Automatic Niching Differential Evolution With Contour Prediction Approach for Multimodal Optimization Problems

Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the existing niching techniques are either sensitive to the niching parameters or require extra fitness evaluations (FEs) to maintain the niche d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 114 - 128
Main Authors Wang, Zi-Jia, Zhan, Zhi-Hui, Lin, Ying, Yu, Wei-Jie, Wang, Hua, Kwong, Sam, Zhang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the existing niching techniques are either sensitive to the niching parameters or require extra fitness evaluations (FEs) to maintain the niche detection accuracy. In this paper, we propose a new automatic niching technique based on the affinity propagation clustering (APC) and design a novel niching differential evolution (DE) algorithm, termed as automatic niching DE (ANDE), for solving MMOPs. In the proposed ANDE algorithm, APC acts as a parameter-free automatic niching method that does not need to predefine the number of clusters or the cluster size. Also, it can facilitate locating multiple peaks without extra FEs. Furthermore, the ANDE algorithm is enhanced by a contour prediction approach (CPA) and a two-level local search (TLLS) strategy. First, the CPA is a predictive search strategy. It exploits the individual distribution information in each niche to estimate the contour landscape, and then predicts the rough position of the potential peak to help accelerate the convergence speed. Second, the TLLS is a solution refine strategy to further increase the solution accuracy after the CPA roughly predicting the peaks. Compared with the other state-of-the-art DE and non-DE multimodal algorithms, even the winner of competition on multimodal optimization, the experimental results on 20 widely used benchmark functions illustrate the superiority of the proposed ANDE algorithm.
AbstractList Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the existing niching techniques are either sensitive to the niching parameters or require extra fitness evaluations (FEs) to maintain the niche detection accuracy. In this paper, we propose a new automatic niching technique based on the affinity propagation clustering (APC) and design a novel niching differential evolution (DE) algorithm, termed as automatic niching DE (ANDE), for solving MMOPs. In the proposed ANDE algorithm, APC acts as a parameter-free automatic niching method that does not need to predefine the number of clusters or the cluster size. Also, it can facilitate locating multiple peaks without extra FEs. Furthermore, the ANDE algorithm is enhanced by a contour prediction approach (CPA) and a two-level local search (TLLS) strategy. First, the CPA is a predictive search strategy. It exploits the individual distribution information in each niche to estimate the contour landscape, and then predicts the rough position of the potential peak to help accelerate the convergence speed. Second, the TLLS is a solution refine strategy to further increase the solution accuracy after the CPA roughly predicting the peaks. Compared with the other state-of-the-art DE and non-DE multimodal algorithms, even the winner of competition on multimodal optimization, the experimental results on 20 widely used benchmark functions illustrate the superiority of the proposed ANDE algorithm.
Author Wang, Zi-Jia
Lin, Ying
Yu, Wei-Jie
Zhan, Zhi-Hui
Wang, Hua
Kwong, Sam
Zhang, Jun
Author_xml – sequence: 1
  givenname: Zi-Jia
  orcidid: 0000-0002-2594-0934
  surname: Wang
  fullname: Wang, Zi-Jia
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Ying
  orcidid: 0000-0003-4141-1490
  surname: Lin
  fullname: Lin, Ying
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Wei-Jie
  orcidid: 0000-0002-8396-2023
  surname: Yu
  fullname: Yu, Wei-Jie
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Hua
  orcidid: 0000-0002-8465-0996
  surname: Wang
  fullname: Wang, Hua
  organization: Institute for Sustainable Industries and Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
– sequence: 6
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang@ieee.org
  organization: Institute for Sustainable Industries and Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
BookMark eNp9kMlOwzAURS0EEm3hAxCbSKxTPCR2vKxCGaRCuyjDLnIcm7pK4uI4SPD1uINYsGDlJ-ue967OEBy3tlUAXCA4Rgjy6-X0JR9jiPgYcwQZRkdggHiCYggxPQ4zzHjMWPZ2CoZdt4YQJSniA9BOem8b4Y2MnoxcmfY9ujFaK6dab0QdTT9t3Xtj2-jV-FWU29bb3kULpyojd_-TzcZZIVeRti567GtvGlsFcr4Jk_kWu9DC2bJWTXcGTrSoO3V-eEfg-Xa6zO_j2fzuIZ_MYkkI9bEUlRaYUKRUCbOUMK5VhTTnQkNBCa1SRdKUQpwyRikqcYmZFGlVEgYTXUkyAlf7vaHbR686X6xD7TacLDBJOApqKAsptk9JZ7vOKV1I43eFvROmLhAstnKLrdxiK7c4yA0k-kNunGmE-_qXudwzRin1m89oliWYkh8qq4l0
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2023_121271
crossref_primary_10_1007_s12293_021_00325_w
crossref_primary_10_1109_TCYB_2021_3117359
crossref_primary_10_1016_j_asoc_2021_107942
crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_1016_j_ins_2023_119889
crossref_primary_10_1016_j_swevo_2020_100827
crossref_primary_10_1109_TETCI_2024_3442867
crossref_primary_10_1007_s00500_023_09517_7
crossref_primary_10_1109_JIOT_2023_3326567
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1109_TNNLS_2019_2920887
crossref_primary_10_1016_j_ins_2023_118957
crossref_primary_10_1109_TEVC_2023_3291874
crossref_primary_10_1016_j_swevo_2023_101232
crossref_primary_10_3934_mbe_2023227
crossref_primary_10_1016_j_neucom_2022_03_013
crossref_primary_10_1109_TCYB_2021_3123625
crossref_primary_10_3390_math11010017
crossref_primary_10_1007_s10489_021_02299_1
crossref_primary_10_1016_j_ins_2023_02_053
crossref_primary_10_1007_s44196_023_00326_2
crossref_primary_10_1016_j_neucom_2021_01_003
crossref_primary_10_1109_TSMC_2022_3180174
crossref_primary_10_1162_evco_a_00333
crossref_primary_10_3390_biomimetics9100586
crossref_primary_10_1016_j_asoc_2025_112862
crossref_primary_10_1109_TCYB_2022_3213236
crossref_primary_10_1109_TEVC_2021_3117116
crossref_primary_10_1016_j_eswa_2023_121202
crossref_primary_10_1016_j_ins_2022_12_057
crossref_primary_10_1109_ACCESS_2021_3112906
crossref_primary_10_1016_j_ins_2023_119745
crossref_primary_10_1016_j_ins_2025_121909
crossref_primary_10_1142_S0218001421590242
crossref_primary_10_1007_s10489_023_05180_5
crossref_primary_10_1155_2021_6648650
crossref_primary_10_1007_s00521_021_06355_2
crossref_primary_10_1109_TCYB_2019_2927780
crossref_primary_10_3390_app14199133
crossref_primary_10_1016_j_eswa_2022_117713
crossref_primary_10_1016_j_asoc_2023_110218
crossref_primary_10_1109_ACCESS_2020_3031003
crossref_primary_10_1016_j_ins_2021_06_070
crossref_primary_10_1016_j_swevo_2023_101412
crossref_primary_10_1016_j_ins_2023_119359
crossref_primary_10_3390_s22239227
crossref_primary_10_1016_j_cjche_2023_09_010
crossref_primary_10_1016_j_swevo_2023_101274
crossref_primary_10_1109_TCYB_2022_3158391
crossref_primary_10_1109_TEVC_2023_3250347
crossref_primary_10_1007_s10791_024_09478_x
crossref_primary_10_3390_biomimetics9100604
crossref_primary_10_3390_biomimetics9120718
crossref_primary_10_1007_s10489_021_03003_z
crossref_primary_10_1016_j_asoc_2023_110101
crossref_primary_10_1007_s11771_021_4730_x
crossref_primary_10_1016_j_ins_2022_09_023
crossref_primary_10_1016_j_swevo_2024_101724
crossref_primary_10_1016_j_asoc_2023_110589
crossref_primary_10_1016_j_ins_2023_01_120
crossref_primary_10_1016_j_swevo_2024_101726
crossref_primary_10_1016_j_ins_2024_121842
crossref_primary_10_1016_j_swevo_2024_101568
crossref_primary_10_1007_s10489_023_04512_9
crossref_primary_10_1016_j_swevo_2023_101423
crossref_primary_10_1016_j_asoc_2022_109923
crossref_primary_10_1016_j_knosys_2022_110214
crossref_primary_10_1155_2019_9803497
crossref_primary_10_1016_j_ins_2022_07_187
crossref_primary_10_1145_3423132
crossref_primary_10_1109_TEVC_2021_3087802
crossref_primary_10_1109_TEVC_2022_3182810
crossref_primary_10_1109_TSMC_2023_3245212
crossref_primary_10_1109_TEVC_2021_3051608
crossref_primary_10_1109_ACCESS_2020_3027559
crossref_primary_10_1016_j_ins_2021_11_046
crossref_primary_10_1016_j_swevo_2023_101319
crossref_primary_10_1016_j_eswa_2022_119438
crossref_primary_10_1007_s00500_023_08509_x
crossref_primary_10_1007_s11721_023_00228_1
crossref_primary_10_1109_TCYB_2019_2937565
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_swevo_2023_101277
crossref_primary_10_1109_ACCESS_2019_2960859
crossref_primary_10_1109_ACCESS_2021_3050764
crossref_primary_10_1109_TEVC_2021_3097339
crossref_primary_10_1109_TSMC_2022_3157816
crossref_primary_10_1016_j_knosys_2021_107972
crossref_primary_10_1016_j_swevo_2022_101031
crossref_primary_10_1080_00207721_2024_2337039
crossref_primary_10_1016_j_eswa_2022_118571
crossref_primary_10_1109_TNNLS_2021_3075205
crossref_primary_10_3233_JIFS_212743
crossref_primary_10_1109_TCYB_2020_3038694
crossref_primary_10_1109_TCYB_2019_2933499
crossref_primary_10_1109_TCYB_2020_2977956
crossref_primary_10_1109_TCYB_2020_3029748
crossref_primary_10_3390_math12172779
crossref_primary_10_1109_TETCI_2023_3234575
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_asoc_2024_111954
crossref_primary_10_1016_j_ins_2022_09_007
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_1016_j_swevo_2020_100699
crossref_primary_10_1016_j_ins_2021_04_093
crossref_primary_10_1109_TNNLS_2024_3378805
crossref_primary_10_1109_TEVC_2023_3287213
crossref_primary_10_1109_TEVC_2019_2944180
crossref_primary_10_1016_j_asoc_2021_107448
crossref_primary_10_1109_TCYB_2019_2944873
crossref_primary_10_1016_j_asoc_2024_112361
crossref_primary_10_1007_s12293_021_00341_w
crossref_primary_10_3934_mbe_2022279
crossref_primary_10_1016_j_asoc_2024_111541
crossref_primary_10_1109_TCYB_2021_3125362
crossref_primary_10_1109_TCYB_2022_3153964
crossref_primary_10_1109_TEVC_2020_3008822
crossref_primary_10_23919_CSMS_2022_0003
crossref_primary_10_1080_01969722_2020_1827797
crossref_primary_10_3390_app11083388
crossref_primary_10_1007_s11280_021_00894_3
crossref_primary_10_1109_TEVC_2021_3131236
crossref_primary_10_1007_s10489_022_03266_0
crossref_primary_10_1016_j_engappai_2023_106039
crossref_primary_10_1109_TEVC_2022_3211954
crossref_primary_10_1109_TEVC_2021_3064835
crossref_primary_10_1016_j_eswa_2020_113750
crossref_primary_10_1007_s12065_025_01016_y
crossref_primary_10_4108_eetsis_7635
crossref_primary_10_3390_info16030190
crossref_primary_10_1016_j_asoc_2023_110264
crossref_primary_10_1109_TETCI_2020_3047410
crossref_primary_10_1016_j_asoc_2024_112102
crossref_primary_10_1016_j_swevo_2022_101206
crossref_primary_10_3390_biomimetics9100643
crossref_primary_10_1016_j_eswa_2023_119668
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1007_s13042_019_01030_4
crossref_primary_10_1109_TEVC_2022_3185665
crossref_primary_10_1007_s13755_020_00132_6
crossref_primary_10_1109_ACCESS_2024_3387308
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1016_j_knosys_2025_113340
crossref_primary_10_1016_j_swevo_2021_100971
crossref_primary_10_1109_TEVC_2022_3155757
Cites_doi 10.1109/TEVC.2016.2592185
10.1109/TEVC.2011.2173577
10.1109/TEVC.2013.2281528
10.1109/TEVC.2010.2041668
10.1109/TEVC.2014.2387433
10.1016/j.swevo.2011.02.002
10.1145/2463372.2463392
10.1109/TEVC.2010.2052054
10.1109/CEC.2010.5586387
10.1109/TEVC.2010.2050024
10.1109/TCYB.2018.2832640
10.1162/106365602760234081
10.1016/j.ins.2014.09.030
10.1109/CEC.2004.1331058
10.1109/TEVC.2018.2875430
10.1145/3071178.3071237
10.1145/1143997.1144266
10.1109/TEVC.2016.2602860
10.1109/TEVC.2017.2669098
10.1016/j.ins.2017.09.053
10.1109/TEVC.2015.2505317
10.1109/CEC.2014.6900309
10.1109/TEVC.2015.2433672
10.1109/CEC.2001.934392
10.1109/TEVC.2014.2313659
10.1016/j.ins.2015.09.009
10.1126/science.1136800
10.1109/CEC.2014.6900484
10.1109/TEVC.2017.2769108
10.1109/CEC.1999.785470
10.1109/TEVC.2017.2682899
10.1109/CEC.2013.6557556
10.1109/TEVC.2016.2591064
10.1109/TSMCB.2012.2209115
10.1109/TCYB.2014.2337117
10.1145/2464576.2464588
10.1109/TCYB.2015.2394466
10.1109/ACCESS.2018.2881538
10.1109/TEVC.2016.2623803
10.1109/TMAG.2011.2106218
10.1109/TCYB.2016.2523000
10.1109/TCYB.2013.2292971
10.1007/s00521-012-1332-4
10.1109/TSMC.2018.2855155
10.1109/TCYB.2013.2282491
10.1109/TEVC.2015.2507785
10.1109/TEVC.2015.2477402
10.1109/TEVC.2015.2508101
10.1145/1068009.1068156
10.1109/TEVC.2015.2428616
10.1109/TEVC.2014.2375933
10.1109/TEVC.2014.2360890
10.1109/TEVC.2012.2203138
10.1109/TEVC.2014.2382135
10.1016/j.swevo.2018.08.015
10.1109/CEC.2010.5586341
10.1145/1830483.1830513
10.1109/TPDS.2016.2597826
10.1109/ICEC.1996.542703
10.1109/TEVC.2015.2511142
10.1109/TEVC.2012.2231685
10.1109/TEVC.2015.2457437
10.1109/TEVC.2011.2161873
10.1109/SDE.2013.6601443
10.3390/en11123526
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2019.2910721
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 128
ExternalDocumentID 10_1109_TEVC_2019_2910721
8688426
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772207; 61873097
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2014A030306038
  funderid: 10.13039/501100003453
– fundername: GDUPS (2016)
– fundername: Project for Pearl River New Star in Science and Technology
  grantid: 201506010047
– fundername: Outstanding Youth Science Foundation
  grantid: 61822602
– fundername: Hong Kong GRF-RGC General Research Fund (9042489)
  grantid: CityU 11206317
– fundername: NSFGD
  grantid: 2014B050504005
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-cadfa2361eeb085379fed1f99af0a636d5e355602577661b2b27ca5db3704fdc3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Mon Jun 30 07:14:39 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Jul 01 01:56:22 EDT 2025
Wed Aug 27 06:30:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-cadfa2361eeb085379fed1f99af0a636d5e355602577661b2b27ca5db3704fdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8465-0996
0000-0003-4141-1490
0000-0002-2594-0934
0000-0001-7484-7261
0000-0003-0862-0514
0000-0002-8396-2023
0000-0001-7835-9871
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8688426
PQID 2349119467
PQPubID 85418
PageCount 15
ParticipantIDs proquest_journals_2349119467
crossref_primary_10_1109_TEVC_2019_2910721
crossref_citationtrail_10_1109_TEVC_2019_2910721
ieee_primary_8688426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref16
ref18
ref50
goldberg (ref51) 1987
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
bonyadi (ref19) 2017; 21
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
li (ref63) 2013
ref38
friedrich (ref8) 2017; 21
ref71
ref70
yao (ref47) 2006
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
lin (ref62) 2008
ref66
ref22
ref65
ref21
ref28
ref27
ref29
li (ref55) 2010; 14
ref60
ref61
References_xml – year: 2013
  ident: ref63
  article-title: Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization
  publication-title: Evol Comput Mach Learn Group RMIT Univ
– ident: ref20
  doi: 10.1109/TEVC.2016.2592185
– ident: ref17
  doi: 10.1109/TEVC.2011.2173577
– ident: ref24
  doi: 10.1109/TEVC.2013.2281528
– ident: ref52
  doi: 10.1109/TEVC.2010.2041668
– ident: ref15
  doi: 10.1109/TEVC.2014.2387433
– ident: ref64
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref68
  doi: 10.1145/2463372.2463392
– ident: ref23
  doi: 10.1109/TEVC.2010.2052054
– ident: ref58
  doi: 10.1109/CEC.2010.5586387
– volume: 14
  start-page: 150
  year: 2010
  ident: ref55
  article-title: Niching without niching parameters: Particle swarm optimization using a ring topology
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2010.2050024
– ident: ref11
  doi: 10.1109/TCYB.2018.2832640
– ident: ref48
  doi: 10.1162/106365602760234081
– ident: ref70
  doi: 10.1016/j.ins.2014.09.030
– volume: 21
  start-page: 378
  year: 2017
  ident: ref19
  article-title: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm
  publication-title: IEEE Trans Evol Comput
– start-page: 2388
  year: 2008
  ident: ref62
  article-title: A contour method in population-based stochastic algorithms
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref34
  doi: 10.1109/CEC.2004.1331058
– ident: ref21
  doi: 10.1109/TEVC.2018.2875430
– ident: ref3
  doi: 10.1145/3071178.3071237
– ident: ref5
  doi: 10.1145/1143997.1144266
– ident: ref28
  doi: 10.1109/TEVC.2016.2602860
– ident: ref27
  doi: 10.1109/TEVC.2017.2669098
– ident: ref59
  doi: 10.1016/j.ins.2017.09.053
– ident: ref9
  doi: 10.1109/TEVC.2015.2505317
– ident: ref65
  doi: 10.1109/CEC.2014.6900309
– ident: ref31
  doi: 10.1109/TEVC.2015.2433672
– ident: ref49
  doi: 10.1109/CEC.2001.934392
– ident: ref38
  doi: 10.1109/TEVC.2014.2313659
– ident: ref61
  doi: 10.1016/j.ins.2015.09.009
– start-page: 41
  year: 1987
  ident: ref51
  article-title: Genetic algorithms with sharing for multimodal function optimization
  publication-title: Proc 7th Int Conf Genetic Algorithms
– ident: ref57
  doi: 10.1126/science.1136800
– ident: ref71
  doi: 10.1109/CEC.2014.6900484
– ident: ref40
  doi: 10.1109/TEVC.2017.2769108
– ident: ref46
  doi: 10.1109/CEC.1999.785470
– ident: ref12
  doi: 10.1109/TEVC.2017.2682899
– ident: ref43
  doi: 10.1109/CEC.2013.6557556
– ident: ref53
  doi: 10.1109/TEVC.2016.2591064
– ident: ref18
  doi: 10.1109/TSMCB.2012.2209115
– ident: ref45
  doi: 10.1109/TCYB.2014.2337117
– ident: ref66
  doi: 10.1145/2464576.2464588
– ident: ref41
  doi: 10.1109/TCYB.2015.2394466
– ident: ref67
  doi: 10.1109/ACCESS.2018.2881538
– ident: ref13
  doi: 10.1109/TEVC.2016.2623803
– ident: ref2
  doi: 10.1109/TMAG.2011.2106218
– ident: ref54
  doi: 10.1109/TCYB.2016.2523000
– ident: ref39
  doi: 10.1109/TCYB.2013.2292971
– start-page: 1752
  year: 2006
  ident: ref47
  article-title: On clustering in evolutionary computation
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref4
  doi: 10.1007/s00521-012-1332-4
– ident: ref25
  doi: 10.1109/TSMC.2018.2855155
– ident: ref36
  doi: 10.1109/TCYB.2013.2282491
– ident: ref29
  doi: 10.1109/TEVC.2015.2507785
– ident: ref30
  doi: 10.1109/TEVC.2015.2477402
– ident: ref22
  doi: 10.1109/TEVC.2015.2508101
– ident: ref35
  doi: 10.1145/1068009.1068156
– ident: ref14
  doi: 10.1109/TEVC.2015.2428616
– ident: ref32
  doi: 10.1109/TEVC.2014.2375933
– ident: ref33
  doi: 10.1109/TEVC.2014.2360890
– ident: ref56
  doi: 10.1109/TEVC.2012.2203138
– ident: ref16
  doi: 10.1109/TEVC.2014.2382135
– ident: ref60
  doi: 10.1016/j.swevo.2018.08.015
– ident: ref42
  doi: 10.1109/CEC.2010.5586341
– ident: ref1
  doi: 10.1145/1830483.1830513
– ident: ref26
  doi: 10.1109/TPDS.2016.2597826
– ident: ref50
  doi: 10.1109/ICEC.1996.542703
– ident: ref6
  doi: 10.1109/TEVC.2015.2511142
– ident: ref44
  doi: 10.1109/TEVC.2012.2231685
– ident: ref10
  doi: 10.1109/TEVC.2015.2457437
– ident: ref37
  doi: 10.1109/TEVC.2011.2161873
– ident: ref69
  doi: 10.1109/SDE.2013.6601443
– volume: 21
  start-page: 477
  year: 2017
  ident: ref8
  article-title: The compact genetic algorithm is efficient under extreme Gaussian noise
  publication-title: IEEE Trans Evol Comput
– ident: ref7
  doi: 10.3390/en11123526
SSID ssj0014519
Score 2.6357932
Snippet Niching techniques have been widely incorporated into evolutionary algorithms (EAs) for solving multimodal optimization problems (MMOPs). However, most of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms Affinity propagation clustering (APC)
Algorithms
Clustering
Clustering algorithms
contour prediction approach (CPA)
Contours
Convergence
differential evolution (DE)
Evolutionary algorithms
Evolutionary computation
Iron
multimodal optimization problems (MMOPs)
niching techniques
Optimization
Parameter sensitivity
Prediction algorithms
Predictions
Shape
Sociology
Statistics
Strategy
Title Automatic Niching Differential Evolution With Contour Prediction Approach for Multimodal Optimization Problems
URI https://ieeexplore.ieee.org/document/8688426
https://www.proquest.com/docview/2349119467
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwKCDKssgHToiUxEns-FhBEULiceDRW-SnQECLIN3D_vodO27FAkLcoshWLM145pvMzDcAe1xmpWOZSkphZVKgB0gqXbCkyKRz3GnjjA8Uzy_Y6U1xNiyHc3Aw64Wx1obiM9vzjyGXb8Z64n-VHVasqtCjzMM8Bm5tr9YsY-BpUtpieoGIsRrGDGaWisPrwe2RL-ISPYrOkdPsPx8Uhqp8ssTBvZyswPn0YG1VyWNv0qie_vuBs_GnJ1-F5YgzSb9VjDWYs6MOrExnOJB4pTuw9I6QsAOLHnu21M3rMOpPmnFgdCWoL_5PFTmO41TQLDyRwZ-otuTuobknnucKv0quXn3uJ7zvR8JygsiYhFbf57HBnZdop55jAyiuDyNt3jbg5mRwfXSaxPEMic5z1iRaGic9d4u1CoFbzoWzJnNCSJdKljNTWgQzDEEV56gDiirKtSyNynlaOKPzTVgYjUd2C4hEK0GFUsbDDZoyUTHGM5mbKhVSMNqFdCqwWkfucj9C46kOMUwqai_j2su4jjLuwv5sy0tL3PHd4nUvs9nCKK4u7Ey1oo5X-62meYEOQqCD2f561y9YpD4oD6XdO7DQvE7sb0QujdoNKvsPdhHrew
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i7DA4jFFAlLHhw04TKYmT2PGxYkXdoIxDgd4i_xTToEWQ7rC_fs-OWzE2TbtFka1Yes_v-xy_9z2AD1xmpWOZSkphZVIgAiSVLlhSZNI57rRxxh8UR-dseFl8mZSTFThc1sJYa0Pyme35x3CXb2Z67n-VHVWsqhBRXsBLxP0ya6u1lncGXiilTacXyBmrSbzDzFJxNB5cHfs0LtGjCI-cZr-hUGir8kcsDgBzsgGjxdLavJLvvXmjevrnM9XG_137G3gdmSbpt66xCSt22oGNRRcHEjd1B9afSBJ2YM2zz1a8eQum_XkzC5quBD3G_6sin2JDFQwMt2TwIzouuf7W3BCvdIVfJRcP_vYnvO9HyXKC3JiEYt-7mcGZXzFS3cUSUBwfmto8bsPlyWB8PExig4ZE5zlrEi2Nk169xVqF1C3nwlmTOSGkSyXLmSkt0hmGtIpz9AJFFeValkblPC2c0fkOrE5nU7sLRGKcoEIp4wkHTZmoGOOZzE2VCikY7UK6MFito3q5b6JxW4dTTCpqb-Pa27iONu7Cx-WU-1a641-Dt7zNlgOjubqwv_CKOm7ux5rmBUKEQIjZ-_usA3g1HI_O6rPP56dvYY36I3pI9N6H1eZhbt8hj2nU--C-vwDjhu7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Niching+Differential+Evolution+With+Contour+Prediction+Approach+for+Multimodal+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Zi-Jia&rft.au=Zhan%2C+Zhi-Hui&rft.au=Lin%2C+Ying&rft.au=Yu%2C+Wei-Jie&rft.date=2020-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=24&rft.issue=1&rft.spage=114&rft.epage=128&rft_id=info:doi/10.1109%2FTEVC.2019.2910721&rft.externalDocID=8688426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon