Preparation and performance of CeO2 hollow spheres and nanoparticles

CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectro...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 34; no. 3; pp. 295 - 299
Main Author 张问问 陈东辉
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO_2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO_2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller(BET) surface area was 67.1 and 37.2 m~2/g. The CeO_2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere.
Bibliography:CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO_2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO_2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller(BET) surface area was 67.1 and 37.2 m~2/g. The CeO_2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere.
11-2788/TF
CeO2; UV-shielding; hollow spheres; template; Rh B; rare earths
ZHANG Wenwen , CHEN Donghui (College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China)
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(16)60028-5