Automatic Niching Differential Evolution With Contour Prediction Approach for Multimodal Optimization Problems
Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the existing niching techniques are either sensitive to the niching parameters or require extra fitness evaluations (FEs) to maintain the niche d...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 114 - 128 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the existing niching techniques are either sensitive to the niching parameters or require extra fitness evaluations (FEs) to maintain the niche detection accuracy. In this paper, we propose a new automatic niching technique based on the affinity propagation clustering (APC) and design a novel niching differential evolution (DE) algorithm, termed as automatic niching DE (ANDE), for solving MMOPs. In the proposed ANDE algorithm, APC acts as a parameter-free automatic niching method that does not need to predefine the number of clusters or the cluster size. Also, it can facilitate locating multiple peaks without extra FEs. Furthermore, the ANDE algorithm is enhanced by a contour prediction approach (CPA) and a two-level local search (TLLS) strategy. First, the CPA is a predictive search strategy. It exploits the individual distribution information in each niche to estimate the contour landscape, and then predicts the rough position of the potential peak to help accelerate the convergence speed. Second, the TLLS is a solution refine strategy to further increase the solution accuracy after the CPA roughly predicting the peaks. Compared with the other state-of-the-art DE and non-DE multimodal algorithms, even the winner of competition on multimodal optimization, the experimental results on 20 widely used benchmark functions illustrate the superiority of the proposed ANDE algorithm. |
---|---|
AbstractList | Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the existing niching techniques are either sensitive to the niching parameters or require extra fitness evaluations (FEs) to maintain the niche detection accuracy. In this paper, we propose a new automatic niching technique based on the affinity propagation clustering (APC) and design a novel niching differential evolution (DE) algorithm, termed as automatic niching DE (ANDE), for solving MMOPs. In the proposed ANDE algorithm, APC acts as a parameter-free automatic niching method that does not need to predefine the number of clusters or the cluster size. Also, it can facilitate locating multiple peaks without extra FEs. Furthermore, the ANDE algorithm is enhanced by a contour prediction approach (CPA) and a two-level local search (TLLS) strategy. First, the CPA is a predictive search strategy. It exploits the individual distribution information in each niche to estimate the contour landscape, and then predicts the rough position of the potential peak to help accelerate the convergence speed. Second, the TLLS is a solution refine strategy to further increase the solution accuracy after the CPA roughly predicting the peaks. Compared with the other state-of-the-art DE and non-DE multimodal algorithms, even the winner of competition on multimodal optimization, the experimental results on 20 widely used benchmark functions illustrate the superiority of the proposed ANDE algorithm. |
Author | Wang, Zi-Jia Lin, Ying Yu, Wei-Jie Zhan, Zhi-Hui Wang, Hua Kwong, Sam Zhang, Jun |
Author_xml | – sequence: 1 givenname: Zi-Jia orcidid: 0000-0002-2594-0934 surname: Wang fullname: Wang, Zi-Jia organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Ying orcidid: 0000-0003-4141-1490 surname: Lin fullname: Lin, Ying organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Wei-Jie orcidid: 0000-0002-8396-2023 surname: Yu fullname: Yu, Wei-Jie organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Hua orcidid: 0000-0002-8465-0996 surname: Wang fullname: Wang, Hua organization: Institute for Sustainable Industries and Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia – sequence: 6 givenname: Sam orcidid: 0000-0001-7484-7261 surname: Kwong fullname: Kwong, Sam organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 7 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun email: junzhang@ieee.org organization: Institute for Sustainable Industries and Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia |
BookMark | eNp9kMlOwzAURS0EEm3hAxCbSKxTPCR2vKxCGaRCuyjDLnIcm7pK4uI4SPD1uINYsGDlJ-ue967OEBy3tlUAXCA4Rgjy6-X0JR9jiPgYcwQZRkdggHiCYggxPQ4zzHjMWPZ2CoZdt4YQJSniA9BOem8b4Y2MnoxcmfY9ujFaK6dab0QdTT9t3Xtj2-jV-FWU29bb3kULpyojd_-TzcZZIVeRti567GtvGlsFcr4Jk_kWu9DC2bJWTXcGTrSoO3V-eEfg-Xa6zO_j2fzuIZ_MYkkI9bEUlRaYUKRUCbOUMK5VhTTnQkNBCa1SRdKUQpwyRikqcYmZFGlVEgYTXUkyAlf7vaHbR686X6xD7TacLDBJOApqKAsptk9JZ7vOKV1I43eFvROmLhAstnKLrdxiK7c4yA0k-kNunGmE-_qXudwzRin1m89oliWYkh8qq4l0 |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_121271 crossref_primary_10_1007_s12293_021_00325_w crossref_primary_10_1109_TCYB_2021_3117359 crossref_primary_10_1016_j_asoc_2021_107942 crossref_primary_10_1109_TCYB_2021_3082200 crossref_primary_10_1016_j_ins_2023_119889 crossref_primary_10_1016_j_swevo_2020_100827 crossref_primary_10_1109_TETCI_2024_3442867 crossref_primary_10_1007_s00500_023_09517_7 crossref_primary_10_1109_JIOT_2023_3326567 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1109_TNNLS_2019_2920887 crossref_primary_10_1016_j_ins_2023_118957 crossref_primary_10_1109_TEVC_2023_3291874 crossref_primary_10_1016_j_swevo_2023_101232 crossref_primary_10_3934_mbe_2023227 crossref_primary_10_1016_j_neucom_2022_03_013 crossref_primary_10_1109_TCYB_2021_3123625 crossref_primary_10_3390_math11010017 crossref_primary_10_1007_s10489_021_02299_1 crossref_primary_10_1016_j_ins_2023_02_053 crossref_primary_10_1007_s44196_023_00326_2 crossref_primary_10_1016_j_neucom_2021_01_003 crossref_primary_10_1109_TSMC_2022_3180174 crossref_primary_10_1162_evco_a_00333 crossref_primary_10_3390_biomimetics9100586 crossref_primary_10_1016_j_asoc_2025_112862 crossref_primary_10_1109_TCYB_2022_3213236 crossref_primary_10_1109_TEVC_2021_3117116 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1016_j_ins_2022_12_057 crossref_primary_10_1109_ACCESS_2021_3112906 crossref_primary_10_1016_j_ins_2023_119745 crossref_primary_10_1016_j_ins_2025_121909 crossref_primary_10_1142_S0218001421590242 crossref_primary_10_1007_s10489_023_05180_5 crossref_primary_10_1155_2021_6648650 crossref_primary_10_1007_s00521_021_06355_2 crossref_primary_10_1109_TCYB_2019_2927780 crossref_primary_10_3390_app14199133 crossref_primary_10_1016_j_eswa_2022_117713 crossref_primary_10_1016_j_asoc_2023_110218 crossref_primary_10_1109_ACCESS_2020_3031003 crossref_primary_10_1016_j_ins_2021_06_070 crossref_primary_10_1016_j_swevo_2023_101412 crossref_primary_10_1016_j_ins_2023_119359 crossref_primary_10_3390_s22239227 crossref_primary_10_1016_j_cjche_2023_09_010 crossref_primary_10_1016_j_swevo_2023_101274 crossref_primary_10_1109_TCYB_2022_3158391 crossref_primary_10_1109_TEVC_2023_3250347 crossref_primary_10_1007_s10791_024_09478_x crossref_primary_10_3390_biomimetics9100604 crossref_primary_10_3390_biomimetics9120718 crossref_primary_10_1007_s10489_021_03003_z crossref_primary_10_1016_j_asoc_2023_110101 crossref_primary_10_1007_s11771_021_4730_x crossref_primary_10_1016_j_ins_2022_09_023 crossref_primary_10_1016_j_swevo_2024_101724 crossref_primary_10_1016_j_asoc_2023_110589 crossref_primary_10_1016_j_ins_2023_01_120 crossref_primary_10_1016_j_swevo_2024_101726 crossref_primary_10_1016_j_ins_2024_121842 crossref_primary_10_1016_j_swevo_2024_101568 crossref_primary_10_1007_s10489_023_04512_9 crossref_primary_10_1016_j_swevo_2023_101423 crossref_primary_10_1016_j_asoc_2022_109923 crossref_primary_10_1016_j_knosys_2022_110214 crossref_primary_10_1155_2019_9803497 crossref_primary_10_1016_j_ins_2022_07_187 crossref_primary_10_1145_3423132 crossref_primary_10_1109_TEVC_2021_3087802 crossref_primary_10_1109_TEVC_2022_3182810 crossref_primary_10_1109_TSMC_2023_3245212 crossref_primary_10_1109_TEVC_2021_3051608 crossref_primary_10_1109_ACCESS_2020_3027559 crossref_primary_10_1016_j_ins_2021_11_046 crossref_primary_10_1016_j_swevo_2023_101319 crossref_primary_10_1016_j_eswa_2022_119438 crossref_primary_10_1007_s00500_023_08509_x crossref_primary_10_1007_s11721_023_00228_1 crossref_primary_10_1109_TCYB_2019_2937565 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_swevo_2023_101277 crossref_primary_10_1109_ACCESS_2019_2960859 crossref_primary_10_1109_ACCESS_2021_3050764 crossref_primary_10_1109_TEVC_2021_3097339 crossref_primary_10_1109_TSMC_2022_3157816 crossref_primary_10_1016_j_knosys_2021_107972 crossref_primary_10_1016_j_swevo_2022_101031 crossref_primary_10_1080_00207721_2024_2337039 crossref_primary_10_1016_j_eswa_2022_118571 crossref_primary_10_1109_TNNLS_2021_3075205 crossref_primary_10_3233_JIFS_212743 crossref_primary_10_1109_TCYB_2020_3038694 crossref_primary_10_1109_TCYB_2019_2933499 crossref_primary_10_1109_TCYB_2020_2977956 crossref_primary_10_1109_TCYB_2020_3029748 crossref_primary_10_3390_math12172779 crossref_primary_10_1109_TETCI_2023_3234575 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_asoc_2024_111954 crossref_primary_10_1016_j_ins_2022_09_007 crossref_primary_10_1016_j_swevo_2022_101142 crossref_primary_10_1016_j_swevo_2020_100699 crossref_primary_10_1016_j_ins_2021_04_093 crossref_primary_10_1109_TNNLS_2024_3378805 crossref_primary_10_1109_TEVC_2023_3287213 crossref_primary_10_1109_TEVC_2019_2944180 crossref_primary_10_1016_j_asoc_2021_107448 crossref_primary_10_1109_TCYB_2019_2944873 crossref_primary_10_1016_j_asoc_2024_112361 crossref_primary_10_1007_s12293_021_00341_w crossref_primary_10_3934_mbe_2022279 crossref_primary_10_1016_j_asoc_2024_111541 crossref_primary_10_1109_TCYB_2021_3125362 crossref_primary_10_1109_TCYB_2022_3153964 crossref_primary_10_1109_TEVC_2020_3008822 crossref_primary_10_23919_CSMS_2022_0003 crossref_primary_10_1080_01969722_2020_1827797 crossref_primary_10_3390_app11083388 crossref_primary_10_1007_s11280_021_00894_3 crossref_primary_10_1109_TEVC_2021_3131236 crossref_primary_10_1007_s10489_022_03266_0 crossref_primary_10_1016_j_engappai_2023_106039 crossref_primary_10_1109_TEVC_2022_3211954 crossref_primary_10_1109_TEVC_2021_3064835 crossref_primary_10_1016_j_eswa_2020_113750 crossref_primary_10_1007_s12065_025_01016_y crossref_primary_10_4108_eetsis_7635 crossref_primary_10_3390_info16030190 crossref_primary_10_1016_j_asoc_2023_110264 crossref_primary_10_1109_TETCI_2020_3047410 crossref_primary_10_1016_j_asoc_2024_112102 crossref_primary_10_1016_j_swevo_2022_101206 crossref_primary_10_3390_biomimetics9100643 crossref_primary_10_1016_j_eswa_2023_119668 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1007_s13042_019_01030_4 crossref_primary_10_1109_TEVC_2022_3185665 crossref_primary_10_1007_s13755_020_00132_6 crossref_primary_10_1109_ACCESS_2024_3387308 crossref_primary_10_1109_TCYB_2020_3008280 crossref_primary_10_1016_j_knosys_2025_113340 crossref_primary_10_1016_j_swevo_2021_100971 crossref_primary_10_1109_TEVC_2022_3155757 |
Cites_doi | 10.1109/TEVC.2016.2592185 10.1109/TEVC.2011.2173577 10.1109/TEVC.2013.2281528 10.1109/TEVC.2010.2041668 10.1109/TEVC.2014.2387433 10.1016/j.swevo.2011.02.002 10.1145/2463372.2463392 10.1109/TEVC.2010.2052054 10.1109/CEC.2010.5586387 10.1109/TEVC.2010.2050024 10.1109/TCYB.2018.2832640 10.1162/106365602760234081 10.1016/j.ins.2014.09.030 10.1109/CEC.2004.1331058 10.1109/TEVC.2018.2875430 10.1145/3071178.3071237 10.1145/1143997.1144266 10.1109/TEVC.2016.2602860 10.1109/TEVC.2017.2669098 10.1016/j.ins.2017.09.053 10.1109/TEVC.2015.2505317 10.1109/CEC.2014.6900309 10.1109/TEVC.2015.2433672 10.1109/CEC.2001.934392 10.1109/TEVC.2014.2313659 10.1016/j.ins.2015.09.009 10.1126/science.1136800 10.1109/CEC.2014.6900484 10.1109/TEVC.2017.2769108 10.1109/CEC.1999.785470 10.1109/TEVC.2017.2682899 10.1109/CEC.2013.6557556 10.1109/TEVC.2016.2591064 10.1109/TSMCB.2012.2209115 10.1109/TCYB.2014.2337117 10.1145/2464576.2464588 10.1109/TCYB.2015.2394466 10.1109/ACCESS.2018.2881538 10.1109/TEVC.2016.2623803 10.1109/TMAG.2011.2106218 10.1109/TCYB.2016.2523000 10.1109/TCYB.2013.2292971 10.1007/s00521-012-1332-4 10.1109/TSMC.2018.2855155 10.1109/TCYB.2013.2282491 10.1109/TEVC.2015.2507785 10.1109/TEVC.2015.2477402 10.1109/TEVC.2015.2508101 10.1145/1068009.1068156 10.1109/TEVC.2015.2428616 10.1109/TEVC.2014.2375933 10.1109/TEVC.2014.2360890 10.1109/TEVC.2012.2203138 10.1109/TEVC.2014.2382135 10.1016/j.swevo.2018.08.015 10.1109/CEC.2010.5586341 10.1145/1830483.1830513 10.1109/TPDS.2016.2597826 10.1109/ICEC.1996.542703 10.1109/TEVC.2015.2511142 10.1109/TEVC.2012.2231685 10.1109/TEVC.2015.2457437 10.1109/TEVC.2011.2161873 10.1109/SDE.2013.6601443 10.3390/en11123526 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TEVC.2019.2910721 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Computer Science |
EISSN | 1941-0026 |
EndPage | 128 |
ExternalDocumentID | 10_1109_TEVC_2019_2910721 8688426 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772207; 61873097 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province grantid: 2014A030306038 funderid: 10.13039/501100003453 – fundername: GDUPS (2016) – fundername: Project for Pearl River New Star in Science and Technology grantid: 201506010047 – fundername: Outstanding Youth Science Foundation grantid: 61822602 – fundername: Hong Kong GRF-RGC General Research Fund (9042489) grantid: CityU 11206317 – fundername: NSFGD grantid: 2014B050504005 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c336t-cadfa2361eeb085379fed1f99af0a636d5e355602577661b2b27ca5db3704fdc3 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Mon Jun 30 07:14:39 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Jul 01 01:56:22 EDT 2025 Wed Aug 27 06:30:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-cadfa2361eeb085379fed1f99af0a636d5e355602577661b2b27ca5db3704fdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8465-0996 0000-0003-4141-1490 0000-0002-2594-0934 0000-0001-7484-7261 0000-0003-0862-0514 0000-0002-8396-2023 0000-0001-7835-9871 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8688426 |
PQID | 2349119467 |
PQPubID | 85418 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2349119467 crossref_primary_10_1109_TEVC_2019_2910721 crossref_citationtrail_10_1109_TEVC_2019_2910721 ieee_primary_8688426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref54 ref10 ref17 ref16 ref18 ref50 goldberg (ref51) 1987 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 bonyadi (ref19) 2017; 21 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 li (ref63) 2013 ref38 friedrich (ref8) 2017; 21 ref71 ref70 yao (ref47) 2006 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 lin (ref62) 2008 ref66 ref22 ref65 ref21 ref28 ref27 ref29 li (ref55) 2010; 14 ref60 ref61 |
References_xml | – year: 2013 ident: ref63 article-title: Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization publication-title: Evol Comput Mach Learn Group RMIT Univ – ident: ref20 doi: 10.1109/TEVC.2016.2592185 – ident: ref17 doi: 10.1109/TEVC.2011.2173577 – ident: ref24 doi: 10.1109/TEVC.2013.2281528 – ident: ref52 doi: 10.1109/TEVC.2010.2041668 – ident: ref15 doi: 10.1109/TEVC.2014.2387433 – ident: ref64 doi: 10.1016/j.swevo.2011.02.002 – ident: ref68 doi: 10.1145/2463372.2463392 – ident: ref23 doi: 10.1109/TEVC.2010.2052054 – ident: ref58 doi: 10.1109/CEC.2010.5586387 – volume: 14 start-page: 150 year: 2010 ident: ref55 article-title: Niching without niching parameters: Particle swarm optimization using a ring topology publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2010.2050024 – ident: ref11 doi: 10.1109/TCYB.2018.2832640 – ident: ref48 doi: 10.1162/106365602760234081 – ident: ref70 doi: 10.1016/j.ins.2014.09.030 – volume: 21 start-page: 378 year: 2017 ident: ref19 article-title: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm publication-title: IEEE Trans Evol Comput – start-page: 2388 year: 2008 ident: ref62 article-title: A contour method in population-based stochastic algorithms publication-title: Proc IEEE Congr Evol Comput – ident: ref34 doi: 10.1109/CEC.2004.1331058 – ident: ref21 doi: 10.1109/TEVC.2018.2875430 – ident: ref3 doi: 10.1145/3071178.3071237 – ident: ref5 doi: 10.1145/1143997.1144266 – ident: ref28 doi: 10.1109/TEVC.2016.2602860 – ident: ref27 doi: 10.1109/TEVC.2017.2669098 – ident: ref59 doi: 10.1016/j.ins.2017.09.053 – ident: ref9 doi: 10.1109/TEVC.2015.2505317 – ident: ref65 doi: 10.1109/CEC.2014.6900309 – ident: ref31 doi: 10.1109/TEVC.2015.2433672 – ident: ref49 doi: 10.1109/CEC.2001.934392 – ident: ref38 doi: 10.1109/TEVC.2014.2313659 – ident: ref61 doi: 10.1016/j.ins.2015.09.009 – start-page: 41 year: 1987 ident: ref51 article-title: Genetic algorithms with sharing for multimodal function optimization publication-title: Proc 7th Int Conf Genetic Algorithms – ident: ref57 doi: 10.1126/science.1136800 – ident: ref71 doi: 10.1109/CEC.2014.6900484 – ident: ref40 doi: 10.1109/TEVC.2017.2769108 – ident: ref46 doi: 10.1109/CEC.1999.785470 – ident: ref12 doi: 10.1109/TEVC.2017.2682899 – ident: ref43 doi: 10.1109/CEC.2013.6557556 – ident: ref53 doi: 10.1109/TEVC.2016.2591064 – ident: ref18 doi: 10.1109/TSMCB.2012.2209115 – ident: ref45 doi: 10.1109/TCYB.2014.2337117 – ident: ref66 doi: 10.1145/2464576.2464588 – ident: ref41 doi: 10.1109/TCYB.2015.2394466 – ident: ref67 doi: 10.1109/ACCESS.2018.2881538 – ident: ref13 doi: 10.1109/TEVC.2016.2623803 – ident: ref2 doi: 10.1109/TMAG.2011.2106218 – ident: ref54 doi: 10.1109/TCYB.2016.2523000 – ident: ref39 doi: 10.1109/TCYB.2013.2292971 – start-page: 1752 year: 2006 ident: ref47 article-title: On clustering in evolutionary computation publication-title: Proc IEEE Congr Evol Comput – ident: ref4 doi: 10.1007/s00521-012-1332-4 – ident: ref25 doi: 10.1109/TSMC.2018.2855155 – ident: ref36 doi: 10.1109/TCYB.2013.2282491 – ident: ref29 doi: 10.1109/TEVC.2015.2507785 – ident: ref30 doi: 10.1109/TEVC.2015.2477402 – ident: ref22 doi: 10.1109/TEVC.2015.2508101 – ident: ref35 doi: 10.1145/1068009.1068156 – ident: ref14 doi: 10.1109/TEVC.2015.2428616 – ident: ref32 doi: 10.1109/TEVC.2014.2375933 – ident: ref33 doi: 10.1109/TEVC.2014.2360890 – ident: ref56 doi: 10.1109/TEVC.2012.2203138 – ident: ref16 doi: 10.1109/TEVC.2014.2382135 – ident: ref60 doi: 10.1016/j.swevo.2018.08.015 – ident: ref42 doi: 10.1109/CEC.2010.5586341 – ident: ref1 doi: 10.1145/1830483.1830513 – ident: ref26 doi: 10.1109/TPDS.2016.2597826 – ident: ref50 doi: 10.1109/ICEC.1996.542703 – ident: ref6 doi: 10.1109/TEVC.2015.2511142 – ident: ref44 doi: 10.1109/TEVC.2012.2231685 – ident: ref10 doi: 10.1109/TEVC.2015.2457437 – ident: ref37 doi: 10.1109/TEVC.2011.2161873 – ident: ref69 doi: 10.1109/SDE.2013.6601443 – volume: 21 start-page: 477 year: 2017 ident: ref8 article-title: The compact genetic algorithm is efficient under extreme Gaussian noise publication-title: IEEE Trans Evol Comput – ident: ref7 doi: 10.3390/en11123526 |
SSID | ssj0014519 |
Score | 2.6357932 |
Snippet | Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114 |
SubjectTerms | Affinity propagation clustering (APC) Algorithms Clustering Clustering algorithms contour prediction approach (CPA) Contours Convergence differential evolution (DE) Evolutionary algorithms Evolutionary computation Iron multimodal optimization problems (MMOPs) niching techniques Optimization Parameter sensitivity Prediction algorithms Predictions Shape Sociology Statistics Strategy |
Title | Automatic Niching Differential Evolution With Contour Prediction Approach for Multimodal Optimization Problems |
URI | https://ieeexplore.ieee.org/document/8688426 https://www.proquest.com/docview/2349119467 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwKCDKssgHToiUxEns-FhBEULiceDRW-SnQECLIN3D_vodO27FAkLcoshWLM145pvMzDcAe1xmpWOZSkphZVKgB0gqXbCkyKRz3GnjjA8Uzy_Y6U1xNiyHc3Aw64Wx1obiM9vzjyGXb8Z64n-VHVasqtCjzMM8Bm5tr9YsY-BpUtpieoGIsRrGDGaWisPrwe2RL-ISPYrOkdPsPx8Uhqp8ssTBvZyswPn0YG1VyWNv0qie_vuBs_GnJ1-F5YgzSb9VjDWYs6MOrExnOJB4pTuw9I6QsAOLHnu21M3rMOpPmnFgdCWoL_5PFTmO41TQLDyRwZ-otuTuobknnucKv0quXn3uJ7zvR8JygsiYhFbf57HBnZdop55jAyiuDyNt3jbg5mRwfXSaxPEMic5z1iRaGic9d4u1CoFbzoWzJnNCSJdKljNTWgQzDEEV56gDiirKtSyNynlaOKPzTVgYjUd2C4hEK0GFUsbDDZoyUTHGM5mbKhVSMNqFdCqwWkfucj9C46kOMUwqai_j2su4jjLuwv5sy0tL3PHd4nUvs9nCKK4u7Ey1oo5X-62meYEOQqCD2f561y9YpD4oD6XdO7DQvE7sb0QujdoNKvsPdhHrew |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i7DA4jFFAlLHhw04TKYmT2PGxYkXdoIxDgd4i_xTToEWQ7rC_fs-OWzE2TbtFka1Yes_v-xy_9z2AD1xmpWOZSkphZVIgAiSVLlhSZNI57rRxxh8UR-dseFl8mZSTFThc1sJYa0Pyme35x3CXb2Z67n-VHVWsqhBRXsBLxP0ya6u1lncGXiilTacXyBmrSbzDzFJxNB5cHfs0LtGjCI-cZr-hUGir8kcsDgBzsgGjxdLavJLvvXmjevrnM9XG_137G3gdmSbpt66xCSt22oGNRRcHEjd1B9afSBJ2YM2zz1a8eQum_XkzC5quBD3G_6sin2JDFQwMt2TwIzouuf7W3BCvdIVfJRcP_vYnvO9HyXKC3JiEYt-7mcGZXzFS3cUSUBwfmto8bsPlyWB8PExig4ZE5zlrEi2Nk169xVqF1C3nwlmTOSGkSyXLmSkt0hmGtIpz9AJFFeValkblPC2c0fkOrE5nU7sLRGKcoEIp4wkHTZmoGOOZzE2VCikY7UK6MFito3q5b6JxW4dTTCpqb-Pa27iONu7Cx-WU-1a641-Dt7zNlgOjubqwv_CKOm7ux5rmBUKEQIjZ-_usA3g1HI_O6rPP56dvYY36I3pI9N6H1eZhbt8hj2nU--C-vwDjhu7E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Niching+Differential+Evolution+With+Contour+Prediction+Approach+for+Multimodal+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Zi-Jia&rft.au=Zhan%2C+Zhi-Hui&rft.au=Lin%2C+Ying&rft.au=Yu%2C+Wei-Jie&rft.date=2020-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=24&rft.issue=1&rft.spage=114&rft.epage=128&rft_id=info:doi/10.1109%2FTEVC.2019.2910721&rft.externalDocID=8688426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |