Experimental investigation on spatial-temporal evolution of tip leakage cavitation in a mixed flow pump with tip clearance

•A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating stage.•Propagating velocity of the front hump of PTLVC reaches the maximum of 0.38 Utip.•Empirical function proposed for projected area, axia...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 164; p. 104445
Main Authors Han, Yadong, Tan, Lei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating stage.•Propagating velocity of the front hump of PTLVC reaches the maximum of 0.38 Utip.•Empirical function proposed for projected area, axial thickness, collapse position. Tip leakage cavitation remains an unsolved problem that threatens the safe operation of hydraulic machines and plagues researchers worldwide. The objective of this work is to investigate the classification and spatial-temporal evolution of tip leakage cavitation, and even to provide additional insights into the flow physics. Experiments are conducted in a mixed flow pump installed on a closed-loop test rig. High-speed visualizations are performed to capture the flow patterns of tip leakage cavitation at rated flow rate. It is demonstrated that tip leakage vortex cavitation can be categorized as primary tip leakage vortex cavitation (PTLVC) and secondary tip leakage vortex cavitation (STLVC). A new tip leakage cavitation structure, named as the double-hump PTLVC, is firstly observed in the mixed flow pump under severe cavitation conditions. The spatial-temporal evolution of the double-hump PTLVC is classified into four stages: incepting stage, growing stage, merging stage and propagating stage. The averaged propagating velocity of the front hump of PTLVC increases with decreasing net positive suction head (NPSH), and reaches the maximum of 0.38 Utip in the present experiment. Three empirical functions are proposed to describe the relationship between projected area, the maximum axial thickness, circumferential collapse position and NPSH, respectively. It is found that for every 0.1 m drop in NPSH, the projected area increases by about 2.1%, the maximum axial thickness increases by about 2.7%, and the circumferential length of the PTLVC increases by about 3.5%, respectively.
AbstractList •A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating stage.•Propagating velocity of the front hump of PTLVC reaches the maximum of 0.38 Utip.•Empirical function proposed for projected area, axial thickness, collapse position. Tip leakage cavitation remains an unsolved problem that threatens the safe operation of hydraulic machines and plagues researchers worldwide. The objective of this work is to investigate the classification and spatial-temporal evolution of tip leakage cavitation, and even to provide additional insights into the flow physics. Experiments are conducted in a mixed flow pump installed on a closed-loop test rig. High-speed visualizations are performed to capture the flow patterns of tip leakage cavitation at rated flow rate. It is demonstrated that tip leakage vortex cavitation can be categorized as primary tip leakage vortex cavitation (PTLVC) and secondary tip leakage vortex cavitation (STLVC). A new tip leakage cavitation structure, named as the double-hump PTLVC, is firstly observed in the mixed flow pump under severe cavitation conditions. The spatial-temporal evolution of the double-hump PTLVC is classified into four stages: incepting stage, growing stage, merging stage and propagating stage. The averaged propagating velocity of the front hump of PTLVC increases with decreasing net positive suction head (NPSH), and reaches the maximum of 0.38 Utip in the present experiment. Three empirical functions are proposed to describe the relationship between projected area, the maximum axial thickness, circumferential collapse position and NPSH, respectively. It is found that for every 0.1 m drop in NPSH, the projected area increases by about 2.1%, the maximum axial thickness increases by about 2.7%, and the circumferential length of the PTLVC increases by about 3.5%, respectively.
ArticleNumber 104445
Author Han, Yadong
Tan, Lei
Author_xml – sequence: 1
  givenname: Yadong
  surname: Han
  fullname: Han, Yadong
– sequence: 2
  givenname: Lei
  orcidid: 0000-0001-5415-787X
  surname: Tan
  fullname: Tan, Lei
  email: tanlei@mail.tsinghua.edu.cn
BookMark eNqNkM9PwyAUx4nRxG36P3Dy1gmlo-vFxMzpTJZ40TOh9HWj0h8B1k3_epndaaclJJA8vp_33meMrpu2AYQeKJlSQvljNdVVvTNed1vpoDTtfhqTmIVikiSzKzSi8zSL2IyxazQijNAoY3F8i8bOVYSQWZqwEfpdHjqwuobGS4N104PzeiO9bhscjuvCU5rIQ921NvyAvjW7oVri0BobkN9yA1jJXvshpxssca0PUODjVLjb1R3ea7_9D6iQsLJRcIduSmkc3J_uCfp6XX4uVtH64-198byOFGPcRyrlMVdloWQ5h0wRwoErCGsVisicZTFAnvOSZCWQLEkpp4mUhKeQU17APGMT9DJwlW2ds1AKdZrUW6mNoEQcfYpKnPsUR59i8BkwT2eYLniT9udywGoAQFi212CFUxqCiEJbUF4Urb4U9Qf7rqWe
CitedBy_id crossref_primary_10_1016_j_energy_2024_131561
crossref_primary_10_1080_19942060_2024_2322514
crossref_primary_10_1002_ese3_1571
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105108
crossref_primary_10_1080_10255842_2023_2256946
crossref_primary_10_1016_j_oceaneng_2025_120437
crossref_primary_10_1016_j_apor_2023_103629
crossref_primary_10_1016_j_oceaneng_2023_116431
crossref_primary_10_1088_1742_6596_2854_1_012029
crossref_primary_10_1088_1361_6501_acf4b2
crossref_primary_10_1016_j_ijmecsci_2023_108735
crossref_primary_10_1108_EC_05_2023_0212
crossref_primary_10_1108_EC_04_2023_0181
crossref_primary_10_3390_w16223195
crossref_primary_10_1063_5_0205843
crossref_primary_10_1016_j_energy_2024_130260
crossref_primary_10_1063_5_0181235
crossref_primary_10_1063_5_0248918
crossref_primary_10_1016_j_oceaneng_2024_116803
crossref_primary_10_1016_j_energy_2024_130261
crossref_primary_10_1177_09576509241240012
crossref_primary_10_1063_5_0200112
crossref_primary_10_1016_j_ast_2024_109400
crossref_primary_10_1016_j_oceaneng_2024_117216
crossref_primary_10_1088_1742_6596_2854_1_012010
crossref_primary_10_1016_j_oceaneng_2024_117235
crossref_primary_10_1016_j_oceaneng_2024_119081
crossref_primary_10_1016_j_energy_2024_130325
crossref_primary_10_1007_s40997_023_00719_w
crossref_primary_10_1016_j_est_2024_110763
crossref_primary_10_1016_j_est_2024_112743
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104745
crossref_primary_10_1002_ese3_1778
crossref_primary_10_1088_1742_6596_2752_1_012127
crossref_primary_10_1016_j_apor_2024_103973
crossref_primary_10_1016_j_apor_2024_103993
crossref_primary_10_1016_j_expthermflusci_2025_111466
crossref_primary_10_3390_w15152776
crossref_primary_10_1063_5_0253531
crossref_primary_10_1177_09576509241236533
Cites_doi 10.1063/5.0085388
10.1017/S0022112007006842
10.1115/1.4030914
10.1016/j.ijmultiphaseflow.2020.103357
10.1115/1.4047287
10.1016/j.oceaneng.2019.106170
10.1063/5.0099070
10.1017/S0022112008005430
10.1063/5.0059746
10.1016/j.apm.2019.08.005
10.1016/j.renene.2020.03.142
10.1016/j.ijmultiphaseflow.2019.06.010
10.1007/s00348-010-0975-0
10.1016/j.oceaneng.2020.107661
10.1016/j.renene.2018.06.032
10.1016/j.energy.2021.121381
10.1016/j.renene.2003.09.007
10.1016/j.ijmultiphaseflow.2015.09.006
10.1115/1.4030614
10.1016/j.oceaneng.2022.112114
10.1016/j.oceaneng.2021.110315
10.1115/1.4003065
10.2514/1.J051491
10.1063/5.0073634
10.1063/5.0060590
10.1063/1.2354544
10.1016/j.renene.2020.11.146
10.2514/1.5270
10.1016/j.icheatmasstransfer.2016.08.007
10.1007/s12206-022-0219-2
10.1016/j.renene.2020.08.033
10.1007/s00348-011-1189-9
10.1007/s00348-014-1849-7
10.1016/j.oceaneng.2018.04.028
10.1016/j.ijheatmasstransfer.2018.03.086
10.3390/en10020191
10.1063/5.0040618
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2023.104445
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2023_104445
S0301932223000666
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c336t-c7626cfdcaf8e9c006e6ce353dc0ab392eebb6f09fe09471614aa067eb16de893
IEDL.DBID .~1
ISSN 0301-9322
IngestDate Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 00:39:11 EDT 2025
Fri Feb 23 02:37:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tip leakage cavitation
Experiment
Mixed flow pump
Tip leakage vortex
High-speed visualization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-c7626cfdcaf8e9c006e6ce353dc0ab392eebb6f09fe09471614aa067eb16de893
ORCID 0000-0001-5415-787X
ParticipantIDs crossref_citationtrail_10_1016_j_ijmultiphaseflow_2023_104445
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104445
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2023_104445
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dreyer, Decaix, Münch-Alligné, Farhat (bib0006) 2014; 55
You, Wang, Moin, Mittal (bib0038) 2007; 586
Zhang, He, Guan, Wang, Som (bib0039) 2018; 124
Jiang, Wang, Chen, Huang (bib0013) 2022; 243
Li, Huo, Wang, Li, Zhu (bib0019) 2021; 33
Shen, Zhang, Xu, Wu, Wang, Shi (bib0026) 2022; 36
Thakker, Dhanasekaran (bib0028) 2003; 29
Choi, Hsiao, Chahine, Ceccio (bib0003) 2009; 624
Miorini, Wu, Katz (bib0022) 2012; 134
Arabnejad, Eslamdoost, Svennberg, Bensow (bib0001) 2020
Zhang, Shi, Pan, Dubuisson (bib0041) 2015; 137
Liu, Tan (bib0017) 2019; 129
Wu, Huang, Wang, Cao, Zhu (bib0031) 2018; 160
Wu, Tan, Miorini, Katz (bib0033) 2011; 51
Shang, Li, Luo, Fan, Liu (bib0025) 2021; 33
Tan, Cao, Wang, Zhu (bib0030) 2012; 226
Li, Ji, Li, Shi, Agarwal, Zhou (bib0015) 2021; 167
Wu, Miorini, Tan, Katz (bib0032) 2012; 50
Muthanna, Devenport (bib0021) 2004; 42
Chen, Doeller, Li, Katz (bib0005) 2020; 142
Qian, Wang, Geng, Luo (bib0024) 2022; 34
Ji, Li, Shi, Tian, Agarwal (bib0014) 2021; 236
Xu, Cheng, Ji, Peng (bib0036) 2020; 213
Zhao, Wang, Jiang, Huang (bib0040) 2016; 78
Cheng, Bai, Long, Ji, Peng, Farhat (bib0004) 2019; 77
Zhang, Shi, Shi, Zhao, Wang, Van Esch (bib0042) 2015; 77
Shu, Shi, Tao, Tang, Li (bib0027) 2021; 33
Long, An, Zhu, Chen (bib0020) 2021; 33
Arabnejad, Amini, Farhat, Bensow (bib0002) 2019; 119
Han, Tan (bib0010) 2020; 155
Han, Liu, Tan (bib0011) 2022; 261
Liu, Tan (bib0018) 2018; 129
Wang, Wang, Huang (bib0035) 2020; 130
Guo, Huang, Qiu (bib0008) 2019; 187
Huang, Qiu, Zhi, Wang (bib0012) 2022; 34
Liu, Tan, Hao, Xu (bib0016) 2017; 10
Wu, Miorini, Katz (bib0034) 2011; 50
Fei, Zhang, Xu, Feng, Mu (bib0007) 2022; 34
Tan, Li, Wilkes, Vagnoni, Miorini, Katz (bib0029) 2015; 137
You, Wang, Moin, Mittal (bib0037) 2006; 18
Han, Tan (bib0009) 2020; 162
Qin, Pan, Huang, Zhang, Ke (bib0023) 2018; 15
Zhang (10.1016/j.ijmultiphaseflow.2023.104445_bib0041) 2015; 137
Li (10.1016/j.ijmultiphaseflow.2023.104445_bib0015) 2021; 167
Liu (10.1016/j.ijmultiphaseflow.2023.104445_bib0016) 2017; 10
Qin (10.1016/j.ijmultiphaseflow.2023.104445_bib0023) 2018; 15
Zhao (10.1016/j.ijmultiphaseflow.2023.104445_bib0040) 2016; 78
Arabnejad (10.1016/j.ijmultiphaseflow.2023.104445_bib0001) 2020
Cheng (10.1016/j.ijmultiphaseflow.2023.104445_bib0004) 2019; 77
Zhang (10.1016/j.ijmultiphaseflow.2023.104445_bib0039) 2018; 124
Dreyer (10.1016/j.ijmultiphaseflow.2023.104445_bib0006) 2014; 55
Choi (10.1016/j.ijmultiphaseflow.2023.104445_bib0003) 2009; 624
Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0033) 2011; 51
Shu (10.1016/j.ijmultiphaseflow.2023.104445_bib0027) 2021; 33
Xu (10.1016/j.ijmultiphaseflow.2023.104445_bib0036) 2020; 213
Han (10.1016/j.ijmultiphaseflow.2023.104445_bib0010) 2020; 155
Li (10.1016/j.ijmultiphaseflow.2023.104445_bib0019) 2021; 33
Tan (10.1016/j.ijmultiphaseflow.2023.104445_bib0029) 2015; 137
Han (10.1016/j.ijmultiphaseflow.2023.104445_bib0009) 2020; 162
Miorini (10.1016/j.ijmultiphaseflow.2023.104445_bib0022) 2012; 134
Qian (10.1016/j.ijmultiphaseflow.2023.104445_bib0024) 2022; 34
Fei (10.1016/j.ijmultiphaseflow.2023.104445_bib0007) 2022; 34
Guo (10.1016/j.ijmultiphaseflow.2023.104445_bib0008) 2019; 187
Jiang (10.1016/j.ijmultiphaseflow.2023.104445_bib0013) 2022; 243
Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0031) 2018; 160
Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0032) 2012; 50
Huang (10.1016/j.ijmultiphaseflow.2023.104445_bib0012) 2022; 34
You (10.1016/j.ijmultiphaseflow.2023.104445_bib0037) 2006; 18
Ji (10.1016/j.ijmultiphaseflow.2023.104445_bib0014) 2021; 236
Liu (10.1016/j.ijmultiphaseflow.2023.104445_bib0018) 2018; 129
Muthanna (10.1016/j.ijmultiphaseflow.2023.104445_bib0021) 2004; 42
Chen (10.1016/j.ijmultiphaseflow.2023.104445_bib0005) 2020; 142
Liu (10.1016/j.ijmultiphaseflow.2023.104445_bib0017) 2019; 129
Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0034) 2011; 50
Wang (10.1016/j.ijmultiphaseflow.2023.104445_bib0035) 2020; 130
Zhang (10.1016/j.ijmultiphaseflow.2023.104445_bib0042) 2015; 77
Long (10.1016/j.ijmultiphaseflow.2023.104445_bib0020) 2021; 33
Shen (10.1016/j.ijmultiphaseflow.2023.104445_bib0026) 2022; 36
Arabnejad (10.1016/j.ijmultiphaseflow.2023.104445_bib0002) 2019; 119
Tan (10.1016/j.ijmultiphaseflow.2023.104445_bib0030) 2012; 226
Thakker (10.1016/j.ijmultiphaseflow.2023.104445_bib0028) 2003; 29
You (10.1016/j.ijmultiphaseflow.2023.104445_bib0038) 2007; 586
Shang (10.1016/j.ijmultiphaseflow.2023.104445_bib0025) 2021; 33
Han (10.1016/j.ijmultiphaseflow.2023.104445_bib0011) 2022; 261
References_xml – volume: 34
  year: 2022
  ident: bib0024
  article-title: Vortex and cavity dynamics for the tip-leakage cavitation over a hydrofoil
  publication-title: Phys. Fluid
– volume: 586
  start-page: 177
  year: 2007
  end-page: 204
  ident: bib0038
  article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow
  publication-title: J. Fluid Mech.
– volume: 137
  year: 2015
  ident: bib0041
  article-title: Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump
  publication-title: J. Fluid Eng.
– volume: 34
  year: 2022
  ident: bib0012
  article-title: Investigations into the ventilated cavities around a surface-piercing hydrofoil at high Froude numbers
  publication-title: Phys. Fluid
– volume: 134
  year: 2012
  ident: bib0022
  article-title: The internal structure of the tip leakage cortex within the rotor of an axial waterjet pump
  publication-title: J. Turbomach.
– volume: 15
  year: 2018
  ident: bib0023
  article-title: Numerical investigation of different tip clearances effect on the hydrodynamic performance of pumpjet propulsor
  publication-title: Int. J. Comp. Method
– volume: 137
  year: 2015
  ident: bib0029
  article-title: Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump
  publication-title: J. Fluid Eng.
– volume: 78
  start-page: 39
  year: 2016
  end-page: 47
  ident: bib0040
  article-title: Numerical analysis of developed tip leakage cavitating flows using a new transport-based model
  publication-title: Int. Commun. Heat Mass
– volume: 624
  start-page: 255
  year: 2009
  end-page: 279
  ident: bib0003
  article-title: Growth, oscillation and collapse of vortex cavitation bubbles
  publication-title: J. Fluid Mech.
– volume: 130
  year: 2020
  ident: bib0035
  article-title: Characteristics and dynamics of compressible cavitating flows with special emphasis on compressibility effects
  publication-title: Int. J. Multiphase Flow
– volume: 261
  year: 2022
  ident: bib0011
  article-title: Method of data-driven mode decomposition for cavitating flow in a Venturi nozzle
  publication-title: Ocean Eng.
– volume: 162
  start-page: 144
  year: 2020
  end-page: 150
  ident: bib0009
  article-title: Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
– volume: 77
  start-page: 788
  year: 2019
  end-page: 809
  ident: bib0004
  article-title: Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
  publication-title: Appl. Math. Model
– volume: 55
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0006
  article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV
  publication-title: Exp. Fluids
– volume: 77
  start-page: 244
  year: 2015
  end-page: 259
  ident: bib0042
  article-title: Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump
  publication-title: Int. J. Multiphase Flow
– volume: 119
  start-page: 123
  year: 2019
  end-page: 143
  ident: bib0002
  article-title: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation
  publication-title: Int. J. Multiphase Flow
– volume: 42
  start-page: 2320
  year: 2004
  end-page: 2331
  ident: bib0021
  article-title: Wake of a compressor cascade with tip gap, part 1: mean flow and turbulence structure
  publication-title: AIAA J.
– volume: 236
  year: 2021
  ident: bib0014
  article-title: Effect of blade thickness on rotating stall of mixed flow pump using entropy generation analysis
  publication-title: Energy
– volume: 243
  year: 2022
  ident: bib0013
  article-title: Large-eddy simulation of three-dimensional aerofoil tip-gap flow
  publication-title: Ocean Eng.
– volume: 187
  year: 2019
  ident: bib0008
  article-title: Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump
  publication-title: Ocean Eng.
– volume: 34
  year: 2022
  ident: bib0007
  article-title: Energy performance and flow characteristics of a slanted axial-flow pump under cavitation conditions
  publication-title: Phys. Fluid
– volume: 155
  start-page: 725
  year: 2020
  end-page: 734
  ident: bib0010
  article-title: Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
– volume: 33
  year: 2021
  ident: bib0020
  article-title: Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions
  publication-title: Phys. Fluid
– volume: 36
  start-page: 1289
  year: 2022
  end-page: 1302
  ident: bib0026
  article-title: Comparative study of tip leakage vortex trajectory and cavitation in an axial flow pump with various tip clearances
  publication-title: J. Mech. Sci. Technol.
– volume: 33
  year: 2021
  ident: bib0019
  article-title: Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters
  publication-title: Phys. Fluid
– volume: 124
  start-page: 900
  year: 2018
  end-page: 911
  ident: bib0039
  article-title: Simulations on the cavitating flow and corresponding risk of erosion in diesel injector nozzles with double array holes
  publication-title: Int. J. Heat Mass Transf.
– volume: 18
  start-page: 683
  year: 2006
  ident: bib0037
  article-title: Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade
  publication-title: Phys. Fluid
– volume: 50
  start-page: 2574
  year: 2012
  end-page: 2587
  ident: bib0032
  article-title: Turbulence within the tip-leakage vortex of an axial waterjet pump
  publication-title: AIAA J.
– volume: 129
  start-page: 606
  year: 2019
  end-page: 615
  ident: bib0017
  article-title: Spatial-temporal evolution of tip leakage vortex in a mixed flow pump with tip clearance
  publication-title: J. Fluid Eng.
– volume: 51
  start-page: 1721
  year: 2011
  end-page: 1737
  ident: bib0033
  article-title: Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade
  publication-title: Exp. Fluids
– volume: 50
  start-page: 989
  year: 2011
  end-page: 1003
  ident: bib0034
  article-title: Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump
  publication-title: Exp. Fluids
– year: 2020
  ident: bib0001
  article-title: Scale resolving simulations of the non-cavitating and cavitating flows in an axial water jet pump
  publication-title: 33rd Symposium on Naval Hydrodynamics, Osaka, Japan
– volume: 33
  start-page: 683
  year: 2021
  ident: bib0027
  article-title: Three-dimensional spatial-temporal evolution and dynamics of the tip leakage vortex in an oil-gas multiphase pump
  publication-title: Phys. Fluid
– volume: 33
  year: 2021
  ident: bib0025
  article-title: Effects of tip clearance size on vortical structures and turbulence statistics in tip leakage flows: a direct numerical simulation study
  publication-title: Phys. Fluid
– volume: 213
  year: 2020
  ident: bib0036
  article-title: LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model
  publication-title: Ocean Eng.
– volume: 10
  start-page: 191
  year: 2017
  ident: bib0016
  article-title: Energy performance and flow patterns of a mixed flow pump with different tip clearance sizes
  publication-title: Energies
– volume: 167
  start-page: 740
  year: 2021
  end-page: 760
  ident: bib0015
  article-title: Numerical investigation of energy loss mechanism of mixed flow pump under stall condition
  publication-title: Renew. Energy
– volume: 160
  start-page: 143
  year: 2018
  end-page: 155
  ident: bib0031
  article-title: Numerical modelling of unsteady cavitation and induced noise around a marine propeller
  publication-title: Ocean Eng.
– volume: 29
  start-page: 529
  year: 2003
  end-page: 547
  ident: bib0028
  article-title: Computed effects of tip clearance on performance of impulse turbine for wave energy conversion
  publication-title: Renew. Energ.
– volume: 226
  start-page: 764
  year: 2012
  end-page: 775
  ident: bib0030
  article-title: Direct and inverse iterative design method for centrifugal pump impellers
  publication-title: P. I. Mech. Eng. A-J. Pow.
– volume: 129
  start-page: 606
  year: 2018
  end-page: 615
  ident: bib0018
  article-title: Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
– volume: 142
  year: 2020
  ident: bib0005
  article-title: Experimental investigations of cavitation performance breakdown in an axial waterjet pump
  publication-title: J. Fluid Eng.
– volume: 34
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0007
  article-title: Energy performance and flow characteristics of a slanted axial-flow pump under cavitation conditions
  publication-title: Phys. Fluid
  doi: 10.1063/5.0085388
– volume: 586
  start-page: 177
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0038
  article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007006842
– volume: 137
  issue: 12
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0041
  article-title: Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.4030914
– volume: 130
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0035
  article-title: Characteristics and dynamics of compressible cavitating flows with special emphasis on compressibility effects
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2020.103357
– volume: 142
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0005
  article-title: Experimental investigations of cavitation performance breakdown in an axial waterjet pump
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.4047287
– volume: 187
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0008
  article-title: Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106170
– volume: 34
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0024
  article-title: Vortex and cavity dynamics for the tip-leakage cavitation over a hydrofoil
  publication-title: Phys. Fluid
  doi: 10.1063/5.0099070
– volume: 624
  start-page: 255
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0003
  article-title: Growth, oscillation and collapse of vortex cavitation bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008005430
– volume: 33
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0025
  article-title: Effects of tip clearance size on vortical structures and turbulence statistics in tip leakage flows: a direct numerical simulation study
  publication-title: Phys. Fluid
  doi: 10.1063/5.0059746
– volume: 77
  start-page: 788
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0004
  article-title: Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2019.08.005
– volume: 155
  start-page: 725
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0010
  article-title: Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.142
– volume: 119
  start-page: 123
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0002
  article-title: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.06.010
– volume: 34
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0012
  article-title: Investigations into the ventilated cavities around a surface-piercing hydrofoil at high Froude numbers
  publication-title: Phys. Fluid
– volume: 129
  start-page: 606
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0017
  article-title: Spatial-temporal evolution of tip leakage vortex in a mixed flow pump with tip clearance
  publication-title: J. Fluid Eng.
– volume: 50
  start-page: 989
  issue: 4
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0034
  article-title: Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-010-0975-0
– volume: 213
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0036
  article-title: LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107661
– volume: 15
  issue: 05
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0023
  article-title: Numerical investigation of different tip clearances effect on the hydrodynamic performance of pumpjet propulsor
  publication-title: Int. J. Comp. Method
– volume: 129
  start-page: 606
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0018
  article-title: Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.032
– volume: 236
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0014
  article-title: Effect of blade thickness on rotating stall of mixed flow pump using entropy generation analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121381
– volume: 29
  start-page: 529
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0028
  article-title: Computed effects of tip clearance on performance of impulse turbine for wave energy conversion
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2003.09.007
– volume: 77
  start-page: 244
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0042
  article-title: Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.09.006
– volume: 137
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0029
  article-title: Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.4030614
– volume: 261
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0011
  article-title: Method of data-driven mode decomposition for cavitating flow in a Venturi nozzle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112114
– volume: 243
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0013
  article-title: Large-eddy simulation of three-dimensional aerofoil tip-gap flow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110315
– volume: 134
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0022
  article-title: The internal structure of the tip leakage cortex within the rotor of an axial waterjet pump
  publication-title: J. Turbomach.
  doi: 10.1115/1.4003065
– volume: 50
  start-page: 2574
  issue: 11
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0032
  article-title: Turbulence within the tip-leakage vortex of an axial waterjet pump
  publication-title: AIAA J.
  doi: 10.2514/1.J051491
– year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0001
  article-title: Scale resolving simulations of the non-cavitating and cavitating flows in an axial water jet pump
– volume: 33
  start-page: 683
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0027
  article-title: Three-dimensional spatial-temporal evolution and dynamics of the tip leakage vortex in an oil-gas multiphase pump
  publication-title: Phys. Fluid
  doi: 10.1063/5.0073634
– volume: 33
  issue: 9
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0019
  article-title: Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters
  publication-title: Phys. Fluid
  doi: 10.1063/5.0060590
– volume: 18
  start-page: 683
  issue: 10
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0037
  article-title: Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade
  publication-title: Phys. Fluid
  doi: 10.1063/1.2354544
– volume: 167
  start-page: 740
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0015
  article-title: Numerical investigation of energy loss mechanism of mixed flow pump under stall condition
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.146
– volume: 42
  start-page: 2320
  issue: 11
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0021
  article-title: Wake of a compressor cascade with tip gap, part 1: mean flow and turbulence structure
  publication-title: AIAA J.
  doi: 10.2514/1.5270
– volume: 78
  start-page: 39
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0040
  article-title: Numerical analysis of developed tip leakage cavitating flows using a new transport-based model
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2016.08.007
– volume: 36
  start-page: 1289
  issue: 3
  year: 2022
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0026
  article-title: Comparative study of tip leakage vortex trajectory and cavitation in an axial flow pump with various tip clearances
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-022-0219-2
– volume: 162
  start-page: 144
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0009
  article-title: Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.08.033
– volume: 51
  start-page: 1721
  issue: 6
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0033
  article-title: Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-011-1189-9
– volume: 55
  start-page: 1
  issue: 11
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0006
  article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-014-1849-7
– volume: 226
  start-page: 764
  issue: A6
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0030
  article-title: Direct and inverse iterative design method for centrifugal pump impellers
  publication-title: P. I. Mech. Eng. A-J. Pow.
– volume: 160
  start-page: 143
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0031
  article-title: Numerical modelling of unsteady cavitation and induced noise around a marine propeller
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.04.028
– volume: 124
  start-page: 900
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0039
  article-title: Simulations on the cavitating flow and corresponding risk of erosion in diesel injector nozzles with double array holes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.03.086
– volume: 10
  start-page: 191
  issue: 2
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0016
  article-title: Energy performance and flow patterns of a mixed flow pump with different tip clearance sizes
  publication-title: Energies
  doi: 10.3390/en10020191
– volume: 33
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0020
  article-title: Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions
  publication-title: Phys. Fluid
  doi: 10.1063/5.0040618
SSID ssj0005743
Score 2.545276
Snippet •A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104445
SubjectTerms Experiment
High-speed visualization
Mixed flow pump
Tip leakage cavitation
Tip leakage vortex
Title Experimental investigation on spatial-temporal evolution of tip leakage cavitation in a mixed flow pump with tip clearance
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2023.104445
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hIhAMCAqI8qg8ILb0QdKUDAxV1aqA6AKVukWOfRYpoa1oKYiB385d4tKCGBiQsiSyLcd3uof9-TuA04j0JtCKlNd3fYczBCcIztGJompF1VVU05K3Bm67fqfnXfdr_RVozu_CMKzS2v7MpqfW2n4p29Usj-O4fMfBfMAHBW7qOJl22_PqrOWljyWYRway58YOt16HswXGKx5ksL0H8hgmGb2WuJg4H3t6fL3pN0e15Hza27Blo0bRyCa2Ays4zMPmEpdgHtZSLKea7MJ7a4m1X8QLIo3RUNAzYQy1TBxLSpUInFn1EyMjaJoiQflIZkYoObMM3jSKkOIpfkMt-A_EmLRA8B5u2kFx7QlWnz3otVv3zY5jSyw4ynX9qaPIFvrKaCXNBQaK1hF9hW7N1aoiI4qdEKPIN5XAIOWBlFtVPSnJwZGF9zVSrLMPueFoiAcgqqaiUXrKyJryDFImZYJzppfDelVL7Rbgcr6eobKz5zIYSTgHmg3Cn_IIWR5hJo8C1L_6jzMmjj_3bMzFF37TrZDcxh_HOPyHMY5gg98ysO8x5KbPL3hCIc00KqY6W4TVxtVNp_sJwaP-GA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4VEK8B8RTl6QGxhbYkdcnAgFCrAm0XQGKLHPssAqGtoBTEwG_nLnGhIAYGpEyJbTm-yz3sL98B7MWkN6HRpLzSlx5nCF4YHqIXx5Wyrum4ahRvDbQ7snkdnN9UbwpwOvoXhmGVzvbnNj2z1u5Oya1mqZ8kpUsO5kM-KPAzxyknYCqgz5fLGBy8j-E8cpQ9t_a4-Qzsf4G8krsct3dLLsOmvZcDribO554B_9_0m6ca8z6NRVhwYaM4yWe2BAXsLsP8GJngMkxnYE79tAJv9THafpF8MWn0uoKuJwZRq9RzrFSpwKHTP9GzgqYpUlT3ZGeEVkNH4U2jCCUeklc0gt9A9EkNBG_iZh00F59g_VmF60b96rTpuRoLnvZ9OfA0GUOprdHKHmGoaSFRavSrvtFlFVPwhBjH0pZDi5QIUnJVCZQiD0cmXhqkYGcNJru9Lq6DqNiyQRVoq6o6sEiplA0PmV8OaxWjjF-E49F6RtrNnutgpNEIaXYX_ZRHxPKIcnkUofbZv59Tcfy558lIfNE35YrIb_xxjI1_GGMXZptX7VbUOutcbMIcP8mRv1swOXh8xm2KbwbxTqa_H35R_6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+spatial-temporal+evolution+of+tip+leakage+cavitation+in+a+mixed+flow+pump+with+tip+clearance&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Han%2C+Yadong&rft.au=Tan%2C+Lei&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=164&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2023.104445&rft.externalDocID=S0301932223000666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon