Biodegradable and Injectable Hydrogels in Biomedical Applications
Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectabili...
Saved in:
Published in | Biomacromolecules Vol. 23; no. 3; pp. 609 - 618 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
14.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1525-7797 1526-4602 1526-4602 |
DOI | 10.1021/acs.biomac.1c01552 |
Cover
Loading…
Abstract | Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectability allows injectable hydrogels to be implanted into living bodies using a syringe in a minimally invasive way. After being loaded with different active substances (drugs, proteins, genes, viruses, cells, etc.), injectable hydrogels have been demonstrated to be potential in many different biomedical applications including controlled release and tissue engineering. However, biodegradability is also an important property of injectable hydrogels and allows removal of the hydrogels after accomplishment of their tasks. In this Perspective, we aim at introducing several different types of biodegradable and injectable hydrogels and compare their differences in properties and applications. Lastly, we also point out some remaining problems and future trends in the field of biodegradable and injectable hydrogels. |
---|---|
AbstractList | Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectability allows injectable hydrogels to be implanted into living bodies using a syringe in a minimally invasive way. After being loaded with different active substances (drugs, proteins, genes, viruses, cells, etc.), injectable hydrogels have been demonstrated to be potential in many different biomedical applications including controlled release and tissue engineering. However, biodegradability is also an important property of injectable hydrogels and allows removal of the hydrogels after accomplishment of their tasks. In this Perspective, we aim at introducing several different types of biodegradable and injectable hydrogels and compare their differences in properties and applications. Lastly, we also point out some remaining problems and future trends in the field of biodegradable and injectable hydrogels. Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectability allows injectable hydrogels to be implanted into living bodies using a syringe in a minimally invasive way. After being loaded with different active substances (drugs, proteins, genes, viruses, cells, etc.), injectable hydrogels have been demonstrated to be potential in many different biomedical applications including controlled release and tissue engineering. However, biodegradability is also an important property of injectable hydrogels and allows removal of the hydrogels after accomplishment of their tasks. In this Perspective, we aim at introducing several different types of biodegradable and injectable hydrogels and compare their differences in properties and applications. Lastly, we also point out some remaining problems and future trends in the field of biodegradable and injectable hydrogels.Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectability allows injectable hydrogels to be implanted into living bodies using a syringe in a minimally invasive way. After being loaded with different active substances (drugs, proteins, genes, viruses, cells, etc.), injectable hydrogels have been demonstrated to be potential in many different biomedical applications including controlled release and tissue engineering. However, biodegradability is also an important property of injectable hydrogels and allows removal of the hydrogels after accomplishment of their tasks. In this Perspective, we aim at introducing several different types of biodegradable and injectable hydrogels and compare their differences in properties and applications. Lastly, we also point out some remaining problems and future trends in the field of biodegradable and injectable hydrogels. |
Author | Lee, Doo Sung Yang, Hong Yu Li, Yi |
Author_xml | – sequence: 1 givenname: Yi surname: Li fullname: Li, Yi organization: College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China – sequence: 2 givenname: Hong Yu orcidid: 0000-0002-0730-2779 surname: Yang fullname: Yang, Hong Yu organization: College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China – sequence: 3 givenname: Doo Sung orcidid: 0000-0002-7979-7459 surname: Lee fullname: Lee, Doo Sung organization: Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35133798$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtPAzEQhC0URB7wByjQlTQX_DzbZYiARIpEA7XlVyJHd-dgX4r8e44kUFAgqp2VvllpZ8Zg0MbWA3CL4BRBjB60zVMTYqPtFFmIGMMXYIQYrkpaQTw4alZyLvkQjHPeQggloewKDAlDhHApRmD2GKLzm6SdNrUvdOuKZbv1tjuui4NLcePrXIS26MnGu2B1Xcx2u7oXXYhtvgaXa11nf3OeE_D-_PQ2X5Sr15flfLYqLSFVVzpkKiOckxJXmq-xcwQKSRGFwnCDpGAOae245kiaSnKjBbPCS-oJ544yMgH3p7u7FD_2PneqCdn6utatj_uscEWFYKiC4h8o5ohQIXmP3p3Rvem_U7sUGp0O6juhHsAnwKaYc_LrHwRB9VWD6mtQpxrUuYbeJH6ZbOiOcXVJh_ov6ycchY83 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e16850 crossref_primary_10_1016_j_ijbiomac_2023_125674 crossref_primary_10_1016_j_cej_2023_143128 crossref_primary_10_1016_j_mtadv_2025_100565 crossref_primary_10_3389_fbioe_2023_1121887 crossref_primary_10_1021_acs_macromol_2c02309 crossref_primary_10_3390_gels9030242 crossref_primary_10_1016_j_cej_2024_155033 crossref_primary_10_1021_acsapm_2c01696 crossref_primary_10_1016_j_actbio_2024_09_017 crossref_primary_10_1016_j_cis_2024_103232 crossref_primary_10_1016_j_jconrel_2023_07_052 crossref_primary_10_1021_acsabm_4c01438 crossref_primary_10_3390_polym15030490 crossref_primary_10_1002_adhm_202403579 crossref_primary_10_1021_acs_biomac_4c01312 crossref_primary_10_1016_j_mtnano_2023_100330 crossref_primary_10_1039_D4SM01402B crossref_primary_10_1088_1741_2552_ad5939 crossref_primary_10_1166_jbn_2024_3795 crossref_primary_10_1016_j_eurpolymj_2024_113480 crossref_primary_10_1016_j_supmat_2023_100037 crossref_primary_10_1016_j_heliyon_2023_e16476 crossref_primary_10_3390_gels8100606 crossref_primary_10_1016_j_est_2023_106618 crossref_primary_10_1016_j_ijbiomac_2023_124962 crossref_primary_10_1021_acs_biomac_2c00916 crossref_primary_10_1021_acsbiomaterials_3c01936 crossref_primary_10_1016_j_ijbiomac_2024_137881 crossref_primary_10_1016_j_eurpolymj_2022_111559 crossref_primary_10_1016_j_ijbiomac_2024_135894 crossref_primary_10_1002_adhm_202304196 crossref_primary_10_1039_D4TA02586E crossref_primary_10_1186_s12929_024_00994_y crossref_primary_10_3390_ijms25084534 crossref_primary_10_1021_acsami_4c07434 crossref_primary_10_3390_gels8050256 crossref_primary_10_1002_pol_20230859 crossref_primary_10_1021_acsami_3c03149 crossref_primary_10_1016_j_indcrop_2024_118293 crossref_primary_10_1021_acsomega_4c03157 crossref_primary_10_1016_j_ijbiomac_2024_133789 crossref_primary_10_1155_2024_3869387 crossref_primary_10_1021_acsomega_2c03931 crossref_primary_10_1021_acs_biomac_3c01274 crossref_primary_10_1002_smll_202307628 crossref_primary_10_1002_cnma_202300584 crossref_primary_10_1016_j_jddst_2022_103817 crossref_primary_10_1021_acsmaterialslett_3c00063 crossref_primary_10_1016_j_cej_2023_142283 crossref_primary_10_3390_macromol2020012 |
Cites_doi | 10.1002/adma.201907061 10.1021/acs.macromol.9b00534 10.1021/acs.biomac.1c00583 10.1016/j.carbpol.2020.115832 10.1016/j.actbio.2011.05.004 10.1002/adfm.201806220 10.1038/s41467-019-08320-z 10.1021/acsami.8b10064 10.1016/j.jconrel.2020.05.037 10.1007/BF03218811 10.1002/marc.200500769 10.1016/j.actbio.2019.01.003 10.1038/srep29978 10.1016/j.actbio.2021.07.004 10.1016/j.bioactmat.2020.10.002 10.1021/acsami.9b17907 10.1016/j.cej.2020.125320 10.1016/j.biomaterials.2008.02.016 10.1039/C7BM00128B 10.1016/j.jconrel.2007.07.012 10.1039/C7BM00980A 10.1021/acs.biomac.8b01242 10.1021/acsami.9b13708 10.1021/acs.biomac.8b00819 10.1021/acs.nanolett.0c01371 10.1021/acs.biomac.1c00785 10.1002/adfm.201704195 10.1039/D1PY00290B 10.1039/C9BM01161G 10.1021/acsami.8b08449 10.1039/D0TA09500A 10.1039/C9BM00992B 10.1039/C9TB02523E 10.1038/s41467-017-00583-8 10.1007/s00396-012-2624-z 10.1002/adfm.201804560 10.1016/j.polymer.2009.03.060 10.1039/c1sm05080j 10.1002/adfm.202104630 10.1007/s00396-010-2349-9 10.1007/s13233-009-0182-0 10.1007/s13233-010-1110-z 10.1002/pola.26830 10.1163/092050611X575423 10.1002/ange.200503575 10.1038/s41467-019-09351-2 10.1016/j.polymer.2010.06.042 10.1016/j.biomaterials.2016.10.025 10.1016/j.actbio.2017.06.001 10.1021/acs.macromol.0c02488 10.1039/C9TB90023C 10.1038/42218 10.1039/C8PY00730F 10.1016/j.biomaterials.2018.12.034 10.1021/jacs.8b13363 10.1016/j.biomaterials.2019.119599 10.1021/acsami.1c03849 10.1016/j.polymer.2016.12.039 10.1002/adfm.202100349 10.1021/acs.chemrev.0c00345 10.1039/C9NJ03687C |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.1c01552 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 618 |
ExternalDocumentID | 35133798 10_1021_acs_biomac_1c01552 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 23N 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F XKZ ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c336t-d1b6b8dd9926a7f2dd308941408b7b1985d1aad7a719b697ba85c8e94e377d453 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Fri Jul 11 14:20:04 EDT 2025 Thu Jul 10 22:13:37 EDT 2025 Thu Jan 02 22:54:52 EST 2025 Tue Jul 01 04:08:16 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-d1b6b8dd9926a7f2dd308941408b7b1985d1aad7a719b697ba85c8e94e377d453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7979-7459 0000-0002-0730-2779 |
PMID | 35133798 |
PQID | 2627134897 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2648851608 proquest_miscellaneous_2627134897 pubmed_primary_35133798 crossref_primary_10_1021_acs_biomac_1c01552 crossref_citationtrail_10_1021_acs_biomac_1c01552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-14 |
PublicationDateYYYYMMDD | 2022-03-14 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2022 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1002/adma.201907061 – ident: ref27/cit27 doi: 10.1021/acs.macromol.9b00534 – ident: ref52/cit52 doi: 10.1021/acs.biomac.1c00583 – ident: ref60/cit60 doi: 10.1016/j.carbpol.2020.115832 – ident: ref46/cit46 doi: 10.1016/j.actbio.2011.05.004 – ident: ref10/cit10 doi: 10.1002/adfm.201806220 – ident: ref6/cit6 doi: 10.1038/s41467-019-08320-z – ident: ref9/cit9 doi: 10.1021/acsami.8b10064 – ident: ref45/cit45 doi: 10.1016/j.jconrel.2020.05.037 – ident: ref36/cit36 doi: 10.1007/BF03218811 – ident: ref35/cit35 doi: 10.1002/marc.200500769 – ident: ref17/cit17 doi: 10.1016/j.actbio.2019.01.003 – ident: ref49/cit49 doi: 10.1038/srep29978 – ident: ref15/cit15 doi: 10.1016/j.actbio.2021.07.004 – ident: ref39/cit39 doi: 10.1016/j.bioactmat.2020.10.002 – ident: ref12/cit12 doi: 10.1021/acsami.9b17907 – ident: ref25/cit25 doi: 10.1016/j.cej.2020.125320 – ident: ref38/cit38 doi: 10.1016/j.biomaterials.2008.02.016 – ident: ref55/cit55 doi: 10.1039/C7BM00128B – ident: ref37/cit37 doi: 10.1016/j.jconrel.2007.07.012 – ident: ref54/cit54 doi: 10.1039/C7BM00980A – ident: ref20/cit20 doi: 10.1021/acs.biomac.8b01242 – ident: ref40/cit40 doi: 10.1021/acsami.9b13708 – ident: ref47/cit47 doi: 10.1021/acs.biomac.8b00819 – ident: ref13/cit13 doi: 10.1021/acs.nanolett.0c01371 – ident: ref53/cit53 doi: 10.1021/acs.biomac.1c00785 – ident: ref2/cit2 doi: 10.1002/adfm.201704195 – ident: ref56/cit56 doi: 10.1039/D1PY00290B – ident: ref57/cit57 doi: 10.1039/C9BM01161G – ident: ref14/cit14 doi: 10.1021/acsami.8b08449 – ident: ref11/cit11 doi: 10.1039/D0TA09500A – ident: ref48/cit48 doi: 10.1039/C9BM00992B – ident: ref24/cit24 doi: 10.1039/C9TB02523E – ident: ref21/cit21 doi: 10.1038/s41467-017-00583-8 – ident: ref42/cit42 doi: 10.1007/s00396-012-2624-z – ident: ref5/cit5 doi: 10.1002/adfm.201804560 – ident: ref31/cit31 doi: 10.1016/j.polymer.2009.03.060 – ident: ref43/cit43 doi: 10.1039/c1sm05080j – ident: ref22/cit22 doi: 10.1002/adfm.202104630 – ident: ref34/cit34 doi: 10.1007/s00396-010-2349-9 – ident: ref32/cit32 doi: 10.1007/s13233-009-0182-0 – ident: ref33/cit33 doi: 10.1007/s13233-010-1110-z – ident: ref51/cit51 doi: 10.1002/pola.26830 – ident: ref44/cit44 doi: 10.1163/092050611X575423 – ident: ref26/cit26 doi: 10.1002/ange.200503575 – ident: ref3/cit3 doi: 10.1038/s41467-019-09351-2 – ident: ref41/cit41 doi: 10.1016/j.polymer.2010.06.042 – ident: ref16/cit16 doi: 10.1016/j.biomaterials.2016.10.025 – ident: ref18/cit18 doi: 10.1016/j.actbio.2017.06.001 – ident: ref28/cit28 doi: 10.1021/acs.macromol.0c02488 – ident: ref1/cit1 doi: 10.1039/C9TB90023C – ident: ref23/cit23 doi: 10.1038/42218 – ident: ref19/cit19 doi: 10.1039/C8PY00730F – ident: ref61/cit61 doi: 10.1016/j.biomaterials.2018.12.034 – ident: ref8/cit8 doi: 10.1021/jacs.8b13363 – ident: ref59/cit59 doi: 10.1016/j.biomaterials.2019.119599 – ident: ref29/cit29 doi: 10.1021/acsami.1c03849 – ident: ref50/cit50 doi: 10.1016/j.polymer.2016.12.039 – ident: ref30/cit30 doi: 10.1002/adfm.202100349 – ident: ref4/cit4 doi: 10.1021/acs.chemrev.0c00345 – ident: ref58/cit58 doi: 10.1039/C9NJ03687C |
SSID | ssj0009345 |
Score | 2.5802274 |
Snippet | Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 609 |
SubjectTerms | biodegradability hardness hydrogels Hydrogels - chemistry Injections syringes Tissue Engineering Water water solubility |
Title | Biodegradable and Injectable Hydrogels in Biomedical Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35133798 https://www.proquest.com/docview/2627134897 https://www.proquest.com/docview/2648851608 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQL3BhX8qmIHGDlHiJl2NbURUkuECl3iLb46IKlKLSHuDrsZOURdAKjokmjjV2POOM33sInQpIwDmuYkU5xIwaGhtsSUxpapnx-w1daCzd3PJuj1330_4SOp9TwSf4QtuXRoCi--axLRjDwoIrWCDKb7bvPhl2aaFIHPR8fMqoRIWQ-b2J71FoTmpZhJjOGrqZAXXKkyWPjenENOzbT97GP_V-Ha1WuWbULCfHBlpy-SZabs8k3rZQszUcQWCLgACginQO0VUefswUl91XGI8efOyMhnnUKmD6YUSj5pea9zbqdS7v29240lSILaV8EgM23EgApQjXYkAAaCIV89ssaYTBSqaAtQahBVaGK2G0TK10ijkqBLCU7qBaPsrdHor8_YQy6o2t__JtIgfOMQtEYjbgHHgd4ZmPM1sRjgfdi6esKHwTnHnnZKVzsso5dXT28cxzSbex0PpkNnSZ91wodejcjaYvGeEkgGSlEots_OKVYp7IOtotx_3jnTTI3ggl9__VnwO0QgI6Ihz3Y4eoNhlP3ZHPWSbmuJir70Ln58s |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+and+Injectable+Hydrogels+in+Biomedical+Applications&rft.jtitle=Biomacromolecules&rft.au=Li%2C+Yi&rft.au=Yang%2C+Hong+Yu&rft.au=Lee%2C+Doo+Sung&rft.date=2022-03-14&rft.eissn=1526-4602&rft.volume=23&rft.issue=3&rft.spage=609&rft_id=info:doi/10.1021%2Facs.biomac.1c01552&rft_id=info%3Apmid%2F35133798&rft.externalDocID=35133798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |