Numerical modeling of secondary breakup in molten metals gas-atomization using dimensionless analysis

•Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid technique (VOF).•The model allows to determine the shape of the particles obtained by secondary breakup.•The model has been validated by comparison...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 132; p. 103431
Main Authors Ridolfi, Maria Rita, Folgarait, Paolo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid technique (VOF).•The model allows to determine the shape of the particles obtained by secondary breakup.•The model has been validated by comparison with analytical breakup models on the basis of the particle size distribution. Numerical modeling of secondary breakup in gas atomization of molten metals has been successfully performed by others to optimize the powder particle size distribution for various additive manufacturing techniques and metal alloys. The application of breakup analytical models has been tested and validated through experimental campaigns by several researchers. They have demonstrated the suitability of the models in predicting particle size distribution as a function of process parameters. The limit of these models is a lack of information about the particle shape. Assessing the particle morphology could be of great relevance for optimizing the gas atomization parameters of already produced or new alloys. To overcome this limitation, the method described in this paper resorts to the Volume Of Fluid (VOF) modeling approach. This method does not apply to gas atomization breakup because supersonic velocities bring to unaffordable computation times and lack of metal mass conservation. The new approach is conceived to scale down the high velocity flow towards much lower intensities. It makes use of a reference frame moving with the primary droplet and of the similarity theory. At present, the model has been validated through the comparison with DPM results. It demonstrated to be a reliable alternative model allowing to gain deeper insights. Heat transfer among gas and droplets is not simulated yet, thus the droplet deformation does not stop at the solidification time. Further developments are forecast to allow to freeze the particle shape at the time it is completely solidified.
AbstractList •Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid technique (VOF).•The model allows to determine the shape of the particles obtained by secondary breakup.•The model has been validated by comparison with analytical breakup models on the basis of the particle size distribution. Numerical modeling of secondary breakup in gas atomization of molten metals has been successfully performed by others to optimize the powder particle size distribution for various additive manufacturing techniques and metal alloys. The application of breakup analytical models has been tested and validated through experimental campaigns by several researchers. They have demonstrated the suitability of the models in predicting particle size distribution as a function of process parameters. The limit of these models is a lack of information about the particle shape. Assessing the particle morphology could be of great relevance for optimizing the gas atomization parameters of already produced or new alloys. To overcome this limitation, the method described in this paper resorts to the Volume Of Fluid (VOF) modeling approach. This method does not apply to gas atomization breakup because supersonic velocities bring to unaffordable computation times and lack of metal mass conservation. The new approach is conceived to scale down the high velocity flow towards much lower intensities. It makes use of a reference frame moving with the primary droplet and of the similarity theory. At present, the model has been validated through the comparison with DPM results. It demonstrated to be a reliable alternative model allowing to gain deeper insights. Heat transfer among gas and droplets is not simulated yet, thus the droplet deformation does not stop at the solidification time. Further developments are forecast to allow to freeze the particle shape at the time it is completely solidified.
ArticleNumber 103431
Author Ridolfi, Maria Rita
Folgarait, Paolo
Author_xml – sequence: 1
  givenname: Maria Rita
  surname: Ridolfi
  fullname: Ridolfi, Maria Rita
  email: mariarita.ridolfi@seamthesis.com
– sequence: 2
  givenname: Paolo
  surname: Folgarait
  fullname: Folgarait, Paolo
BookMark eNqNkE1PwzAMhiM0JLbBf-iJW0cS9_OChCZgSBNc4BxliTtS0mRKWtD49bQaJ06cLMt-H9nPgsycd0jINaMrRllx065M2w22N4d3GbGx_mvFKZ-GkAE7I3NWlXUKOcCMzClQltbA-QVZxNhSSvMygznB56HDYJS0Sec1WuP2iW-SiMo7LcMx2QWUH8MhMW5csD2OBXtpY7KXMZW978y37I13yRCnrDYdujj2FmNMpJP2GE28JOfNmMGr37okbw_3r-tNun15fFrfbVMFUPSpBsyAgsoYk7rKa5RKqpwXRVY2eQW6LnhWQ1bygmNVNpQXVCldYtNAyXaSw5Lcnrgq-BgDNuIQTDe-IRgVkzTRir_SxCRNnKSNgM0JgOOVnwaDiMqgU6hNQNUL7c1_UT-xzYTa
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_125714
crossref_primary_10_2139_ssrn_4192528
crossref_primary_10_1016_j_jmatprotec_2022_117753
crossref_primary_10_1063_5_0064178
crossref_primary_10_1016_j_apt_2023_104007
crossref_primary_10_1017_jfm_2022_435
crossref_primary_10_1007_s11837_022_05675_5
crossref_primary_10_1016_j_jmatprotec_2022_117814
crossref_primary_10_1016_j_jmst_2021_06_075
crossref_primary_10_1016_j_powtec_2023_119244
Cites_doi 10.1016/j.commatsci.2005.03.009
10.2514/3.5087
10.1016/j.apt.2017.12.003
10.1016/j.cryogenics.2008.03.006
10.1016/j.powtec.2015.12.001
10.2355/isijinternational.38.63
10.1007/s11666-010-9542-8
10.3390/met2020202
10.1016/j.ijmultiphaseflow.2019.103108
10.1371/journal.pone.0078659
10.1016/0021-9991(92)90240-Y
10.1016/S0921-5093(01)01427-7
10.1016/S1003-6326(07)60209-X
10.1615/AtomizSpr.v15.i1.20
10.2514/1.20073
10.2355/isijinternational.49.992
10.1016/j.commatsci.2007.10.005
10.2355/isijinternational.42.520
10.1016/j.ijmultiphaseflow.2006.11.001
10.1007/s11663-997-0021-7
10.1146/annurev-fluid-122109-160638
10.1007/s00348-008-0593-2
10.1016/j.ijheatfluidflow.2019.02.010
10.1016/j.ijmultiphaseflow.2010.03.008
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2020.103431
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2020_103431
S0301932220305401
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c336t-d3e4303c411ad859eacac526647f583d96249347262e87f0260ccd7eff371ba23
IEDL.DBID AIKHN
ISSN 0301-9322
IngestDate Thu Sep 26 16:18:55 EDT 2024
Fri Feb 23 02:46:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal powders
Secondary breakup
Additive manufacturing
VOF
Gas atomization
Numerical model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-d3e4303c411ad859eacac526647f583d96249347262e87f0260ccd7eff371ba23
ParticipantIDs crossref_primary_10_1016_j_ijmultiphaseflow_2020_103431
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2020_103431
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Brackbill, Kothe, Zemach (bib0007) 1992; 100
Kaiser, Li, Yang, Lee (bib0010) 2018; 29
Stefanitsis, Strotos, Nikolopoulos, Kakaras, Gavaises (bib0028) 2019; 76
Mi, Figliola, Anderson (bib0022) 1997; 28B
Antipas (bib0003) 2006; 35
Park, Lee, Yon, James, Heister, Chandra, Yoon, Park, Ryu (bib0023) 2010; 20
last access on 2 July 2020.
Mates, Settles (bib0019) 1996
2006, last access on 2 July2020.
Li, Dinh, Yang, Theofanous (bib0018) 2005
ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2013.
Goharkhah, M., Convective Heat Transfer, 2018
Ranger, Nicholls (bib0025) 1969; 7
Xiao, Tsai, Papamoschou (bib0031) 2007; 45
Shinjo, Umemura (bib0027) 2010; 36
Lelong, Vecellio, de Gélicourt, Tanguy, Diot, Junqua-Moullet (bib0017) 2013; 8
Zeoli, Gu, Kamnis (bib0032) 2008; 43
Thompson, Hassan, Rolland, Hassan, Sienz (bib0030) 2016; 291
Mates, Settles (bib0020) 2005; 15
Antipas (bib0004) 2012; 2
Ishimoto, Ohira, Okabayashi, Chitose (bib0016) 2008; 48
Zhao, Nguyen, Duke, Edgington-Mitchell, Soria, Liu, Honnery (bib0033) 2019; 120
Li, Fritsching (bib0011) 2017; 23
Theophanous (bib0029) 2011; 43
Hirasaki, G., Transport Phenomena, Chapter 6 - Equations of Motion and Energy in Cartesian Coordinates, 2010
Rayleigh (bib0026) 1878; 10
Guildenbecher, López-Rivera, Sojka (bib0013) 2009; 46
Prasad, Mosbah, Henein, Gandin (bib0024) 2009; 49
Anderson, Terpstra (bib0001) 2002; 326
Zhu, Hong (bib0034) 2002; 42
Bakker, A., Lecture 3 – Conservation Equations - Applied Computational Fluid Dynamics
Ouyang, Chen, Huang (bib0015) 2007; 17
Bush, J., 18.357 Interfacial Phenomena Fall2010. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA. Last access on 2 July 2020.
Chang, Lee, Lee, Hong (bib0009) 1998; 38
Batchelor (bib0006) 1967
Ménard, Tanguy, Berlemont (bib0021) 2007; 33
Antipas (10.1016/j.ijmultiphaseflow.2020.103431_bib0004) 2012; 2
Ouyang (10.1016/j.ijmultiphaseflow.2020.103431_bib0015) 2007; 17
Rayleigh (10.1016/j.ijmultiphaseflow.2020.103431_bib0026) 1878; 10
Batchelor (10.1016/j.ijmultiphaseflow.2020.103431_bib0006) 1967
Ménard (10.1016/j.ijmultiphaseflow.2020.103431_bib0021) 2007; 33
Ranger (10.1016/j.ijmultiphaseflow.2020.103431_bib0025) 1969; 7
10.1016/j.ijmultiphaseflow.2020.103431_bib0005
Mi (10.1016/j.ijmultiphaseflow.2020.103431_bib0022) 1997; 28B
10.1016/j.ijmultiphaseflow.2020.103431_bib0008
Thompson (10.1016/j.ijmultiphaseflow.2020.103431_bib0030) 2016; 291
10.1016/j.ijmultiphaseflow.2020.103431_bib0002
Shinjo (10.1016/j.ijmultiphaseflow.2020.103431_bib0027) 2010; 36
Mates (10.1016/j.ijmultiphaseflow.2020.103431_bib0020) 2005; 15
Zhao (10.1016/j.ijmultiphaseflow.2020.103431_bib0033) 2019; 120
Ishimoto (10.1016/j.ijmultiphaseflow.2020.103431_bib0016) 2008; 48
Theophanous (10.1016/j.ijmultiphaseflow.2020.103431_bib0029) 2011; 43
Antipas (10.1016/j.ijmultiphaseflow.2020.103431_bib0003) 2006; 35
Anderson (10.1016/j.ijmultiphaseflow.2020.103431_bib0001) 2002; 326
Kaiser (10.1016/j.ijmultiphaseflow.2020.103431_bib0010) 2018; 29
Zhu (10.1016/j.ijmultiphaseflow.2020.103431_bib0034) 2002; 42
Xiao (10.1016/j.ijmultiphaseflow.2020.103431_bib0031) 2007; 45
Li (10.1016/j.ijmultiphaseflow.2020.103431_bib0011) 2017; 23
Chang (10.1016/j.ijmultiphaseflow.2020.103431_bib0009) 1998; 38
10.1016/j.ijmultiphaseflow.2020.103431_bib0012
Mates (10.1016/j.ijmultiphaseflow.2020.103431_bib0019) 1996
Guildenbecher (10.1016/j.ijmultiphaseflow.2020.103431_bib0013) 2009; 46
10.1016/j.ijmultiphaseflow.2020.103431_bib0014
Lelong (10.1016/j.ijmultiphaseflow.2020.103431_bib0017) 2013; 8
Zeoli (10.1016/j.ijmultiphaseflow.2020.103431_bib0032) 2008; 43
Prasad (10.1016/j.ijmultiphaseflow.2020.103431_bib0024) 2009; 49
Li (10.1016/j.ijmultiphaseflow.2020.103431_bib0018) 2005
Brackbill (10.1016/j.ijmultiphaseflow.2020.103431_bib0007) 1992; 100
Stefanitsis (10.1016/j.ijmultiphaseflow.2020.103431_bib0028) 2019; 76
Park (10.1016/j.ijmultiphaseflow.2020.103431_bib0023) 2010; 20
References_xml – volume: 7
  start-page: 285
  year: 1969
  end-page: 290
  ident: bib0025
  article-title: Aerodynamic shattering of liquid drops
  publication-title: AAIA J.
  contributor:
    fullname: Nicholls
– volume: 33
  start-page: 510
  year: 2007
  end-page: 524
  ident: bib0021
  article-title: Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Berlemont
– volume: 46
  start-page: 371
  year: 2009
  end-page: 402
  ident: bib0013
  article-title: Secondary atomization
  publication-title: Exp. Fluids
  contributor:
    fullname: Sojka
– start-page: 1
  year: 1996
  end-page: 14
  ident: bib0019
  article-title: High-speed imaging of liquid metal atomization by two different close-coupled nozzles
  publication-title: Powder Metallurgy and Particulate Materials
  contributor:
    fullname: Settles
– volume: 43
  start-page: 661
  year: 2011
  end-page: 690
  ident: bib0029
  article-title: Aerobreakup of Newtonian and Viscoelastic Liquids
  publication-title: Annu. Rev. Fluid. Mech.
  contributor:
    fullname: Theophanous
– volume: 326
  start-page: 101
  year: 2002
  end-page: 109
  ident: bib0001
  article-title: Progress toward gas atomization processing with increased uniformity and control
  publication-title: Mater. Sci. Eng.: A
  contributor:
    fullname: Terpstra
– volume: 2
  start-page: 202
  year: 2012
  end-page: 210
  ident: bib0004
  article-title: Gas Atomization of Aluminium Melts: Comparison of Analytical Models
  publication-title: Metals
  contributor:
    fullname: Antipas
– volume: 76
  start-page: 274
  year: 2019
  end-page: 286
  ident: bib0028
  article-title: Improved droplet breakup models for spray applications
  publication-title: Int. J. Heat Fluid Flow
  contributor:
    fullname: Gavaises
– volume: 8
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0017
  article-title: Comparison of numerical simulations to experiments for atomization in a jet nebulizer
  publication-title: PLoS One
  contributor:
    fullname: Junqua-Moullet
– volume: 120
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0033
  article-title: Effect of turbulence on drop breakup in counter air flow
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Honnery
– volume: 28B
  start-page: 935
  year: 1997
  end-page: 941
  ident: bib0022
  article-title: A numerical investigation of gas flow effects on high-pressure gas atomization due to melt tip geometry variation
  publication-title: Metall. Mater. Trans. B
  contributor:
    fullname: Anderson
– start-page: 1
  year: 2005
  end-page: 11
  ident: bib0018
  publication-title: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit
  contributor:
    fullname: Theofanous
– volume: 38
  start-page: 63
  year: 1998
  end-page: 70
  ident: bib0009
  article-title: Three-dimensional Simulation of Dendritic Grain Structures of Gas-atomized Al-Cu Alloy Droplets
  publication-title: ISIJ Int.
  contributor:
    fullname: Hong
– volume: 17
  start-page: 967
  year: 2007
  end-page: 973
  ident: bib0015
  article-title: Influence of melt superheat on breakup process of close-coupled gas atomization
  publication-title: Trans. Nonferrous Metals Soc. China
  contributor:
    fullname: Huang
– volume: 42
  start-page: 520
  year: 2002
  end-page: 526
  ident: bib0034
  article-title: A Three Dimensional Modified Cellular Automaton Model for the Prediction of Solidification Microstructures
  publication-title: ISIJ Int.
  contributor:
    fullname: Hong
– volume: 20
  start-page: 514
  year: 2010
  end-page: 522
  ident: bib0023
  article-title: Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Ambient Pressure, and Substrate Location upon Flow Characteristics
  publication-title: J. Therm. Spray Technol.
  contributor:
    fullname: Ryu
– volume: 291
  start-page: 75
  year: 2016
  end-page: 85
  ident: bib0030
  article-title: The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser
  publication-title: Powder Technol.
  contributor:
    fullname: Sienz
– volume: 43
  start-page: 268
  year: 2008
  end-page: 278
  ident: bib0032
  article-title: Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation
  publication-title: Computational Materials Science
  contributor:
    fullname: Kamnis
– volume: 45
  start-page: 532
  year: 2007
  end-page: 541
  ident: bib0031
  article-title: Numerical Investigation of Supersonic Nozzle Flow Separation
  publication-title: AAIA J.
  contributor:
    fullname: Papamoschou
– volume: 10
  start-page: 4
  year: 1878
  end-page: 13
  ident: bib0026
  publication-title: Proceedings of the London Mathematical Society
  contributor:
    fullname: Rayleigh
– volume: 15
  start-page: 19
  year: 2005
  end-page: 40
  ident: bib0020
  article-title: A study of liquid metal atomization using close-coupled nozzles, Part
  publication-title: At. Sprays.
  contributor:
    fullname: Settles
– volume: 48
  start-page: 238
  year: 2008
  end-page: 247
  ident: bib0016
  article-title: Integrated numerical prediction of atomization process of liquid hydrogen jet
  publication-title: Cryogenics
  contributor:
    fullname: Chitose
– volume: 29
  start-page: 623
  year: 2018
  end-page: 630
  ident: bib0010
  article-title: A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction
  publication-title: Adv. Powder Technol.
  contributor:
    fullname: Lee
– volume: 36
  start-page: 513
  year: 2010
  end-page: 532
  ident: bib0027
  article-title: Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Umemura
– volume: 35
  start-page: 416
  year: 2006
  end-page: 422
  ident: bib0003
  article-title: Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Antipas
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  ident: bib0007
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Zemach
– volume: 49
  start-page: 992
  year: 2009
  end-page: 999
  ident: bib0024
  article-title: A Solidification Model for Atomization
  publication-title: ISIJ Int.
  contributor:
    fullname: Gandin
– start-page: 147
  year: 1967
  end-page: 154
  ident: bib0006
  article-title: An Introduction to Fluid Dynamics
  contributor:
    fullname: Batchelor
– volume: 23
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0011
  article-title: Process modeling pressure-swirl-gas-atomization for metal powder production
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Fritsching
– volume: 35
  start-page: 416
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0003
  article-title: Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.03.009
  contributor:
    fullname: Antipas
– volume: 7
  start-page: 285
  year: 1969
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0025
  article-title: Aerodynamic shattering of liquid drops
  publication-title: AAIA J.
  doi: 10.2514/3.5087
  contributor:
    fullname: Ranger
– volume: 29
  start-page: 623
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0010
  article-title: A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.12.003
  contributor:
    fullname: Kaiser
– volume: 48
  start-page: 238
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0016
  article-title: Integrated numerical prediction of atomization process of liquid hydrogen jet
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2008.03.006
  contributor:
    fullname: Ishimoto
– volume: 291
  start-page: 75
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0030
  article-title: The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.12.001
  contributor:
    fullname: Thompson
– volume: 38
  start-page: 63
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0009
  article-title: Three-dimensional Simulation of Dendritic Grain Structures of Gas-atomized Al-Cu Alloy Droplets
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.38.63
  contributor:
    fullname: Chang
– volume: 20
  start-page: 514
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0023
  article-title: Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Ambient Pressure, and Substrate Location upon Flow Characteristics
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-010-9542-8
  contributor:
    fullname: Park
– ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0005
– volume: 2
  start-page: 202
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0004
  article-title: Gas Atomization of Aluminium Melts: Comparison of Analytical Models
  publication-title: Metals
  doi: 10.3390/met2020202
  contributor:
    fullname: Antipas
– volume: 120
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0033
  article-title: Effect of turbulence on drop breakup in counter air flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.103108
  contributor:
    fullname: Zhao
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0017
  article-title: Comparison of numerical simulations to experiments for atomization in a jet nebulizer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0078659
  contributor:
    fullname: Lelong
– volume: 100
  start-page: 335
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0007
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
  contributor:
    fullname: Brackbill
– volume: 326
  start-page: 101
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0001
  article-title: Progress toward gas atomization processing with increased uniformity and control
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(01)01427-7
  contributor:
    fullname: Anderson
– volume: 17
  start-page: 967
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0015
  article-title: Influence of melt superheat on breakup process of close-coupled gas atomization
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(07)60209-X
  contributor:
    fullname: Ouyang
– volume: 15
  start-page: 19
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0020
  article-title: A study of liquid metal atomization using close-coupled nozzles, Part 1: Gas dynamic behavior
  publication-title: At. Sprays.
  doi: 10.1615/AtomizSpr.v15.i1.20
  contributor:
    fullname: Mates
– volume: 45
  start-page: 532
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0031
  article-title: Numerical Investigation of Supersonic Nozzle Flow Separation
  publication-title: AAIA J.
  doi: 10.2514/1.20073
  contributor:
    fullname: Xiao
– volume: 23
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0011
  article-title: Process modeling pressure-swirl-gas-atomization for metal powder production
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Li
– volume: 49
  start-page: 992
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0024
  article-title: A Solidification Model for Atomization
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.49.992
  contributor:
    fullname: Prasad
– start-page: 1
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0018
  contributor:
    fullname: Li
– ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0012
– volume: 43
  start-page: 268
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0032
  article-title: Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2007.10.005
  contributor:
    fullname: Zeoli
– ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0008
– ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0014
– volume: 42
  start-page: 520
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0034
  article-title: A Three Dimensional Modified Cellular Automaton Model for the Prediction of Solidification Microstructures
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.42.520
  contributor:
    fullname: Zhu
– start-page: 147
  year: 1967
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0006
  contributor:
    fullname: Batchelor
– volume: 33
  start-page: 510
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0021
  article-title: Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2006.11.001
  contributor:
    fullname: Ménard
– volume: 28B
  start-page: 935
  issue: 6
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0022
  article-title: A numerical investigation of gas flow effects on high-pressure gas atomization due to melt tip geometry variation
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-997-0021-7
  contributor:
    fullname: Mi
– ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0002
– volume: 43
  start-page: 661
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0029
  article-title: Aerobreakup of Newtonian and Viscoelastic Liquids
  publication-title: Annu. Rev. Fluid. Mech.
  doi: 10.1146/annurev-fluid-122109-160638
  contributor:
    fullname: Theophanous
– start-page: 1
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0019
  article-title: High-speed imaging of liquid metal atomization by two different close-coupled nozzles
  publication-title: Powder Metallurgy and Particulate Materials
  contributor:
    fullname: Mates
– volume: 10
  start-page: 4
  year: 1878
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0026
  contributor:
    fullname: Rayleigh
– volume: 46
  start-page: 371
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0013
  article-title: Secondary atomization
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-008-0593-2
  contributor:
    fullname: Guildenbecher
– volume: 76
  start-page: 274
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0028
  article-title: Improved droplet breakup models for spray applications
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2019.02.010
  contributor:
    fullname: Stefanitsis
– volume: 36
  start-page: 513
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2020.103431_bib0027
  article-title: Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2010.03.008
  contributor:
    fullname: Shinjo
SSID ssj0005743
Score 2.4124064
Snippet •Similarity theory is used to scale down the high gas velocity in molten metals gas atomization .•Secondary breakup is modeled using the volume of fluid...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 103431
SubjectTerms Additive manufacturing
Gas atomization
Metal powders
Numerical model
Secondary breakup
VOF
Title Numerical modeling of secondary breakup in molten metals gas-atomization using dimensionless analysis
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.103431
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gRKMHo6gRH2QPxtuKbXe77ZEQCWrkoiTcmm23iyCvUIjx4m93to-AxoMHj223m-bbyTw638wAXElL8lDYnOrQZpQpxakXMka5p33lmf7p3BQnP3XdTo899Hm_BK2iFsbQKnPdn-n0VFvndxo5mo35cNh4Ns68bxIFRmaZqeGqpEmiMlSa94-d7prpkfHszXpqXtiB6zXNazjKmHuvaDT0ePaOIaOdlqIzx_rdVm3Yn_YB7OeOI2lm33YIpXhahb2NdoJV2E7pnFFyBHF3lWVixiQddYOPyUyTxES_Si4-CAbC8m01J8MpLhij30wmMbrhCRnIhGIcPsnLM4nhxQ-IMjMAzH-1MSpGIvNGJsfQa9-9tDo0H6hAI8dxl1Q5MUOTFTHLkngQPipdGXE00Uxo7jnKdzEYc5iwXTv2hDbtxqJIiVhrR1ihtJ0TKE9n0_gUiHB9VzAWon9nMe3yUEnBQ0vZ3Gbcv9U1EAV0wTzrmxEUhLJR8BP0wIAeZKDXoFkgHXyThACV_B_3OPuHPc5h11xldYcXUF4uVvElOiDLsA5bN59WPRezLwv63nw
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1VrdgOCAqIsvqAuFkliR0nx6qiaulyoZV6i5w4Lind1EWIv2fcpGpBHDhwjR0rGo_evInfjAEepCV5KGxOdWgzypTi1AsZo9zTvvJM_3RuipPbHbfeYy993s9BdVMLY2SVGfanmL5G6-xJObNmeZYk5VdD5n1zUGB8lpkargKyAR-dvVBpNOudrdIj1dmb-dS8sA-PW5lXMkyVe28YNPRo-oEpo70uRWeO9Xus2ok_tRM4zogjqaTfdgq5eFKEo512gkXYW8s5o8UZxJ1VehIzIuurbnCYTDVZmOxXyfknwURYvq9mJJnghBHyZjKOkYYvyEAuKObh46w8kxhd_IAocweA-a82QmAkMmtkcg692nO3WqfZhQo0chx3SZUTMwxZEbMsiRvhI-jKiGOIZkJzz1G-i8mYw4Tt2rEntGk3FkVKxFo7wgql7VxAfjKdxJdAhOu7grEQ-Z3FtMtDJQUPLWVzm3H_SZdAbEwXzNK-GcFGUDYMfho9MEYPUqOXoLKxdPDNEwIE-T-ucfUPa9zDQb3bbgWtRqd5DYdmJK1BvIH8cr6Kb5GMLMO7zNm-AIZd4Hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+modeling+of+secondary+breakup+in+molten+metals+gas-atomization+using+dimensionless+analysis&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Ridolfi%2C+Maria+Rita&rft.au=Folgarait%2C+Paolo&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=132&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2020.103431&rft.externalDocID=S0301932220305401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon