Coleman–Gurtin type equations with dynamic boundary conditions

We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 292-293; pp. 29 - 45
Main Authors Gal, Ciprian G., Shomberg, Joseph L.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2015
Subjects
Online AccessGet full text
ISSN0167-2789
1872-8022
DOI10.1016/j.physd.2014.10.008

Cover

Abstract We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel. •We consider boundary conditions with temperature dependent sources/sinks and memory.•We consider memory functions on the boundary and in the interior that differ.•We consider nonlinear terms satisfying nonlinear balance conditions.•We develop a general framework allowing for both weak and smooth initial data.•We extend a Galerkin approximation scheme.
AbstractList We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman-Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel.
We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel. •We consider boundary conditions with temperature dependent sources/sinks and memory.•We consider memory functions on the boundary and in the interior that differ.•We consider nonlinear terms satisfying nonlinear balance conditions.•We develop a general framework allowing for both weak and smooth initial data.•We extend a Galerkin approximation scheme.
Author Gal, Ciprian G.
Shomberg, Joseph L.
Author_xml – sequence: 1
  givenname: Ciprian G.
  surname: Gal
  fullname: Gal, Ciprian G.
  email: cgal@fiu.edu
  organization: Department of Mathematics, Florida International University, Miami, FL 33199, USA
– sequence: 2
  givenname: Joseph L.
  orcidid: 0000-0002-5623-3140
  surname: Shomberg
  fullname: Shomberg, Joseph L.
  email: jshomber@providence.edu
  organization: Department of Mathematics and Computer Science, Providence College, Providence, RI 02918, USA
BookMark eNqFkLtOwzAUQC1UJNrCF7BkZEmxncZ2BiRQBQWpEgvMluOH6iqxU9sBdeMf-EO-hLRlYoDpSlfnXF2dCRg57zQAlwjOEETkejPr1ruoZhii-bCZQchOwBgxinMGMR6B8UDRHFNWnYFJjBsIIaIFHYPbhW90K9zXx-eyD8m6LO06neltL5L1LmbvNq0ztXOitTKrfe-UCLtMeqfsATgHp0Y0UV_8zCl4fbh_WTzmq-fl0-JulcuiIClXFNYVYQhVrGaUFrhmButSsRIZUQqMJaGKyFKZecVQaZQhBaOwqgtjNKvLYgqujne74Le9jom3NkrdNMJp30eOCKnYnEIyH9DiiMrgYwza8C7YdnibI8j3vfiGH3rxfa_9cug1WNUvS9p0iJCCsM0_7s3R1UOBN6sDj9JqJ7WyQcvElbd_-t-vcYt_
CitedBy_id crossref_primary_10_1017_S0004972719000078
crossref_primary_10_1007_s00009_023_02333_1
crossref_primary_10_1007_s00245_019_09647_1
crossref_primary_10_1007_s00032_015_0242_1
crossref_primary_10_3390_fractalfract6090505
crossref_primary_10_1016_j_na_2019_111737
crossref_primary_10_1007_s00245_020_09730_y
Cites_doi 10.57262/ade/1355867704
10.1007/BF01262695
10.3934/dcds.2008.22.1009
10.1016/j.na.2009.11.002
10.1512/iumj.2006.55.2661
10.1007/BF01596912
10.1006/jdeq.2000.3903
10.1002/mma.590
10.1090/qam/1788423
10.1007/s00332-011-9109-y
10.1007/BF00283864
10.1007/BF00281324
10.1007/s00205-010-0300-3
10.1016/j.jde.2012.02.010
10.1007/s000300050049
10.1007/s00245-012-9178-9
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/j.physd.2014.10.008
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 45
ExternalDocumentID 10_1016_j_physd_2014_10_008
S0167278914002140
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSW
T5K
TN5
TWZ
XPP
YNT
~02
~G-
29O
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
HZ~
H~9
MVM
NDZJH
R2-
SEW
SPG
SSH
SSZ
WUQ
XJT
YYP
7U5
8FD
EFKBS
L7M
ID FETCH-LOGICAL-c336t-d70b9681198b87732b8f2e5d851fa5a22c67d6c5df49815fdf638709b3ffe8b53
IEDL.DBID AIKHN
ISSN 0167-2789
IngestDate Thu Sep 04 18:05:21 EDT 2025
Tue Jul 01 02:39:53 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Fri Feb 23 02:33:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat conduction
Coleman–Gurtin equation
Dynamic boundary conditions with memory
Heat equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-d70b9681198b87732b8f2e5d851fa5a22c67d6c5df49815fdf638709b3ffe8b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5623-3140
PQID 1669847064
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1669847064
crossref_primary_10_1016_j_physd_2014_10_008
crossref_citationtrail_10_1016_j_physd_2014_10_008
elsevier_sciencedirect_doi_10_1016_j_physd_2014_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica. D
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gurtin (br000125) 1965; 18
Gal (br000060) 2012; 253
Gal, Grasselli (br000050) 2008; 22
Temam (br000100) 1988; vol. 68
Coclite, Favini, Gal, Goldstein, Goldstein, Obrecht, Romanelli (br000080) 2009
Truesdell, Toupin (br000130) 1960
Hömberg, Krumbiegel, Rehberg (br000120) 2013; 67
Conti, Pata, Squassina (br000015) 2006; 55
Coleman, Mizel (br000040) 1963; 13
Gal, Grasselli, Miranville (br000055) 2008; 29
Miranville, Zelik (br000105) 2005; 28
Grasselli, Pata (br000005) 2002; 50
Giorgi, Pata, Marzocchi (br000035) 2000; 58
Fabrizio, Giorgi, Pata (br000025) 2010; 198
Rodríguez-Bernal, Tajdine (br000085) 2001; 169
Coleman (br000135) 1964; 17
Conti, Pata, Squassina (br000010) 2005
Coleman, Gurtin (br000110) 1967; 18
Gal, Warma (br000070) 2010; 23
Cavaterra, Gal, Grasselli, Miranville (br000075) 2010; 72
Goldstein (br000045) 2006; 11
Carslaw, Jaeger (br000115) 1988
Giorgi, Pata, Marzocchi (br000030) 1998; 5
Gal (br000065) 2012; 22
Renardy, Rogers (br000095) 2004; vol. 13
Pazy (br000090) 1983; vol. 44
Chekroun, Di Plinio, Glatt-Holtz, Pata (br000020) 2011; 4
Gurtin (10.1016/j.physd.2014.10.008_br000125) 1965; 18
Cavaterra (10.1016/j.physd.2014.10.008_br000075) 2010; 72
Conti (10.1016/j.physd.2014.10.008_br000015) 2006; 55
Coleman (10.1016/j.physd.2014.10.008_br000135) 1964; 17
Hömberg (10.1016/j.physd.2014.10.008_br000120) 2013; 67
Giorgi (10.1016/j.physd.2014.10.008_br000035) 2000; 58
Gal (10.1016/j.physd.2014.10.008_br000055) 2008; 29
Gal (10.1016/j.physd.2014.10.008_br000065) 2012; 22
Coclite (10.1016/j.physd.2014.10.008_br000080) 2009
Gal (10.1016/j.physd.2014.10.008_br000050) 2008; 22
Renardy (10.1016/j.physd.2014.10.008_br000095) 2004; vol. 13
Gal (10.1016/j.physd.2014.10.008_br000070) 2010; 23
Miranville (10.1016/j.physd.2014.10.008_br000105) 2005; 28
Temam (10.1016/j.physd.2014.10.008_br000100) 1988; vol. 68
Giorgi (10.1016/j.physd.2014.10.008_br000030) 1998; 5
Carslaw (10.1016/j.physd.2014.10.008_br000115) 1988
Coleman (10.1016/j.physd.2014.10.008_br000040) 1963; 13
Rodríguez-Bernal (10.1016/j.physd.2014.10.008_br000085) 2001; 169
Pazy (10.1016/j.physd.2014.10.008_br000090) 1983; vol. 44
Fabrizio (10.1016/j.physd.2014.10.008_br000025) 2010; 198
Coleman (10.1016/j.physd.2014.10.008_br000110) 1967; 18
Goldstein (10.1016/j.physd.2014.10.008_br000045) 2006; 11
Grasselli (10.1016/j.physd.2014.10.008_br000005) 2002; 50
Gal (10.1016/j.physd.2014.10.008_br000060) 2012; 253
Chekroun (10.1016/j.physd.2014.10.008_br000020) 2011; 4
Conti (10.1016/j.physd.2014.10.008_br000010) 2005
Truesdell (10.1016/j.physd.2014.10.008_br000130) 1960
References_xml – volume: 55
  start-page: 169
  year: 2006
  end-page: 215
  ident: br000015
  article-title: Singular limit of differential systems with memory
  publication-title: Indiana Univ. Math. J.
– volume: 67
  start-page: 3
  year: 2013
  end-page: 31
  ident: br000120
  article-title: Optimal control of a parabolic equation with dynamic boundary condition
  publication-title: Appl. Math. Optim.
– volume: 11
  start-page: 457
  year: 2006
  end-page: 480
  ident: br000045
  article-title: Derivation and physical interpretation of general boundary conditions
  publication-title: Adv. Differential Equations
– volume: 23
  start-page: 327
  year: 2010
  end-page: 358
  ident: br000070
  article-title: Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions
  publication-title: Differential Integral Equations
– year: 1960
  ident: br000130
  article-title: The classical field theories
  publication-title: Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, Vol. III/t, edited by S. FL/3GC, E
– volume: vol. 44
  year: 1983
  ident: br000090
  publication-title: Semigroups of Linear Operators and Applications to Partial Differential Equations
– volume: vol. 13
  year: 2004
  ident: br000095
  publication-title: An Introduction to Partial Differential Equations
– volume: 18
  start-page: 199
  year: 1967
  end-page: 208
  ident: br000110
  article-title: Equipresence and constitutive equations for rigid heat conductors
  publication-title: Z. Angew. Math. Phys.
– volume: 17
  start-page: 1
  year: 1964
  end-page: 46
  ident: br000135
  article-title: Thermodynamics of materials with memory
  publication-title: Arch. Ration. Mech. Anal.
– volume: 50
  start-page: 155
  year: 2002
  end-page: 178
  ident: br000005
  article-title: Uniform attractors of nonautonomous dynamical systems with memory
  publication-title: Progr. Nonlinear Differential Equations Appl.
– volume: 4
  start-page: 351
  year: 2011
  end-page: 369
  ident: br000020
  article-title: Asymptotics of the Coleman–Gurtin model
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– year: 1988
  ident: br000115
  publication-title: Conduction of Heat in Solids
– volume: 169
  start-page: 332
  year: 2001
  end-page: 372
  ident: br000085
  article-title: Nonlinear balance for reaction–diffusion equations under nonlinear boundary conditions: dissipativity and blow-up
  publication-title: J. Differential Equations
– volume: 198
  start-page: 189
  year: 2010
  end-page: 232
  ident: br000025
  article-title: A new approach to equations with memory
  publication-title: Arch. Ration. Mech. Anal.
– volume: 22
  start-page: 85
  year: 2012
  end-page: 106
  ident: br000065
  article-title: Sharp estimates for the global attractor of scalar reaction–diffusion equations with a Wentzell boundary condition
  publication-title: J. Nonlinear Sci.
– volume: 13
  start-page: 245
  year: 1963
  end-page: 261
  ident: br000040
  article-title: Thermodynamics and departures from Fourier’s law of heat conduction
  publication-title: Arch. Ration. Mech. Anal.
– volume: 58
  start-page: 661
  year: 2000
  end-page: 683
  ident: br000035
  article-title: Uniform attractors for a non-autonomous semilinear heat equation with memory
  publication-title: Quart. Appl. Math.
– volume: 22
  start-page: 1009
  year: 2008
  end-page: 1040
  ident: br000050
  article-title: The non-isothermal Allen–Cahn equation with dynamic boundary conditions
  publication-title: Discrete Contin. Dyn. Syst.
– volume: vol. 68
  year: 1988
  ident: br000100
  publication-title: Infinite-Dimensional Dynamical Systems in Mechanics and Physics
– volume: 253
  start-page: 126
  year: 2012
  end-page: 166
  ident: br000060
  article-title: On a class of degenerate parabolic equations with dynamic boundary conditions
  publication-title: J. Differential Equations
– volume: 29
  start-page: 117
  year: 2008
  end-page: 139
  ident: br000055
  article-title: Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions
  publication-title: Nonlinear Phenomena with Energy Dissipation
– year: 2009
  ident: br000080
  article-title: The role of Wentzell boundary conditions in linear and nonlinear analysis
  publication-title: Advances in Nonlinear Analysis: Theory, Methods and Applications. Vol. 3
– volume: 72
  start-page: 2375
  year: 2010
  end-page: 2399
  ident: br000075
  article-title: Phase-field systems with nonlinear coupling and dynamic boundary conditions
  publication-title: Nonlinear Anal.
– start-page: 200
  year: 2005
  end-page: 208
  ident: br000010
  article-title: Singular limit of dissipative hyperbolic equations with memory
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 18
  start-page: 335
  year: 1965
  end-page: 342
  ident: br000125
  article-title: Thermodynamics and the possibility of spatial interaction in rigid heat conductors
  publication-title: Arch. Ration. Mech. Anal.
– volume: 5
  start-page: 333
  year: 1998
  end-page: 354
  ident: br000030
  article-title: Asymptotic behavior of a semilinear problem in heat conduction with memory
  publication-title: NoDEA Nonlinear Differential Equations Appl.
– volume: 28
  start-page: 709
  year: 2005
  end-page: 735
  ident: br000105
  article-title: Exponential attractors for the Cahn Hilliard equation with dynamic boundary conditions
  publication-title: Math. Models Appl. Sci.
– year: 1988
  ident: 10.1016/j.physd.2014.10.008_br000115
– volume: 11
  start-page: 457
  year: 2006
  ident: 10.1016/j.physd.2014.10.008_br000045
  article-title: Derivation and physical interpretation of general boundary conditions
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1355867704
– year: 1960
  ident: 10.1016/j.physd.2014.10.008_br000130
  article-title: The classical field theories
– volume: 13
  start-page: 245
  year: 1963
  ident: 10.1016/j.physd.2014.10.008_br000040
  article-title: Thermodynamics and departures from Fourier’s law of heat conduction
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF01262695
– start-page: 200
  issue: suppl.
  year: 2005
  ident: 10.1016/j.physd.2014.10.008_br000010
  article-title: Singular limit of dissipative hyperbolic equations with memory
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 29
  start-page: 117
  year: 2008
  ident: 10.1016/j.physd.2014.10.008_br000055
  article-title: Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions
  publication-title: Nonlinear Phenomena with Energy Dissipation
– volume: 23
  start-page: 327
  issue: 3–4
  year: 2010
  ident: 10.1016/j.physd.2014.10.008_br000070
  article-title: Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions
  publication-title: Differential Integral Equations
– volume: 22
  start-page: 1009
  issue: 4
  year: 2008
  ident: 10.1016/j.physd.2014.10.008_br000050
  article-title: The non-isothermal Allen–Cahn equation with dynamic boundary conditions
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2008.22.1009
– volume: 72
  start-page: 2375
  issue: 5
  year: 2010
  ident: 10.1016/j.physd.2014.10.008_br000075
  article-title: Phase-field systems with nonlinear coupling and dynamic boundary conditions
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.11.002
– volume: 55
  start-page: 169
  issue: 1
  year: 2006
  ident: 10.1016/j.physd.2014.10.008_br000015
  article-title: Singular limit of differential systems with memory
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2006.55.2661
– volume: 18
  start-page: 199
  year: 1967
  ident: 10.1016/j.physd.2014.10.008_br000110
  article-title: Equipresence and constitutive equations for rigid heat conductors
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF01596912
– volume: 169
  start-page: 332
  year: 2001
  ident: 10.1016/j.physd.2014.10.008_br000085
  article-title: Nonlinear balance for reaction–diffusion equations under nonlinear boundary conditions: dissipativity and blow-up
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.2000.3903
– volume: vol. 68
  year: 1988
  ident: 10.1016/j.physd.2014.10.008_br000100
– volume: 28
  start-page: 709
  year: 2005
  ident: 10.1016/j.physd.2014.10.008_br000105
  article-title: Exponential attractors for the Cahn Hilliard equation with dynamic boundary conditions
  publication-title: Math. Models Appl. Sci.
  doi: 10.1002/mma.590
– volume: 50
  start-page: 155
  year: 2002
  ident: 10.1016/j.physd.2014.10.008_br000005
  article-title: Uniform attractors of nonautonomous dynamical systems with memory
  publication-title: Progr. Nonlinear Differential Equations Appl.
– volume: 58
  start-page: 661
  issue: 4
  year: 2000
  ident: 10.1016/j.physd.2014.10.008_br000035
  article-title: Uniform attractors for a non-autonomous semilinear heat equation with memory
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/1788423
– volume: 22
  start-page: 85
  issue: 1
  year: 2012
  ident: 10.1016/j.physd.2014.10.008_br000065
  article-title: Sharp estimates for the global attractor of scalar reaction–diffusion equations with a Wentzell boundary condition
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-011-9109-y
– volume: vol. 13
  year: 2004
  ident: 10.1016/j.physd.2014.10.008_br000095
– volume: 17
  start-page: 1
  year: 1964
  ident: 10.1016/j.physd.2014.10.008_br000135
  article-title: Thermodynamics of materials with memory
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00283864
– volume: 18
  start-page: 335
  year: 1965
  ident: 10.1016/j.physd.2014.10.008_br000125
  article-title: Thermodynamics and the possibility of spatial interaction in rigid heat conductors
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281324
– year: 2009
  ident: 10.1016/j.physd.2014.10.008_br000080
  article-title: The role of Wentzell boundary conditions in linear and nonlinear analysis
– volume: vol. 44
  year: 1983
  ident: 10.1016/j.physd.2014.10.008_br000090
– volume: 198
  start-page: 189
  year: 2010
  ident: 10.1016/j.physd.2014.10.008_br000025
  article-title: A new approach to equations with memory
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-010-0300-3
– volume: 253
  start-page: 126
  year: 2012
  ident: 10.1016/j.physd.2014.10.008_br000060
  article-title: On a class of degenerate parabolic equations with dynamic boundary conditions
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2012.02.010
– volume: 4
  start-page: 351
  year: 2011
  ident: 10.1016/j.physd.2014.10.008_br000020
  article-title: Asymptotics of the Coleman–Gurtin model
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 5
  start-page: 333
  issue: 3
  year: 1998
  ident: 10.1016/j.physd.2014.10.008_br000030
  article-title: Asymptotic behavior of a semilinear problem in heat conduction with memory
  publication-title: NoDEA Nonlinear Differential Equations Appl.
  doi: 10.1007/s000300050049
– volume: 67
  start-page: 3
  year: 2013
  ident: 10.1016/j.physd.2014.10.008_br000120
  article-title: Optimal control of a parabolic equation with dynamic boundary condition
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-012-9178-9
SSID ssj0001737
Score 2.2085075
Snippet We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Balancing
Boundaries
Boundary conditions
Coleman–Gurtin equation
Dissipation
Dynamic boundary conditions with memory
Dynamic tests
Dynamical systems
Heat conduction
Heat equations
Mathematical analysis
Nonlinear dynamics
Nonlinearity
Title Coleman–Gurtin type equations with dynamic boundary conditions
URI https://dx.doi.org/10.1016/j.physd.2014.10.008
https://www.proquest.com/docview/1669847064
Volume 292-293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RdCD-MQ3FTxad9M8mtyURV0VvajgrTQvULSr7u7Bi_gf_If-EjN9iAp68NjQlDJJvsxMvnwDsC1zI5wkeWw6zMdMGRvnwqoYq8FxoZnreMxDnp2L3hU7uebXY9Bt7sIgrbLG_grTS7SuW9q1NdsPNzftCyTQ4z3OECKg8FeI2ycSqgRvwcT-8Wnv_BOQSVpJZ6LEN3ZoxIdKmhcmEFAxlLDdkuUlf9ugfkB1uf8czsJM7ThG-9W_zcGYK-Zh-ouc4DxMlnROM1iAvW7_zt3nxfvr29EIdQIiTLVG7rES9h5EmH6NbFWNPtJlaaWn5yjExraicC3C1eHBZbcX17USYkOpGMY27WglJCFKapmmNNHSJ47b4FD5nOdJYkRqheHWMyUJ99aHhZd2lKbeO6k5XYJW0S_cMkTOeeEUI1rTMFZS5Klk1LiAREyHcJGuQNIYKDO1kDjWs7jLGsbYbVZaNUOrYmOw6grsfHZ6qHQ0_n5dNJbPvk2HLCD93x23mnHKwkLB04-8cP3RICNCqLAVBxds9b8fX4Op8MQr0vY6tIZPI7cRfJKh3oTx3ReyWc-8D3gQ4fQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqEAIOCAqIsgaJI2mbeIlzA1WUsvUCSL1Z8SaBIC1dDlwQ_8Af8iV4srBJ9MDVsaNobD_PTJ7fIHTAE8UMDxJfNYn1Say0nzAd-1ANjjJJTNNCHvKqyzq35LxHexXUKu_CAK2ywP4c0zO0LloahTUbg7u7xjUQ6OEepwsRQPjLxe2zhOIIeH31ly-eRxDlwpkg8A3dS-mhjOQF6QPQCw1IPeN48b-Op19AnZ0-7WW0VLiN3nH-ZSuoYtIqWvwmJlhFcxmZU41W0VGr_2Aek_T99e10AioBHiRaPfOUy3qPPEi-ejqvRe_JrLDS8NlzkbHOCVxr6LZ9ctPq-EWlBF9hzMa-jpoyZjwIYi55FOFQchsaqp07ZROahKFikWaKaktiHlCrrdt2UTOW2FrDJcXraCbtp2YDecZYZmISSIndTHGWRJxgZRwOEemCRVxDYWkgoQoZcahm8SBKvti9yKwqwKrQ6KxaQ4efgwa5isb07qy0vPixGITD-ekD98t5Em6bwL-PJDX9yUgEjMXuIHYO2OZ_X76H5js3V5fi8qx7sYUW3BOa07e30cx4ODE7zjsZy91s9X0AYN3ivw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coleman%E2%80%93Gurtin+type+equations+with+dynamic+boundary+conditions&rft.jtitle=Physica.+D&rft.au=Gal%2C+Ciprian+G.&rft.au=Shomberg%2C+Joseph+L.&rft.date=2015-02-01&rft.issn=0167-2789&rft.volume=292-293&rft.spage=29&rft.epage=45&rft_id=info:doi/10.1016%2Fj.physd.2014.10.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physd_2014_10_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon