Supervised and Semi-Supervised Learning for Failure Identification in Microwave Networks
Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is identified, appropriate countermeasures can be effectively put in place (e.g., by choosing an in-field intervention vs. a remote equipment re...
Saved in:
Published in | IEEE eTransactions on network and service management Vol. 18; no. 2; pp. 1934 - 1945 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is identified, appropriate countermeasures can be effectively put in place (e.g., by choosing an in-field intervention vs. a remote equipment reconfiguration). In this article, we describe a successful application of Machine Learning (ML) for automatic failure identification in microwave networks based on the real-field data. On microwave links, different heterogeneous causes (e.g., adverse atmospheric conditions, or obstacles) lead to service unavailability and produce not easily-distinguishable degradation effects on the transmission parameters. Hence, failure identification is traditionally accomplished by domain experts via direct inspection of transmission-parameter logs. As a first contribution, we identify six categories of failure causes in microwave networks and show that supervised ML enables very accurate failure identification, hence significantly simplifying failure troubleshooting. Comparing various ML algorithms, we find that up to 93% classification accuracy is obtained using real-field labeled datasets with 2513 points. One main hindrance to the application of supervised learning is that, in real network deployments, limited amount of labeled data is available for training, as manual labeling is performed by domain experts based on their knowledge and experience. On the other hand, collecting unlabeled data is relatively simple as network management systems retrieve large amounts of unlabeled information automatically. As a second contribution, we investigate an automated labeling procedure, based on autoencoders-like Artificial Neural Networks, to combine the knowledge of the few manually-labeled data with large unlabeled data. Results show that our data augmentation based on autoencoders can slightly improve failure-cause identification only when Artificial Neural Networks or Support Vector Machines are used, while accuracy slightly decreases when adopting Random Forest. |
---|---|
AbstractList | Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is identified, appropriate countermeasures can be effectively put in place (e.g., by choosing an in-field intervention vs. a remote equipment reconfiguration). In this article, we describe a successful application of Machine Learning (ML) for automatic failure identification in microwave networks based on the real-field data. On microwave links, different heterogeneous causes (e.g., adverse atmospheric conditions, or obstacles) lead to service unavailability and produce not easily-distinguishable degradation effects on the transmission parameters. Hence, failure identification is traditionally accomplished by domain experts via direct inspection of transmission-parameter logs. As a first contribution, we identify six categories of failure causes in microwave networks and show that supervised ML enables very accurate failure identification, hence significantly simplifying failure troubleshooting. Comparing various ML algorithms, we find that up to 93% classification accuracy is obtained using real-field labeled datasets with 2513 points. One main hindrance to the application of supervised learning is that, in real network deployments, limited amount of labeled data is available for training, as manual labeling is performed by domain experts based on their knowledge and experience. On the other hand, collecting unlabeled data is relatively simple as network management systems retrieve large amounts of unlabeled information automatically. As a second contribution, we investigate an automated labeling procedure, based on autoencoders-like Artificial Neural Networks, to combine the knowledge of the few manually-labeled data with large unlabeled data. Results show that our data augmentation based on autoencoders can slightly improve failure-cause identification only when Artificial Neural Networks or Support Vector Machines are used, while accuracy slightly decreases when adopting Random Forest. |
Author | Capacchione, Massimiliano Tornatore, Massimo Rubino, Roberto Milano, Michele Rigamonti, Gabriele Ayoub, Omran Magni, Luca Passera, Claudio Musumeci, Francesco |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0002-3617-5916 surname: Musumeci fullname: Musumeci, Francesco email: francesco.musumeci@polimi.it organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy – sequence: 2 givenname: Luca surname: Magni fullname: Magni, Luca organization: SIAE Microelettronica, Cologno Monzese, Italy – sequence: 3 givenname: Omran orcidid: 0000-0002-3884-3594 surname: Ayoub fullname: Ayoub, Omran organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy – sequence: 4 givenname: Roberto surname: Rubino fullname: Rubino, Roberto organization: SIAE Microelettronica, Cologno Monzese, Italy – sequence: 5 givenname: Massimiliano orcidid: 0000-0002-0096-0568 surname: Capacchione fullname: Capacchione, Massimiliano organization: SIAE Microelettronica, Cologno Monzese, Italy – sequence: 6 givenname: Gabriele surname: Rigamonti fullname: Rigamonti, Gabriele organization: SIAE Microelettronica, Cologno Monzese, Italy – sequence: 7 givenname: Michele surname: Milano fullname: Milano, Michele organization: SIAE Microelettronica, Cologno Monzese, Italy – sequence: 8 givenname: Claudio surname: Passera fullname: Passera, Claudio organization: SIAE Microelettronica, Cologno Monzese, Italy – sequence: 9 givenname: Massimo orcidid: 0000-0003-0740-1061 surname: Tornatore fullname: Tornatore, Massimo organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy |
BookMark | eNp9kE9PAjEQxRuDiYh-AOOliefF_tnubo-GiJIAHsDEW1O6U1OELra7EL-9ixBDPHiayeS9mTe_S9TxlQeEbijpU0rk_Xw6m_QZYaTPCZeSF2eoSyVnSSp43jnpL9BljEtCREEl66K3WbOBsHURSqx9iWewdsnJbAw6eOffsa0CHmq3agLgUQm-dtYZXbvKY-fxxJlQ7fQW8BTqXRU-4hU6t3oV4fpYe-h1-DgfPCfjl6fR4GGcGM6zOjGmTHMwlBBgZpEWeSmMZoW1JddgJYVUcm6FyKgxC21kTg2kqRELU2pORcp76O6wdxOqzwZirZZVE3x7UjHRksgJy7NWlR9UbcwYA1hlXP2Tvg7tU4oStceo9hjVHqM6Ymyd9I9zE9xah69_PbcHjwOAX71kWUZpxr8B0KuBwg |
CODEN | ITNSC4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3165799 crossref_primary_10_3390_electronics11152360 crossref_primary_10_3389_fcomp_2023_1211739 crossref_primary_10_1016_j_comnet_2023_109660 crossref_primary_10_1016_j_comnet_2022_109466 crossref_primary_10_1109_TNSM_2022_3229658 crossref_primary_10_1007_s10845_024_02376_5 crossref_primary_10_1109_TNSM_2024_3430052 crossref_primary_10_1109_TNSM_2024_3406934 crossref_primary_10_1364_JOCN_516128 |
Cites_doi | 10.1007/BF01908075 10.1007/978-0-387-34890-2_24 10.1364/OFC.2019.W2A.46 10.1109/JLT.2019.2902487 10.1080/713827181 10.1109/ECOC.2018.8535185 10.7551/mitpress/9780262033589.001.0001 10.1117/12.2509613 10.1109/INFOCOM.2016.7524489 10.1109/JLT.2018.2859199 10.1109/JLT.2020.2987032 10.1016/j.comnet.2019.106969 10.1109/TNSM.2012.031912.110155 10.1109/COMST.2018.2880039 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TNSM.2020.3039938 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-4537 |
EndPage | 1945 |
ExternalDocumentID | 10_1109_TNSM_2020_3039938 9266116 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c336t-ccd47ec100e2cb487d5ca28ffd3aef91e4933f5561ccbac971ce44c5bcda31543 |
IEDL.DBID | RIE |
ISSN | 1932-4537 |
IngestDate | Sun Jun 29 16:02:39 EDT 2025 Tue Jul 01 01:55:18 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Wed Aug 27 02:51:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-ccd47ec100e2cb487d5ca28ffd3aef91e4933f5561ccbac971ce44c5bcda31543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3884-3594 0000-0002-3617-5916 0000-0003-0740-1061 0000-0002-0096-0568 |
OpenAccessLink | https://hdl.handle.net/11311/1183679 |
PQID | 2539970276 |
PQPubID | 85504 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9266116 crossref_citationtrail_10_1109_TNSM_2020_3039938 crossref_primary_10_1109_TNSM_2020_3039938 proquest_journals_2539970276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-June 2021-6-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE eTransactions on network and service management |
PublicationTitleAbbrev | T-NSM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 wu (ref10) 2018 ref12 ref15 ref14 ali (ref19) 2006 ref20 ref11 ref21 ref2 ref1 wietgrefe (ref5) 1997 ref18 ref7 hastie (ref3) 2008 ref9 ref4 ref6 casas (ref8) 2016 coenning (ref16) 2020 (ref17) 2020 |
References_xml | – ident: ref21 doi: 10.1007/BF01908075 – year: 2006 ident: ref19 publication-title: Improved Support Vector Machine Generalization Using Normalized Input Space – ident: ref4 doi: 10.1007/978-0-387-34890-2_24 – ident: ref11 doi: 10.1364/OFC.2019.W2A.46 – year: 2020 ident: ref16 publication-title: Understanding ITU-T Error Performance Recommendations – ident: ref12 doi: 10.1109/JLT.2019.2902487 – ident: ref18 doi: 10.1080/713827181 – start-page: 1 year: 2018 ident: ref10 article-title: CellPAD: Detecting performance anomalies in cellular networks via regression analysis publication-title: Proc IFIP Netw Conf (IFIP Networking) Workshops – year: 2020 ident: ref17 publication-title: SIAE Microwave Product Portfolio – ident: ref15 doi: 10.1109/ECOC.2018.8535185 – ident: ref20 doi: 10.7551/mitpress/9780262033589.001.0001 – ident: ref14 doi: 10.1117/12.2509613 – ident: ref9 doi: 10.1109/INFOCOM.2016.7524489 – ident: ref1 doi: 10.1109/JLT.2018.2859199 – ident: ref13 doi: 10.1109/JLT.2020.2987032 – start-page: 1 year: 2016 ident: ref8 article-title: Machine-learning based approaches for anomaly detection and classification in cellular networks publication-title: Proc TMA – year: 2008 ident: ref3 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref7 doi: 10.1016/j.comnet.2019.106969 – ident: ref6 doi: 10.1109/TNSM.2012.031912.110155 – start-page: 248 year: 1997 ident: ref5 article-title: Using neural networks for alarm correlation in cellular phone networks publication-title: Proc Int Workshop Appl Neural Netw Telecommun (IWANNT) – ident: ref2 doi: 10.1109/COMST.2018.2880039 |
SSID | ssj0058192 |
Score | 2.3347375 |
Snippet | Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1934 |
SubjectTerms | Algorithms Artificial neural networks Automation Availability Communication networks data augmentation Domains Failure failure identification Identification Inspection Labeling Labelling Machine learning Management systems Manuals Microwave amplifiers Microwave antennas Microwave communication Microwave networks Microwave theory and techniques Neural networks Parameter identification Receiving antennas Reconfiguration root-cause analysis Semi-supervised learning Subject specialists Support vector machines Troubleshooting |
Title | Supervised and Semi-Supervised Learning for Failure Identification in Microwave Networks |
URI | https://ieeexplore.ieee.org/document/9266116 https://www.proquest.com/docview/2539970276 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTgW6xWycGTuHV3s8-jiKUI7aUVeluS2Vkp6iq2VfDXm9lNiy_E27IkIcwk88rMNwCnPsYFmpvgaB2QE6QJOsr3tCMreDtpLHLiOORgGPVvg5tJOGnA-aoWhoiq5DPq8mf1lp8_4YJDZRcpaxMvakLTOG51rdZS6oYM7GVfLT03vRgPRwPj_fnGKXVZBydf9E7VSOWH9K1USm8TBsvN1Jkk993FXHfx_RtO4393uwUb1rYUl_Vh2IYGlTuw_glxcBcmo8UzS4cZ5UKVuRjR49T59M_Crd4JY8uKnppy0rqoi3kLG90T01IMOI3vTb2SGNZp5LM9uO1dj6_6jm2u4KCU0dxBzIOY0HNd8lEbtyUPUflJUeRSUZF6FKRSFtw8E1ErTGMPKQgw1JgraewuuQ-t8qmkAxDGxAhU5BOFCZqFIkUJV8zGqHQsY1e3wV2SPkOLPM4NMB6yygNx04y5lTG3MsutNpytpjzXsBt_Dd5l6q8GWsK3obPkb2Yv5izzGYk3Nr54dPj7rCNY8zltpQq0dKA1f1nQsbE75vqkOnAfwgbW9g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOACH5bmiuzx84IRISeI8jytEVR7ppUXqLbInE1SxBERbkPbXrydxK15C3KLItqwZe16e-QbgyMe4RHMTHK0DcoI0QUf5nnZkDW8njUVOHIfMelH3JrgchsMFOJnXwhBRnXxGbf6s3_KLB5xyqOw0ZW3iRYuwbPR-6DXVWjO5GzK0l3239Nz0dNDrZ8b_841b6rIWTt5onrqVygf5WyuVzjpks-00uSR37elEt_HfO6TG7-53A35Y61L8aY7DJixQtQVrrzAHt2HYnz6yfBhTIVRViD7dj5xX_yzg6q0w1qzoqBGnrYumnLe08T0xqkTGiXwv6plEr0kkH-_ATed8cNZ1bHsFB6WMJg5iEcSEnuuSj9o4LkWIyk_KspCKytSjIJWy5PaZiFphGntIQYChxkJJY3nJn7BUPVS0C8IYGYGKfKIwQbNQpCjhmtkYlY5l7OoWuDPS52ixx7kFxt-89kHcNGdu5cyt3HKrBcfzKY8N8MZXg7eZ-vOBlvAt2JvxN7dXc5z7jMUbG288-vX5rENY6Q6y6_z6onf1G1Z9TmKpwy57sDR5mtK-sUIm-qA-fP8BHuHaPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+and+Semi-Supervised+Learning+for+Failure+Identification+in+Microwave+Networks&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Musumeci%2C+Francesco&rft.au=Magni%2C+Luca&rft.au=Ayoub%2C+Omran&rft.au=Rubino%2C+Roberto&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=1932-4537&rft.volume=18&rft.issue=2&rft.spage=1934&rft.epage=1945&rft_id=info:doi/10.1109%2FTNSM.2020.3039938&rft.externalDocID=9266116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |