Supervised and Semi-Supervised Learning for Failure Identification in Microwave Networks

Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is identified, appropriate countermeasures can be effectively put in place (e.g., by choosing an in-field intervention vs. a remote equipment re...

Full description

Saved in:
Bibliographic Details
Published inIEEE eTransactions on network and service management Vol. 18; no. 2; pp. 1934 - 1945
Main Authors Musumeci, Francesco, Magni, Luca, Ayoub, Omran, Rubino, Roberto, Capacchione, Massimiliano, Rigamonti, Gabriele, Milano, Michele, Passera, Claudio, Tornatore, Massimo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is identified, appropriate countermeasures can be effectively put in place (e.g., by choosing an in-field intervention vs. a remote equipment reconfiguration). In this article, we describe a successful application of Machine Learning (ML) for automatic failure identification in microwave networks based on the real-field data. On microwave links, different heterogeneous causes (e.g., adverse atmospheric conditions, or obstacles) lead to service unavailability and produce not easily-distinguishable degradation effects on the transmission parameters. Hence, failure identification is traditionally accomplished by domain experts via direct inspection of transmission-parameter logs. As a first contribution, we identify six categories of failure causes in microwave networks and show that supervised ML enables very accurate failure identification, hence significantly simplifying failure troubleshooting. Comparing various ML algorithms, we find that up to 93% classification accuracy is obtained using real-field labeled datasets with 2513 points. One main hindrance to the application of supervised learning is that, in real network deployments, limited amount of labeled data is available for training, as manual labeling is performed by domain experts based on their knowledge and experience. On the other hand, collecting unlabeled data is relatively simple as network management systems retrieve large amounts of unlabeled information automatically. As a second contribution, we investigate an automated labeling procedure, based on autoencoders-like Artificial Neural Networks, to combine the knowledge of the few manually-labeled data with large unlabeled data. Results show that our data augmentation based on autoencoders can slightly improve failure-cause identification only when Artificial Neural Networks or Support Vector Machines are used, while accuracy slightly decreases when adopting Random Forest.
AbstractList Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is identified, appropriate countermeasures can be effectively put in place (e.g., by choosing an in-field intervention vs. a remote equipment reconfiguration). In this article, we describe a successful application of Machine Learning (ML) for automatic failure identification in microwave networks based on the real-field data. On microwave links, different heterogeneous causes (e.g., adverse atmospheric conditions, or obstacles) lead to service unavailability and produce not easily-distinguishable degradation effects on the transmission parameters. Hence, failure identification is traditionally accomplished by domain experts via direct inspection of transmission-parameter logs. As a first contribution, we identify six categories of failure causes in microwave networks and show that supervised ML enables very accurate failure identification, hence significantly simplifying failure troubleshooting. Comparing various ML algorithms, we find that up to 93% classification accuracy is obtained using real-field labeled datasets with 2513 points. One main hindrance to the application of supervised learning is that, in real network deployments, limited amount of labeled data is available for training, as manual labeling is performed by domain experts based on their knowledge and experience. On the other hand, collecting unlabeled data is relatively simple as network management systems retrieve large amounts of unlabeled information automatically. As a second contribution, we investigate an automated labeling procedure, based on autoencoders-like Artificial Neural Networks, to combine the knowledge of the few manually-labeled data with large unlabeled data. Results show that our data augmentation based on autoencoders can slightly improve failure-cause identification only when Artificial Neural Networks or Support Vector Machines are used, while accuracy slightly decreases when adopting Random Forest.
Author Capacchione, Massimiliano
Tornatore, Massimo
Rubino, Roberto
Milano, Michele
Rigamonti, Gabriele
Ayoub, Omran
Magni, Luca
Passera, Claudio
Musumeci, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0002-3617-5916
  surname: Musumeci
  fullname: Musumeci, Francesco
  email: francesco.musumeci@polimi.it
  organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 2
  givenname: Luca
  surname: Magni
  fullname: Magni, Luca
  organization: SIAE Microelettronica, Cologno Monzese, Italy
– sequence: 3
  givenname: Omran
  orcidid: 0000-0002-3884-3594
  surname: Ayoub
  fullname: Ayoub, Omran
  organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 4
  givenname: Roberto
  surname: Rubino
  fullname: Rubino, Roberto
  organization: SIAE Microelettronica, Cologno Monzese, Italy
– sequence: 5
  givenname: Massimiliano
  orcidid: 0000-0002-0096-0568
  surname: Capacchione
  fullname: Capacchione, Massimiliano
  organization: SIAE Microelettronica, Cologno Monzese, Italy
– sequence: 6
  givenname: Gabriele
  surname: Rigamonti
  fullname: Rigamonti, Gabriele
  organization: SIAE Microelettronica, Cologno Monzese, Italy
– sequence: 7
  givenname: Michele
  surname: Milano
  fullname: Milano, Michele
  organization: SIAE Microelettronica, Cologno Monzese, Italy
– sequence: 8
  givenname: Claudio
  surname: Passera
  fullname: Passera, Claudio
  organization: SIAE Microelettronica, Cologno Monzese, Italy
– sequence: 9
  givenname: Massimo
  orcidid: 0000-0003-0740-1061
  surname: Tornatore
  fullname: Tornatore, Massimo
  organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
BookMark eNp9kE9PAjEQxRuDiYh-AOOliefF_tnubo-GiJIAHsDEW1O6U1OELra7EL-9ixBDPHiayeS9mTe_S9TxlQeEbijpU0rk_Xw6m_QZYaTPCZeSF2eoSyVnSSp43jnpL9BljEtCREEl66K3WbOBsHURSqx9iWewdsnJbAw6eOffsa0CHmq3agLgUQm-dtYZXbvKY-fxxJlQ7fQW8BTqXRU-4hU6t3oV4fpYe-h1-DgfPCfjl6fR4GGcGM6zOjGmTHMwlBBgZpEWeSmMZoW1JddgJYVUcm6FyKgxC21kTg2kqRELU2pORcp76O6wdxOqzwZirZZVE3x7UjHRksgJy7NWlR9UbcwYA1hlXP2Tvg7tU4oStceo9hjVHqM6Ymyd9I9zE9xah69_PbcHjwOAX71kWUZpxr8B0KuBwg
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3165799
crossref_primary_10_3390_electronics11152360
crossref_primary_10_3389_fcomp_2023_1211739
crossref_primary_10_1016_j_comnet_2023_109660
crossref_primary_10_1016_j_comnet_2022_109466
crossref_primary_10_1109_TNSM_2022_3229658
crossref_primary_10_1007_s10845_024_02376_5
crossref_primary_10_1109_TNSM_2024_3430052
crossref_primary_10_1109_TNSM_2024_3406934
crossref_primary_10_1364_JOCN_516128
Cites_doi 10.1007/BF01908075
10.1007/978-0-387-34890-2_24
10.1364/OFC.2019.W2A.46
10.1109/JLT.2019.2902487
10.1080/713827181
10.1109/ECOC.2018.8535185
10.7551/mitpress/9780262033589.001.0001
10.1117/12.2509613
10.1109/INFOCOM.2016.7524489
10.1109/JLT.2018.2859199
10.1109/JLT.2020.2987032
10.1016/j.comnet.2019.106969
10.1109/TNSM.2012.031912.110155
10.1109/COMST.2018.2880039
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2020.3039938
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 1945
ExternalDocumentID 10_1109_TNSM_2020_3039938
9266116
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c336t-ccd47ec100e2cb487d5ca28ffd3aef91e4933f5561ccbac971ce44c5bcda31543
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Sun Jun 29 16:02:39 EDT 2025
Tue Jul 01 01:55:18 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Wed Aug 27 02:51:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-ccd47ec100e2cb487d5ca28ffd3aef91e4933f5561ccbac971ce44c5bcda31543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3884-3594
0000-0002-3617-5916
0000-0003-0740-1061
0000-0002-0096-0568
OpenAccessLink https://hdl.handle.net/11311/1183679
PQID 2539970276
PQPubID 85504
PageCount 12
ParticipantIDs ieee_primary_9266116
crossref_citationtrail_10_1109_TNSM_2020_3039938
crossref_primary_10_1109_TNSM_2020_3039938
proquest_journals_2539970276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-June
2021-6-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
wu (ref10) 2018
ref12
ref15
ref14
ali (ref19) 2006
ref20
ref11
ref21
ref2
ref1
wietgrefe (ref5) 1997
ref18
ref7
hastie (ref3) 2008
ref9
ref4
ref6
casas (ref8) 2016
coenning (ref16) 2020
(ref17) 2020
References_xml – ident: ref21
  doi: 10.1007/BF01908075
– year: 2006
  ident: ref19
  publication-title: Improved Support Vector Machine Generalization Using Normalized Input Space
– ident: ref4
  doi: 10.1007/978-0-387-34890-2_24
– ident: ref11
  doi: 10.1364/OFC.2019.W2A.46
– year: 2020
  ident: ref16
  publication-title: Understanding ITU-T Error Performance Recommendations
– ident: ref12
  doi: 10.1109/JLT.2019.2902487
– ident: ref18
  doi: 10.1080/713827181
– start-page: 1
  year: 2018
  ident: ref10
  article-title: CellPAD: Detecting performance anomalies in cellular networks via regression analysis
  publication-title: Proc IFIP Netw Conf (IFIP Networking) Workshops
– year: 2020
  ident: ref17
  publication-title: SIAE Microwave Product Portfolio
– ident: ref15
  doi: 10.1109/ECOC.2018.8535185
– ident: ref20
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref14
  doi: 10.1117/12.2509613
– ident: ref9
  doi: 10.1109/INFOCOM.2016.7524489
– ident: ref1
  doi: 10.1109/JLT.2018.2859199
– ident: ref13
  doi: 10.1109/JLT.2020.2987032
– start-page: 1
  year: 2016
  ident: ref8
  article-title: Machine-learning based approaches for anomaly detection and classification in cellular networks
  publication-title: Proc TMA
– year: 2008
  ident: ref3
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref7
  doi: 10.1016/j.comnet.2019.106969
– ident: ref6
  doi: 10.1109/TNSM.2012.031912.110155
– start-page: 248
  year: 1997
  ident: ref5
  article-title: Using neural networks for alarm correlation in cellular phone networks
  publication-title: Proc Int Workshop Appl Neural Netw Telecommun (IWANNT)
– ident: ref2
  doi: 10.1109/COMST.2018.2880039
SSID ssj0058192
Score 2.3347375
Snippet Automated failure-cause identification in communication networks allows operators to reduce service unavailability. Once the most likely failure root-cause is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1934
SubjectTerms Algorithms
Artificial neural networks
Automation
Availability
Communication networks
data augmentation
Domains
Failure
failure identification
Identification
Inspection
Labeling
Labelling
Machine learning
Management systems
Manuals
Microwave amplifiers
Microwave antennas
Microwave communication
Microwave networks
Microwave theory and techniques
Neural networks
Parameter identification
Receiving antennas
Reconfiguration
root-cause analysis
Semi-supervised learning
Subject specialists
Support vector machines
Troubleshooting
Title Supervised and Semi-Supervised Learning for Failure Identification in Microwave Networks
URI https://ieeexplore.ieee.org/document/9266116
https://www.proquest.com/docview/2539970276
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTgW6xWycGTuHV3s8-jiKUI7aUVeluS2Vkp6iq2VfDXm9lNiy_E27IkIcwk88rMNwCnPsYFmpvgaB2QE6QJOsr3tCMreDtpLHLiOORgGPVvg5tJOGnA-aoWhoiq5DPq8mf1lp8_4YJDZRcpaxMvakLTOG51rdZS6oYM7GVfLT03vRgPRwPj_fnGKXVZBydf9E7VSOWH9K1USm8TBsvN1Jkk993FXHfx_RtO4393uwUb1rYUl_Vh2IYGlTuw_glxcBcmo8UzS4cZ5UKVuRjR49T59M_Crd4JY8uKnppy0rqoi3kLG90T01IMOI3vTb2SGNZp5LM9uO1dj6_6jm2u4KCU0dxBzIOY0HNd8lEbtyUPUflJUeRSUZF6FKRSFtw8E1ErTGMPKQgw1JgraewuuQ-t8qmkAxDGxAhU5BOFCZqFIkUJV8zGqHQsY1e3wV2SPkOLPM4NMB6yygNx04y5lTG3MsutNpytpjzXsBt_Dd5l6q8GWsK3obPkb2Yv5izzGYk3Nr54dPj7rCNY8zltpQq0dKA1f1nQsbE75vqkOnAfwgbW9g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOACH5bmiuzx84IRISeI8jytEVR7ppUXqLbInE1SxBERbkPbXrydxK15C3KLItqwZe16e-QbgyMe4RHMTHK0DcoI0QUf5nnZkDW8njUVOHIfMelH3JrgchsMFOJnXwhBRnXxGbf6s3_KLB5xyqOw0ZW3iRYuwbPR-6DXVWjO5GzK0l3239Nz0dNDrZ8b_841b6rIWTt5onrqVygf5WyuVzjpks-00uSR37elEt_HfO6TG7-53A35Y61L8aY7DJixQtQVrrzAHt2HYnz6yfBhTIVRViD7dj5xX_yzg6q0w1qzoqBGnrYumnLe08T0xqkTGiXwv6plEr0kkH-_ATed8cNZ1bHsFB6WMJg5iEcSEnuuSj9o4LkWIyk_KspCKytSjIJWy5PaZiFphGntIQYChxkJJY3nJn7BUPVS0C8IYGYGKfKIwQbNQpCjhmtkYlY5l7OoWuDPS52ixx7kFxt-89kHcNGdu5cyt3HKrBcfzKY8N8MZXg7eZ-vOBlvAt2JvxN7dXc5z7jMUbG288-vX5rENY6Q6y6_z6onf1G1Z9TmKpwy57sDR5mtK-sUIm-qA-fP8BHuHaPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+and+Semi-Supervised+Learning+for+Failure+Identification+in+Microwave+Networks&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Musumeci%2C+Francesco&rft.au=Magni%2C+Luca&rft.au=Ayoub%2C+Omran&rft.au=Rubino%2C+Roberto&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=1932-4537&rft.volume=18&rft.issue=2&rft.spage=1934&rft.epage=1945&rft_id=info:doi/10.1109%2FTNSM.2020.3039938&rft.externalDocID=9266116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon