_1017_S0004972719000078 crossref_primary_10_1007_s00009_023_02333_1 crossref_primary_10_1007_s00245_019_09647_1 crossref_primary_10_1007_s00032_015_0242_1 crossref_primary_10_3390_fractalfract6090505 crossref_primary_10_1016_j_na_2019_111737 crossref_primary_10_1007_s00245_020_09730_y |
Cites_doi | 10.57262/ade/1355867704 10.1007/BF01262695 10.3934/dcds.2008.22.1009 10.1016/j.na.2009.11.002 10.1512/iumj.2006.55.2661 10.1007/BF01596912 10.1006/jdeq.2000.3903 10.1002/mma.590 10.1090/qam/1788423 10.1007/s00332-011-9109-y 10.1007/BF00283864 10.1007/BF00281324 10.1007/s00205-010-0300-3 10.1016/j.jde.2012.02.010 10.1007/s000300050049 10.1007/s00245-012-9178-9 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1016/j.physd.2014.10.008 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-8022 |
EndPage | 45 |
ExternalDocumentID | 10_1016_j_physd_2014_10_008 S0167278914002140 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADGUI AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMV IHE J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSW T5K TN5 TWZ XPP YNT ~02 ~G- 29O AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO ADVLN AEIPS AFFNX AFJKZ AFXIZ AGCQF AGHFR AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HVGLF HZ~ H~9 MVM NDZJH R2- SEW SPG SSH SSZ WUQ XJT YYP 7U5 8FD EFKBS L7M |
ID | FETCH-LOGICAL-c336t-d70b9681198b87732b8f2e5d851fa5a22c67d6c5df49815fdf638709b3ffe8b53 |
IEDL.DBID | AIKHN |
ISSN | 0167-2789 |
IngestDate | Thu Sep 04 18:05:21 EDT 2025 Tue Jul 01 02:39:53 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Fri Feb 23 02:33:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heat conduction Coleman–Gurtin equation Dynamic boundary conditions with memory Heat equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-d70b9681198b87732b8f2e5d851fa5a22c67d6c5df49815fdf638709b3ffe8b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5623-3140 |
PQID | 1669847064 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1669847064 crossref_primary_10_1016_j_physd_2014_10_008 crossref_citationtrail_10_1016_j_physd_2014_10_008 elsevier_sciencedirect_doi_10_1016_j_physd_2014_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 2015-02-00 20150201 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physica. D |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gurtin (br000125) 1965; 18 Gal (br000060) 2012; 253 Gal, Grasselli (br000050) 2008; 22 Temam (br000100) 1988; vol. 68 Coclite, Favini, Gal, Goldstein, Goldstein, Obrecht, Romanelli (br000080) 2009 Truesdell, Toupin (br000130) 1960 Hömberg, Krumbiegel, Rehberg (br000120) 2013; 67 Conti, Pata, Squassina (br000015) 2006; 55 Coleman, Mizel (br000040) 1963; 13 Gal, Grasselli, Miranville (br000055) 2008; 29 Miranville, Zelik (br000105) 2005; 28 Grasselli, Pata (br000005) 2002; 50 Giorgi, Pata, Marzocchi (br000035) 2000; 58 Fabrizio, Giorgi, Pata (br000025) 2010; 198 Rodríguez-Bernal, Tajdine (br000085) 2001; 169 Coleman (br000135) 1964; 17 Conti, Pata, Squassina (br000010) 2005 Coleman, Gurtin (br000110) 1967; 18 Gal, Warma (br000070) 2010; 23 Cavaterra, Gal, Grasselli, Miranville (br000075) 2010; 72 Goldstein (br000045) 2006; 11 Carslaw, Jaeger (br000115) 1988 Giorgi, Pata, Marzocchi (br000030) 1998; 5 Gal (br000065) 2012; 22 Renardy, Rogers (br000095) 2004; vol. 13 Pazy (br000090) 1983; vol. 44 Chekroun, Di Plinio, Glatt-Holtz, Pata (br000020) 2011; 4 Gurtin (10.1016/j.physd.2014.10.008_br000125) 1965; 18 Cavaterra (10.1016/j.physd.2014.10.008_br000075) 2010; 72 Conti (10.1016/j.physd.2014.10.008_br000015) 2006; 55 Coleman (10.1016/j.physd.2014.10.008_br000135) 1964; 17 Hömberg (10.1016/j.physd.2014.10.008_br000120) 2013; 67 Giorgi (10.1016/j.physd.2014.10.008_br000035) 2000; 58 Gal (10.1016/j.physd.2014.10.008_br000055) 2008; 29 Gal (10.1016/j.physd.2014.10.008_br000065) 2012; 22 Coclite (10.1016/j.physd.2014.10.008_br000080) 2009 Gal (10.1016/j.physd.2014.10.008_br000050) 2008; 22 Renardy (10.1016/j.physd.2014.10.008_br000095) 2004; vol. 13 Gal (10.1016/j.physd.2014.10.008_br000070) 2010; 23 Miranville (10.1016/j.physd.2014.10.008_br000105) 2005; 28 Temam (10.1016/j.physd.2014.10.008_br000100) 1988; vol. 68 Giorgi (10.1016/j.physd.2014.10.008_br000030) 1998; 5 Carslaw (10.1016/j.physd.2014.10.008_br000115) 1988 Coleman (10.1016/j.physd.2014.10.008_br000040) 1963; 13 Rodríguez-Bernal (10.1016/j.physd.2014.10.008_br000085) 2001; 169 Pazy (10.1016/j.physd.2014.10.008_br000090) 1983; vol. 44 Fabrizio (10.1016/j.physd.2014.10.008_br000025) 2010; 198 Coleman (10.1016/j.physd.2014.10.008_br000110) 1967; 18 Goldstein (10.1016/j.physd.2014.10.008_br000045) 2006; 11 Grasselli (10.1016/j.physd.2014.10.008_br000005) 2002; 50 Gal (10.1016/j.physd.2014.10.008_br000060) 2012; 253 Chekroun (10.1016/j.physd.2014.10.008_br000020) 2011; 4 Conti (10.1016/j.physd.2014.10.008_br000010) 2005 Truesdell (10.1016/j.physd.2014.10.008_br000130) 1960 |
References_xml | – volume: 55 start-page: 169 year: 2006 end-page: 215 ident: br000015 article-title: Singular limit of differential systems with memory publication-title: Indiana Univ. Math. J. – volume: 67 start-page: 3 year: 2013 end-page: 31 ident: br000120 article-title: Optimal control of a parabolic equation with dynamic boundary condition publication-title: Appl. Math. Optim. – volume: 11 start-page: 457 year: 2006 end-page: 480 ident: br000045 article-title: Derivation and physical interpretation of general boundary conditions publication-title: Adv. Differential Equations – volume: 23 start-page: 327 year: 2010 end-page: 358 ident: br000070 article-title: Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions publication-title: Differential Integral Equations – year: 1960 ident: br000130 article-title: The classical field theories publication-title: Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, Vol. III/t, edited by S. FL/3GC, E – volume: vol. 44 year: 1983 ident: br000090 publication-title: Semigroups of Linear Operators and Applications to Partial Differential Equations – volume: vol. 13 year: 2004 ident: br000095 publication-title: An Introduction to Partial Differential Equations – volume: 18 start-page: 199 year: 1967 end-page: 208 ident: br000110 article-title: Equipresence and constitutive equations for rigid heat conductors publication-title: Z. Angew. Math. Phys. – volume: 17 start-page: 1 year: 1964 end-page: 46 ident: br000135 article-title: Thermodynamics of materials with memory publication-title: Arch. Ration. Mech. Anal. – volume: 50 start-page: 155 year: 2002 end-page: 178 ident: br000005 article-title: Uniform attractors of nonautonomous dynamical systems with memory publication-title: Progr. Nonlinear Differential Equations Appl. – volume: 4 start-page: 351 year: 2011 end-page: 369 ident: br000020 article-title: Asymptotics of the Coleman–Gurtin model publication-title: Discrete Contin. Dyn. Syst. Ser. S – year: 1988 ident: br000115 publication-title: Conduction of Heat in Solids – volume: 169 start-page: 332 year: 2001 end-page: 372 ident: br000085 article-title: Nonlinear balance for reaction–diffusion equations under nonlinear boundary conditions: dissipativity and blow-up publication-title: J. Differential Equations – volume: 198 start-page: 189 year: 2010 end-page: 232 ident: br000025 article-title: A new approach to equations with memory publication-title: Arch. Ration. Mech. Anal. – volume: 22 start-page: 85 year: 2012 end-page: 106 ident: br000065 article-title: Sharp estimates for the global attractor of scalar reaction–diffusion equations with a Wentzell boundary condition publication-title: J. Nonlinear Sci. – volume: 13 start-page: 245 year: 1963 end-page: 261 ident: br000040 article-title: Thermodynamics and departures from Fourier’s law of heat conduction publication-title: Arch. Ration. Mech. Anal. – volume: 58 start-page: 661 year: 2000 end-page: 683 ident: br000035 article-title: Uniform attractors for a non-autonomous semilinear heat equation with memory publication-title: Quart. Appl. Math. – volume: 22 start-page: 1009 year: 2008 end-page: 1040 ident: br000050 article-title: The non-isothermal Allen–Cahn equation with dynamic boundary conditions publication-title: Discrete Contin. Dyn. Syst. – volume: vol. 68 year: 1988 ident: br000100 publication-title: Infinite-Dimensional Dynamical Systems in Mechanics and Physics – volume: 253 start-page: 126 year: 2012 end-page: 166 ident: br000060 article-title: On a class of degenerate parabolic equations with dynamic boundary conditions publication-title: J. Differential Equations – volume: 29 start-page: 117 year: 2008 end-page: 139 ident: br000055 article-title: Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions publication-title: Nonlinear Phenomena with Energy Dissipation – year: 2009 ident: br000080 article-title: The role of Wentzell boundary conditions in linear and nonlinear analysis publication-title: Advances in Nonlinear Analysis: Theory, Methods and Applications. Vol. 3 – volume: 72 start-page: 2375 year: 2010 end-page: 2399 ident: br000075 article-title: Phase-field systems with nonlinear coupling and dynamic boundary conditions publication-title: Nonlinear Anal. – start-page: 200 year: 2005 end-page: 208 ident: br000010 article-title: Singular limit of dissipative hyperbolic equations with memory publication-title: Discrete Contin. Dyn. Syst. – volume: 18 start-page: 335 year: 1965 end-page: 342 ident: br000125 article-title: Thermodynamics and the possibility of spatial interaction in rigid heat conductors publication-title: Arch. Ration. Mech. Anal. – volume: 5 start-page: 333 year: 1998 end-page: 354 ident: br000030 article-title: Asymptotic behavior of a semilinear problem in heat conduction with memory publication-title: NoDEA Nonlinear Differential Equations Appl. – volume: 28 start-page: 709 year: 2005 end-page: 735 ident: br000105 article-title: Exponential attractors for the Cahn Hilliard equation with dynamic boundary conditions publication-title: Math. Models Appl. Sci. – year: 1988 ident: 10.1016/j.physd.2014.10.008_br000115 – volume: 11 start-page: 457 year: 2006 ident: 10.1016/j.physd.2014.10.008_br000045 article-title: Derivation and physical interpretation of general boundary conditions publication-title: Adv. Differential Equations doi: 10.57262/ade/1355867704 – year: 1960 ident: 10.1016/j.physd.2014.10.008_br000130 article-title: The classical field theories – volume: 13 start-page: 245 year: 1963 ident: 10.1016/j.physd.2014.10.008_br000040 article-title: Thermodynamics and departures from Fourier’s law of heat conduction publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF01262695 – start-page: 200 issue: suppl. year: 2005 ident: 10.1016/j.physd.2014.10.008_br000010 article-title: Singular limit of dissipative hyperbolic equations with memory publication-title: Discrete Contin. Dyn. Syst. – volume: 29 start-page: 117 year: 2008 ident: 10.1016/j.physd.2014.10.008_br000055 article-title: Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions publication-title: Nonlinear Phenomena with Energy Dissipation – volume: 23 start-page: 327 issue: 3–4 year: 2010 ident: 10.1016/j.physd.2014.10.008_br000070 article-title: Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions publication-title: Differential Integral Equations – volume: 22 start-page: 1009 issue: 4 year: 2008 ident: 10.1016/j.physd.2014.10.008_br000050 article-title: The non-isothermal Allen–Cahn equation with dynamic boundary conditions publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2008.22.1009 – volume: 72 start-page: 2375 issue: 5 year: 2010 ident: 10.1016/j.physd.2014.10.008_br000075 article-title: Phase-field systems with nonlinear coupling and dynamic boundary conditions publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.11.002 – volume: 55 start-page: 169 issue: 1 year: 2006 ident: 10.1016/j.physd.2014.10.008_br000015 article-title: Singular limit of differential systems with memory publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2006.55.2661 – volume: 18 start-page: 199 year: 1967 ident: 10.1016/j.physd.2014.10.008_br000110 article-title: Equipresence and constitutive equations for rigid heat conductors publication-title: Z. Angew. Math. Phys. doi: 10.1007/BF01596912 – volume: 169 start-page: 332 year: 2001 ident: 10.1016/j.physd.2014.10.008_br000085 article-title: Nonlinear balance for reaction–diffusion equations under nonlinear boundary conditions: dissipativity and blow-up publication-title: J. Differential Equations doi: 10.1006/jdeq.2000.3903 – volume: vol. 68 year: 1988 ident: 10.1016/j.physd.2014.10.008_br000100 – volume: 28 start-page: 709 year: 2005 ident: 10.1016/j.physd.2014.10.008_br000105 article-title: Exponential attractors for the Cahn Hilliard equation with dynamic boundary conditions publication-title: Math. Models Appl. Sci. doi: 10.1002/mma.590 – volume: 50 start-page: 155 year: 2002 ident: 10.1016/j.physd.2014.10.008_br000005 article-title: Uniform attractors of nonautonomous dynamical systems with memory publication-title: Progr. Nonlinear Differential Equations Appl. – volume: 58 start-page: 661 issue: 4 year: 2000 ident: 10.1016/j.physd.2014.10.008_br000035 article-title: Uniform attractors for a non-autonomous semilinear heat equation with memory publication-title: Quart. Appl. Math. doi: 10.1090/qam/1788423 – volume: 22 start-page: 85 issue: 1 year: 2012 ident: 10.1016/j.physd.2014.10.008_br000065 article-title: Sharp estimates for the global attractor of scalar reaction–diffusion equations with a Wentzell boundary condition publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-011-9109-y – volume: vol. 13 year: 2004 ident: 10.1016/j.physd.2014.10.008_br000095 – volume: 17 start-page: 1 year: 1964 ident: 10.1016/j.physd.2014.10.008_br000135 article-title: Thermodynamics of materials with memory publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00283864 – volume: 18 start-page: 335 year: 1965 ident: 10.1016/j.physd.2014.10.008_br000125 article-title: Thermodynamics and the possibility of spatial interaction in rigid heat conductors publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00281324 – year: 2009 ident: 10.1016/j.physd.2014.10.008_br000080 article-title: The role of Wentzell boundary conditions in linear and nonlinear analysis – volume: vol. 44 year: 1983 ident: 10.1016/j.physd.2014.10.008_br000090 – volume: 198 start-page: 189 year: 2010 ident: 10.1016/j.physd.2014.10.008_br000025 article-title: A new approach to equations with memory publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-010-0300-3 – volume: 253 start-page: 126 year: 2012 ident: 10.1016/j.physd.2014.10.008_br000060 article-title: On a class of degenerate parabolic equations with dynamic boundary conditions publication-title: J. Differential Equations doi: 10.1016/j.jde.2012.02.010 – volume: 4 start-page: 351 year: 2011 ident: 10.1016/j.physd.2014.10.008_br000020 article-title: Asymptotics of the Coleman–Gurtin model publication-title: Discrete Contin. Dyn. Syst. Ser. S – volume: 5 start-page: 333 issue: 3 year: 1998 ident: 10.1016/j.physd.2014.10.008_br000030 article-title: Asymptotic behavior of a semilinear problem in heat conduction with memory publication-title: NoDEA Nonlinear Differential Equations Appl. doi: 10.1007/s000300050049 – volume: 67 start-page: 3 year: 2013 ident: 10.1016/j.physd.2014.10.008_br000120 article-title: Optimal control of a parabolic equation with dynamic boundary condition publication-title: Appl. Math. Optim. doi: 10.1007/s00245-012-9178-9 |
SSID | ssj0001737 |
Score | 2.2085075 |
Snippet | We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | Balancing Boundaries Boundary conditions Coleman–Gurtin equation Dissipation Dynamic boundary conditions with memory Dynamic tests Dynamical systems Heat conduction Heat equations Mathematical analysis Nonlinear dynamics Nonlinearity |
Title | Coleman–Gurtin type equations with dynamic boundary conditions |
URI | https://dx.doi.org/10.1016/j.physd.2014.10.008 https://www.proquest.com/docview/1669847064 |
Volume | 292-293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RdCD-MQ3FTxad9M8mtyURV0VvajgrTQvULSr7u7Bi_gf_If-EjN9iAp68NjQlDJJvsxMvnwDsC1zI5wkeWw6zMdMGRvnwqoYq8FxoZnreMxDnp2L3hU7uebXY9Bt7sIgrbLG_grTS7SuW9q1NdsPNzftCyTQ4z3OECKg8FeI2ycSqgRvwcT-8Wnv_BOQSVpJZ6LEN3ZoxIdKmhcmEFAxlLDdkuUlf9ugfkB1uf8czsJM7ThG-9W_zcGYK-Zh-ouc4DxMlnROM1iAvW7_zt3nxfvr29EIdQIiTLVG7rES9h5EmH6NbFWNPtJlaaWn5yjExraicC3C1eHBZbcX17USYkOpGMY27WglJCFKapmmNNHSJ47b4FD5nOdJYkRqheHWMyUJ99aHhZd2lKbeO6k5XYJW0S_cMkTOeeEUI1rTMFZS5Klk1LiAREyHcJGuQNIYKDO1kDjWs7jLGsbYbVZaNUOrYmOw6grsfHZ6qHQ0_n5dNJbPvk2HLCD93x23mnHKwkLB04-8cP3RICNCqLAVBxds9b8fX4Op8MQr0vY6tIZPI7cRfJKh3oTx3ReyWc-8D3gQ4fQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqEAIOCAqIsgaJI2mbeIlzA1WUsvUCSL1Z8SaBIC1dDlwQ_8Af8iV4srBJ9MDVsaNobD_PTJ7fIHTAE8UMDxJfNYn1Say0nzAd-1ANjjJJTNNCHvKqyzq35LxHexXUKu_CAK2ywP4c0zO0LloahTUbg7u7xjUQ6OEepwsRQPjLxe2zhOIIeH31ly-eRxDlwpkg8A3dS-mhjOQF6QPQCw1IPeN48b-Op19AnZ0-7WW0VLiN3nH-ZSuoYtIqWvwmJlhFcxmZU41W0VGr_2Aek_T99e10AioBHiRaPfOUy3qPPEi-ejqvRe_JrLDS8NlzkbHOCVxr6LZ9ctPq-EWlBF9hzMa-jpoyZjwIYi55FOFQchsaqp07ZROahKFikWaKaktiHlCrrdt2UTOW2FrDJcXraCbtp2YDecZYZmISSIndTHGWRJxgZRwOEemCRVxDYWkgoQoZcahm8SBKvti9yKwqwKrQ6KxaQ4efgwa5isb07qy0vPixGITD-ekD98t5Em6bwL-PJDX9yUgEjMXuIHYO2OZ_X76H5js3V5fi8qx7sYUW3BOa07e30cx4ODE7zjsZy91s9X0AYN3ivw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coleman%E2%80%93Gurtin+type+equations+with+dynamic+boundary+conditions&rft.jtitle=Physica.+D&rft.au=Gal%2C+Ciprian+G.&rft.au=Shomberg%2C+Joseph+L.&rft.date=2015-02-01&rft.issn=0167-2789&rft.volume=292-293&rft.spage=29&rft.epage=45&rft_id=info:doi/10.1016%2Fj.physd.2014.10.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physd_2014_10_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |