Numerical modeling of secondary breakup in molten metals gas-atomization using dimensionless analysis
•Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid technique (VOF).•The model allows to determine the shape of the particles obtained by secondary breakup.•The model has been validated by comparison...
Saved in:
Published in | International journal of multiphase flow Vol. 132; p. 103431 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid technique (VOF).•The model allows to determine the shape of the particles obtained by secondary breakup.•The model has been validated by comparison with analytical breakup models on the basis of the particle size distribution.
Numerical modeling of secondary breakup in gas atomization of molten metals has been successfully performed by others to optimize the powder particle size distribution for various additive manufacturing techniques and metal alloys. The application of breakup analytical models has been tested and validated through experimental campaigns by several researchers. They have demonstrated the suitability of the models in predicting particle size distribution as a function of process parameters.
The limit of these models is a lack of information about the particle shape. Assessing the particle morphology could be of great relevance for optimizing the gas atomization parameters of already produced or new alloys.
To overcome this limitation, the method described in this paper resorts to the Volume Of Fluid (VOF) modeling approach. This method does not apply to gas atomization breakup because supersonic velocities bring to unaffordable computation times and lack of metal mass conservation. The new approach is conceived to scale down the high velocity flow towards much lower intensities. It makes use of a reference frame moving with the primary droplet and of the similarity theory. At present, the model has been validated through the comparison with DPM results. It demonstrated to be a reliable alternative model allowing to gain deeper insights. Heat transfer among gas and droplets is not simulated yet, thus the droplet deformation does not stop at the solidification time. Further developments are forecast to allow to freeze the particle shape at the time it is completely solidified. |
---|---|
AbstractList | •Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid technique (VOF).•The model allows to determine the shape of the particles obtained by secondary breakup.•The model has been validated by comparison with analytical breakup models on the basis of the particle size distribution.
Numerical modeling of secondary breakup in gas atomization of molten metals has been successfully performed by others to optimize the powder particle size distribution for various additive manufacturing techniques and metal alloys. The application of breakup analytical models has been tested and validated through experimental campaigns by several researchers. They have demonstrated the suitability of the models in predicting particle size distribution as a function of process parameters.
The limit of these models is a lack of information about the particle shape. Assessing the particle morphology could be of great relevance for optimizing the gas atomization parameters of already produced or new alloys.
To overcome this limitation, the method described in this paper resorts to the Volume Of Fluid (VOF) modeling approach. This method does not apply to gas atomization breakup because supersonic velocities bring to unaffordable computation times and lack of metal mass conservation. The new approach is conceived to scale down the high velocity flow towards much lower intensities. It makes use of a reference frame moving with the primary droplet and of the similarity theory. At present, the model has been validated through the comparison with DPM results. It demonstrated to be a reliable alternative model allowing to gain deeper insights. Heat transfer among gas and droplets is not simulated yet, thus the droplet deformation does not stop at the solidification time. Further developments are forecast to allow to freeze the particle shape at the time it is completely solidified. |
ArticleNumber | 103431 |
Author | Ridolfi, Maria Rita Folgarait, Paolo |
Author_xml | – sequence: 1 givenname: Maria Rita surname: Ridolfi fullname: Ridolfi, Maria Rita email: mariarita.ridolfi@seamthesis.com – sequence: 2 givenname: Paolo surname: Folgarait fullname: Folgarait, Paolo |
BookMark | eNqNkE1PwzAMhiM0JLbBf-iJW0cS9_OChCZgSBNc4BxliTtS0mRKWtD49bQaJ06cLMt-H9nPgsycd0jINaMrRllx065M2w22N4d3GbGx_mvFKZ-GkAE7I3NWlXUKOcCMzClQltbA-QVZxNhSSvMygznB56HDYJS0Sec1WuP2iW-SiMo7LcMx2QWUH8MhMW5csD2OBXtpY7KXMZW978y37I13yRCnrDYdujj2FmNMpJP2GE28JOfNmMGr37okbw_3r-tNun15fFrfbVMFUPSpBsyAgsoYk7rKa5RKqpwXRVY2eQW6LnhWQ1bygmNVNpQXVCldYtNAyXaSw5Lcnrgq-BgDNuIQTDe-IRgVkzTRir_SxCRNnKSNgM0JgOOVnwaDiMqgU6hNQNUL7c1_UT-xzYTa |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2024_125714 crossref_primary_10_2139_ssrn_4192528 crossref_primary_10_1016_j_jmatprotec_2022_117753 crossref_primary_10_1063_5_0064178 crossref_primary_10_1016_j_apt_2023_104007 crossref_primary_10_1017_jfm_2022_435 crossref_primary_10_1007_s11837_022_05675_5 crossref_primary_10_1016_j_jmatprotec_2022_117814 crossref_primary_10_1016_j_jmst_2021_06_075 crossref_primary_10_1016_j_powtec_2023_119244 |
Cites_doi | 10.1016/j.commatsci.2005.03.009 10.2514/3.5087 10.1016/j.apt.2017.12.003 10.1016/j.cryogenics.2008.03.006 10.1016/j.powtec.2015.12.001 10.2355/isijinternational.38.63 10.1007/s11666-010-9542-8 10.3390/met2020202 10.1016/j.ijmultiphaseflow.2019.103108 10.1371/journal.pone.0078659 10.1016/0021-9991(92)90240-Y 10.1016/S0921-5093(01)01427-7 10.1016/S1003-6326(07)60209-X 10.1615/AtomizSpr.v15.i1.20 10.2514/1.20073 10.2355/isijinternational.49.992 10.1016/j.commatsci.2007.10.005 10.2355/isijinternational.42.520 10.1016/j.ijmultiphaseflow.2006.11.001 10.1007/s11663-997-0021-7 10.1146/annurev-fluid-122109-160638 10.1007/s00348-008-0593-2 10.1016/j.ijheatfluidflow.2019.02.010 10.1016/j.ijmultiphaseflow.2010.03.008 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2020.103431 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2020_103431 S0301932220305401 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c336t-d3e4303c411ad859eacac526647f583d96249347262e87f0260ccd7eff371ba23 |
IEDL.DBID | AIKHN |
ISSN | 0301-9322 |
IngestDate | Thu Sep 26 16:18:55 EDT 2024 Fri Feb 23 02:46:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal powders Secondary breakup Additive manufacturing VOF Gas atomization Numerical model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-d3e4303c411ad859eacac526647f583d96249347262e87f0260ccd7eff371ba23 |
ParticipantIDs | crossref_primary_10_1016_j_ijmultiphaseflow_2020_103431 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2020_103431 |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Brackbill, Kothe, Zemach (bib0007) 1992; 100 Kaiser, Li, Yang, Lee (bib0010) 2018; 29 Stefanitsis, Strotos, Nikolopoulos, Kakaras, Gavaises (bib0028) 2019; 76 Mi, Figliola, Anderson (bib0022) 1997; 28B Antipas (bib0003) 2006; 35 Park, Lee, Yon, James, Heister, Chandra, Yoon, Park, Ryu (bib0023) 2010; 20 last access on 2 July 2020. Mates, Settles (bib0019) 1996 2006, last access on 2 July2020. Li, Dinh, Yang, Theofanous (bib0018) 2005 ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2013. Goharkhah, M., Convective Heat Transfer, 2018 Ranger, Nicholls (bib0025) 1969; 7 Xiao, Tsai, Papamoschou (bib0031) 2007; 45 Shinjo, Umemura (bib0027) 2010; 36 Lelong, Vecellio, de Gélicourt, Tanguy, Diot, Junqua-Moullet (bib0017) 2013; 8 Zeoli, Gu, Kamnis (bib0032) 2008; 43 Thompson, Hassan, Rolland, Hassan, Sienz (bib0030) 2016; 291 Mates, Settles (bib0020) 2005; 15 Antipas (bib0004) 2012; 2 Ishimoto, Ohira, Okabayashi, Chitose (bib0016) 2008; 48 Zhao, Nguyen, Duke, Edgington-Mitchell, Soria, Liu, Honnery (bib0033) 2019; 120 Li, Fritsching (bib0011) 2017; 23 Theophanous (bib0029) 2011; 43 Hirasaki, G., Transport Phenomena, Chapter 6 - Equations of Motion and Energy in Cartesian Coordinates, 2010 Rayleigh (bib0026) 1878; 10 Guildenbecher, López-Rivera, Sojka (bib0013) 2009; 46 Prasad, Mosbah, Henein, Gandin (bib0024) 2009; 49 Anderson, Terpstra (bib0001) 2002; 326 Zhu, Hong (bib0034) 2002; 42 Bakker, A., Lecture 3 – Conservation Equations - Applied Computational Fluid Dynamics Ouyang, Chen, Huang (bib0015) 2007; 17 Bush, J., 18.357 Interfacial Phenomena Fall2010. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. Last access on 2 July 2020. Chang, Lee, Lee, Hong (bib0009) 1998; 38 Batchelor (bib0006) 1967 Ménard, Tanguy, Berlemont (bib0021) 2007; 33 Antipas (10.1016/j.ijmultiphaseflow.2020.103431_bib0004) 2012; 2 Ouyang (10.1016/j.ijmultiphaseflow.2020.103431_bib0015) 2007; 17 Rayleigh (10.1016/j.ijmultiphaseflow.2020.103431_bib0026) 1878; 10 Batchelor (10.1016/j.ijmultiphaseflow.2020.103431_bib0006) 1967 Ménard (10.1016/j.ijmultiphaseflow.2020.103431_bib0021) 2007; 33 Ranger (10.1016/j.ijmultiphaseflow.2020.103431_bib0025) 1969; 7 10.1016/j.ijmultiphaseflow.2020.103431_bib0005 Mi (10.1016/j.ijmultiphaseflow.2020.103431_bib0022) 1997; 28B 10.1016/j.ijmultiphaseflow.2020.103431_bib0008 Thompson (10.1016/j.ijmultiphaseflow.2020.103431_bib0030) 2016; 291 10.1016/j.ijmultiphaseflow.2020.103431_bib0002 Shinjo (10.1016/j.ijmultiphaseflow.2020.103431_bib0027) 2010; 36 Mates (10.1016/j.ijmultiphaseflow.2020.103431_bib0020) 2005; 15 Zhao (10.1016/j.ijmultiphaseflow.2020.103431_bib0033) 2019; 120 Ishimoto (10.1016/j.ijmultiphaseflow.2020.103431_bib0016) 2008; 48 Theophanous (10.1016/j.ijmultiphaseflow.2020.103431_bib0029) 2011; 43 Antipas (10.1016/j.ijmultiphaseflow.2020.103431_bib0003) 2006; 35 Anderson (10.1016/j.ijmultiphaseflow.2020.103431_bib0001) 2002; 326 Kaiser (10.1016/j.ijmultiphaseflow.2020.103431_bib0010) 2018; 29 Zhu (10.1016/j.ijmultiphaseflow.2020.103431_bib0034) 2002; 42 Xiao (10.1016/j.ijmultiphaseflow.2020.103431_bib0031) 2007; 45 Li (10.1016/j.ijmultiphaseflow.2020.103431_bib0011) 2017; 23 Chang (10.1016/j.ijmultiphaseflow.2020.103431_bib0009) 1998; 38 10.1016/j.ijmultiphaseflow.2020.103431_bib0012 Mates (10.1016/j.ijmultiphaseflow.2020.103431_bib0019) 1996 Guildenbecher (10.1016/j.ijmultiphaseflow.2020.103431_bib0013) 2009; 46 10.1016/j.ijmultiphaseflow.2020.103431_bib0014 Lelong (10.1016/j.ijmultiphaseflow.2020.103431_bib0017) 2013; 8 Zeoli (10.1016/j.ijmultiphaseflow.2020.103431_bib0032) 2008; 43 Prasad (10.1016/j.ijmultiphaseflow.2020.103431_bib0024) 2009; 49 Li (10.1016/j.ijmultiphaseflow.2020.103431_bib0018) 2005 Brackbill (10.1016/j.ijmultiphaseflow.2020.103431_bib0007) 1992; 100 Stefanitsis (10.1016/j.ijmultiphaseflow.2020.103431_bib0028) 2019; 76 Park (10.1016/j.ijmultiphaseflow.2020.103431_bib0023) 2010; 20 |
References_xml | – volume: 7 start-page: 285 year: 1969 end-page: 290 ident: bib0025 article-title: Aerodynamic shattering of liquid drops publication-title: AAIA J. contributor: fullname: Nicholls – volume: 33 start-page: 510 year: 2007 end-page: 524 ident: bib0021 article-title: Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet publication-title: Int. J. Multiph. Flow contributor: fullname: Berlemont – volume: 46 start-page: 371 year: 2009 end-page: 402 ident: bib0013 article-title: Secondary atomization publication-title: Exp. Fluids contributor: fullname: Sojka – start-page: 1 year: 1996 end-page: 14 ident: bib0019 article-title: High-speed imaging of liquid metal atomization by two different close-coupled nozzles publication-title: Powder Metallurgy and Particulate Materials contributor: fullname: Settles – volume: 43 start-page: 661 year: 2011 end-page: 690 ident: bib0029 article-title: Aerobreakup of Newtonian and Viscoelastic Liquids publication-title: Annu. Rev. Fluid. Mech. contributor: fullname: Theophanous – volume: 326 start-page: 101 year: 2002 end-page: 109 ident: bib0001 article-title: Progress toward gas atomization processing with increased uniformity and control publication-title: Mater. Sci. Eng.: A contributor: fullname: Terpstra – volume: 2 start-page: 202 year: 2012 end-page: 210 ident: bib0004 article-title: Gas Atomization of Aluminium Melts: Comparison of Analytical Models publication-title: Metals contributor: fullname: Antipas – volume: 76 start-page: 274 year: 2019 end-page: 286 ident: bib0028 article-title: Improved droplet breakup models for spray applications publication-title: Int. J. Heat Fluid Flow contributor: fullname: Gavaises – volume: 8 start-page: 1 year: 2013 end-page: 9 ident: bib0017 article-title: Comparison of numerical simulations to experiments for atomization in a jet nebulizer publication-title: PLoS One contributor: fullname: Junqua-Moullet – volume: 120 start-page: 1 year: 2019 end-page: 10 ident: bib0033 article-title: Effect of turbulence on drop breakup in counter air flow publication-title: Int. J. Multiph. Flow contributor: fullname: Honnery – volume: 28B start-page: 935 year: 1997 end-page: 941 ident: bib0022 article-title: A numerical investigation of gas flow effects on high-pressure gas atomization due to melt tip geometry variation publication-title: Metall. Mater. Trans. B contributor: fullname: Anderson – start-page: 1 year: 2005 end-page: 11 ident: bib0018 publication-title: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit contributor: fullname: Theofanous – volume: 38 start-page: 63 year: 1998 end-page: 70 ident: bib0009 article-title: Three-dimensional Simulation of Dendritic Grain Structures of Gas-atomized Al-Cu Alloy Droplets publication-title: ISIJ Int. contributor: fullname: Hong – volume: 17 start-page: 967 year: 2007 end-page: 973 ident: bib0015 article-title: Influence of melt superheat on breakup process of close-coupled gas atomization publication-title: Trans. Nonferrous Metals Soc. China contributor: fullname: Huang – volume: 42 start-page: 520 year: 2002 end-page: 526 ident: bib0034 article-title: A Three Dimensional Modified Cellular Automaton Model for the Prediction of Solidification Microstructures publication-title: ISIJ Int. contributor: fullname: Hong – volume: 20 start-page: 514 year: 2010 end-page: 522 ident: bib0023 article-title: Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Ambient Pressure, and Substrate Location upon Flow Characteristics publication-title: J. Therm. Spray Technol. contributor: fullname: Ryu – volume: 291 start-page: 75 year: 2016 end-page: 85 ident: bib0030 article-title: The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser publication-title: Powder Technol. contributor: fullname: Sienz – volume: 43 start-page: 268 year: 2008 end-page: 278 ident: bib0032 article-title: Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation publication-title: Computational Materials Science contributor: fullname: Kamnis – volume: 45 start-page: 532 year: 2007 end-page: 541 ident: bib0031 article-title: Numerical Investigation of Supersonic Nozzle Flow Separation publication-title: AAIA J. contributor: fullname: Papamoschou – volume: 10 start-page: 4 year: 1878 end-page: 13 ident: bib0026 publication-title: Proceedings of the London Mathematical Society contributor: fullname: Rayleigh – volume: 15 start-page: 19 year: 2005 end-page: 40 ident: bib0020 article-title: A study of liquid metal atomization using close-coupled nozzles, Part publication-title: At. Sprays. contributor: fullname: Settles – volume: 48 start-page: 238 year: 2008 end-page: 247 ident: bib0016 article-title: Integrated numerical prediction of atomization process of liquid hydrogen jet publication-title: Cryogenics contributor: fullname: Chitose – volume: 29 start-page: 623 year: 2018 end-page: 630 ident: bib0010 article-title: A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction publication-title: Adv. Powder Technol. contributor: fullname: Lee – volume: 36 start-page: 513 year: 2010 end-page: 532 ident: bib0027 article-title: Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation publication-title: Int. J. Multiph. Flow contributor: fullname: Umemura – volume: 35 start-page: 416 year: 2006 end-page: 422 ident: bib0003 article-title: Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model publication-title: Comput. Mater. Sci. contributor: fullname: Antipas – volume: 100 start-page: 335 year: 1992 end-page: 354 ident: bib0007 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. contributor: fullname: Zemach – volume: 49 start-page: 992 year: 2009 end-page: 999 ident: bib0024 article-title: A Solidification Model for Atomization publication-title: ISIJ Int. contributor: fullname: Gandin – start-page: 147 year: 1967 end-page: 154 ident: bib0006 article-title: An Introduction to Fluid Dynamics contributor: fullname: Batchelor – volume: 23 start-page: 1 year: 2017 end-page: 17 ident: bib0011 article-title: Process modeling pressure-swirl-gas-atomization for metal powder production publication-title: J. Mater. Process. Technol. contributor: fullname: Fritsching – volume: 35 start-page: 416 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0003 article-title: Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.03.009 contributor: fullname: Antipas – volume: 7 start-page: 285 year: 1969 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0025 article-title: Aerodynamic shattering of liquid drops publication-title: AAIA J. doi: 10.2514/3.5087 contributor: fullname: Ranger – volume: 29 start-page: 623 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0010 article-title: A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.12.003 contributor: fullname: Kaiser – volume: 48 start-page: 238 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0016 article-title: Integrated numerical prediction of atomization process of liquid hydrogen jet publication-title: Cryogenics doi: 10.1016/j.cryogenics.2008.03.006 contributor: fullname: Ishimoto – volume: 291 start-page: 75 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0030 article-title: The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.12.001 contributor: fullname: Thompson – volume: 38 start-page: 63 year: 1998 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0009 article-title: Three-dimensional Simulation of Dendritic Grain Structures of Gas-atomized Al-Cu Alloy Droplets publication-title: ISIJ Int. doi: 10.2355/isijinternational.38.63 contributor: fullname: Chang – volume: 20 start-page: 514 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0023 article-title: Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Ambient Pressure, and Substrate Location upon Flow Characteristics publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-010-9542-8 contributor: fullname: Park – ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0005 – volume: 2 start-page: 202 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0004 article-title: Gas Atomization of Aluminium Melts: Comparison of Analytical Models publication-title: Metals doi: 10.3390/met2020202 contributor: fullname: Antipas – volume: 120 start-page: 1 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0033 article-title: Effect of turbulence on drop breakup in counter air flow publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2019.103108 contributor: fullname: Zhao – volume: 8 start-page: 1 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0017 article-title: Comparison of numerical simulations to experiments for atomization in a jet nebulizer publication-title: PLoS One doi: 10.1371/journal.pone.0078659 contributor: fullname: Lelong – volume: 100 start-page: 335 year: 1992 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0007 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y contributor: fullname: Brackbill – volume: 326 start-page: 101 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0001 article-title: Progress toward gas atomization processing with increased uniformity and control publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(01)01427-7 contributor: fullname: Anderson – volume: 17 start-page: 967 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0015 article-title: Influence of melt superheat on breakup process of close-coupled gas atomization publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(07)60209-X contributor: fullname: Ouyang – volume: 15 start-page: 19 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0020 article-title: A study of liquid metal atomization using close-coupled nozzles, Part 1: Gas dynamic behavior publication-title: At. Sprays. doi: 10.1615/AtomizSpr.v15.i1.20 contributor: fullname: Mates – volume: 45 start-page: 532 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0031 article-title: Numerical Investigation of Supersonic Nozzle Flow Separation publication-title: AAIA J. doi: 10.2514/1.20073 contributor: fullname: Xiao – volume: 23 start-page: 1 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0011 article-title: Process modeling pressure-swirl-gas-atomization for metal powder production publication-title: J. Mater. Process. Technol. contributor: fullname: Li – volume: 49 start-page: 992 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0024 article-title: A Solidification Model for Atomization publication-title: ISIJ Int. doi: 10.2355/isijinternational.49.992 contributor: fullname: Prasad – start-page: 1 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0018 contributor: fullname: Li – ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0012 – volume: 43 start-page: 268 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0032 article-title: Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2007.10.005 contributor: fullname: Zeoli – ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0008 – ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0014 – volume: 42 start-page: 520 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0034 article-title: A Three Dimensional Modified Cellular Automaton Model for the Prediction of Solidification Microstructures publication-title: ISIJ Int. doi: 10.2355/isijinternational.42.520 contributor: fullname: Zhu – start-page: 147 year: 1967 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0006 contributor: fullname: Batchelor – volume: 33 start-page: 510 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0021 article-title: Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2006.11.001 contributor: fullname: Ménard – volume: 28B start-page: 935 issue: 6 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0022 article-title: A numerical investigation of gas flow effects on high-pressure gas atomization due to melt tip geometry variation publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-997-0021-7 contributor: fullname: Mi – ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0002 – volume: 43 start-page: 661 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0029 article-title: Aerobreakup of Newtonian and Viscoelastic Liquids publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev-fluid-122109-160638 contributor: fullname: Theophanous – start-page: 1 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0019 article-title: High-speed imaging of liquid metal atomization by two different close-coupled nozzles publication-title: Powder Metallurgy and Particulate Materials contributor: fullname: Mates – volume: 10 start-page: 4 year: 1878 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0026 contributor: fullname: Rayleigh – volume: 46 start-page: 371 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0013 article-title: Secondary atomization publication-title: Exp. Fluids doi: 10.1007/s00348-008-0593-2 contributor: fullname: Guildenbecher – volume: 76 start-page: 274 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0028 article-title: Improved droplet breakup models for spray applications publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2019.02.010 contributor: fullname: Stefanitsis – volume: 36 start-page: 513 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0027 article-title: Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2010.03.008 contributor: fullname: Shinjo |
SSID | ssj0005743 |
Score | 2.4124064 |
Snippet | •Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 103431 |
SubjectTerms | Additive manufacturing Gas atomization Metal powders Numerical model Secondary breakup VOF |
Title | Numerical modeling of secondary breakup in molten metals gas-atomization using dimensionless analysis |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.103431 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gRKMHo6gRH2QPxtuKbXe77ZEQCWrkoiTcmm23iyCvUIjx4m93to-AxoMHj223m-bbyTw638wAXElL8lDYnOrQZpQpxakXMka5p33lmf7p3BQnP3XdTo899Hm_BK2iFsbQKnPdn-n0VFvndxo5mo35cNh4Ns68bxIFRmaZqeGqpEmiMlSa94-d7prpkfHszXpqXtiB6zXNazjKmHuvaDT0ePaOIaOdlqIzx_rdVm3Yn_YB7OeOI2lm33YIpXhahb2NdoJV2E7pnFFyBHF3lWVixiQddYOPyUyTxES_Si4-CAbC8m01J8MpLhij30wmMbrhCRnIhGIcPsnLM4nhxQ-IMjMAzH-1MSpGIvNGJsfQa9-9tDo0H6hAI8dxl1Q5MUOTFTHLkngQPipdGXE00Uxo7jnKdzEYc5iwXTv2hDbtxqJIiVhrR1ihtJ0TKE9n0_gUiHB9VzAWon9nMe3yUEnBQ0vZ3Gbcv9U1EAV0wTzrmxEUhLJR8BP0wIAeZKDXoFkgHXyThACV_B_3OPuHPc5h11xldYcXUF4uVvElOiDLsA5bN59WPRezLwv63nw |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1VrdgOCAqIsvqAuFkliR0nx6qiaulyoZV6i5w4Lind1EWIv2fcpGpBHDhwjR0rGo_evInfjAEepCV5KGxOdWgzypTi1AsZo9zTvvJM_3RuipPbHbfeYy993s9BdVMLY2SVGfanmL5G6-xJObNmeZYk5VdD5n1zUGB8lpkargKyAR-dvVBpNOudrdIj1dmb-dS8sA-PW5lXMkyVe28YNPRo-oEpo70uRWeO9Xus2ok_tRM4zogjqaTfdgq5eFKEo512gkXYW8s5o8UZxJ1VehIzIuurbnCYTDVZmOxXyfknwURYvq9mJJnghBHyZjKOkYYvyEAuKObh46w8kxhd_IAocweA-a82QmAkMmtkcg692nO3WqfZhQo0chx3SZUTMwxZEbMsiRvhI-jKiGOIZkJzz1G-i8mYw4Tt2rEntGk3FkVKxFo7wgql7VxAfjKdxJdAhOu7grEQ-Z3FtMtDJQUPLWVzm3H_SZdAbEwXzNK-GcFGUDYMfho9MEYPUqOXoLKxdPDNEwIE-T-ucfUPa9zDQb3bbgWtRqd5DYdmJK1BvIH8cr6Kb5GMLMO7zNm-AIZd4Hk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+modeling+of+secondary+breakup+in+molten+metals+gas-atomization+using+dimensionless+analysis&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Ridolfi%2C+Maria+Rita&rft.au=Folgarait%2C+Paolo&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=132&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2020.103431&rft.externalDocID=S0301932220305401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |