Experimental investigation on spatial-temporal evolution of tip leakage cavitation in a mixed flow pump with tip clearance
•A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating stage.•Propagating velocity of the front hump of PTLVC reaches the maximum of 0.38 Utip.•Empirical function proposed for projected area, axia...
Saved in:
Published in | International journal of multiphase flow Vol. 164; p. 104445 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating stage.•Propagating velocity of the front hump of PTLVC reaches the maximum of 0.38 Utip.•Empirical function proposed for projected area, axial thickness, collapse position.
Tip leakage cavitation remains an unsolved problem that threatens the safe operation of hydraulic machines and plagues researchers worldwide. The objective of this work is to investigate the classification and spatial-temporal evolution of tip leakage cavitation, and even to provide additional insights into the flow physics. Experiments are conducted in a mixed flow pump installed on a closed-loop test rig. High-speed visualizations are performed to capture the flow patterns of tip leakage cavitation at rated flow rate. It is demonstrated that tip leakage vortex cavitation can be categorized as primary tip leakage vortex cavitation (PTLVC) and secondary tip leakage vortex cavitation (STLVC). A new tip leakage cavitation structure, named as the double-hump PTLVC, is firstly observed in the mixed flow pump under severe cavitation conditions. The spatial-temporal evolution of the double-hump PTLVC is classified into four stages: incepting stage, growing stage, merging stage and propagating stage. The averaged propagating velocity of the front hump of PTLVC increases with decreasing net positive suction head (NPSH), and reaches the maximum of 0.38 Utip in the present experiment. Three empirical functions are proposed to describe the relationship between projected area, the maximum axial thickness, circumferential collapse position and NPSH, respectively. It is found that for every 0.1 m drop in NPSH, the projected area increases by about 2.1%, the maximum axial thickness increases by about 2.7%, and the circumferential length of the PTLVC increases by about 3.5%, respectively. |
---|---|
AbstractList | •A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating stage.•Propagating velocity of the front hump of PTLVC reaches the maximum of 0.38 Utip.•Empirical function proposed for projected area, axial thickness, collapse position.
Tip leakage cavitation remains an unsolved problem that threatens the safe operation of hydraulic machines and plagues researchers worldwide. The objective of this work is to investigate the classification and spatial-temporal evolution of tip leakage cavitation, and even to provide additional insights into the flow physics. Experiments are conducted in a mixed flow pump installed on a closed-loop test rig. High-speed visualizations are performed to capture the flow patterns of tip leakage cavitation at rated flow rate. It is demonstrated that tip leakage vortex cavitation can be categorized as primary tip leakage vortex cavitation (PTLVC) and secondary tip leakage vortex cavitation (STLVC). A new tip leakage cavitation structure, named as the double-hump PTLVC, is firstly observed in the mixed flow pump under severe cavitation conditions. The spatial-temporal evolution of the double-hump PTLVC is classified into four stages: incepting stage, growing stage, merging stage and propagating stage. The averaged propagating velocity of the front hump of PTLVC increases with decreasing net positive suction head (NPSH), and reaches the maximum of 0.38 Utip in the present experiment. Three empirical functions are proposed to describe the relationship between projected area, the maximum axial thickness, circumferential collapse position and NPSH, respectively. It is found that for every 0.1 m drop in NPSH, the projected area increases by about 2.1%, the maximum axial thickness increases by about 2.7%, and the circumferential length of the PTLVC increases by about 3.5%, respectively. |
ArticleNumber | 104445 |
Author | Han, Yadong Tan, Lei |
Author_xml | – sequence: 1 givenname: Yadong surname: Han fullname: Han, Yadong – sequence: 2 givenname: Lei orcidid: 0000-0001-5415-787X surname: Tan fullname: Tan, Lei email: tanlei@mail.tsinghua.edu.cn |
BookMark | eNqNkM9PwyAUx4nRxG36P3Dy1gmlo-vFxMzpTJZ40TOh9HWj0h8B1k3_epndaaclJJA8vp_33meMrpu2AYQeKJlSQvljNdVVvTNed1vpoDTtfhqTmIVikiSzKzSi8zSL2IyxazQijNAoY3F8i8bOVYSQWZqwEfpdHjqwuobGS4N104PzeiO9bhscjuvCU5rIQ921NvyAvjW7oVri0BobkN9yA1jJXvshpxssca0PUODjVLjb1R3ea7_9D6iQsLJRcIduSmkc3J_uCfp6XX4uVtH64-198byOFGPcRyrlMVdloWQ5h0wRwoErCGsVisicZTFAnvOSZCWQLEkpp4mUhKeQU17APGMT9DJwlW2ds1AKdZrUW6mNoEQcfYpKnPsUR59i8BkwT2eYLniT9udywGoAQFi212CFUxqCiEJbUF4Urb4U9Qf7rqWe |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_131561 crossref_primary_10_1080_19942060_2024_2322514 crossref_primary_10_1002_ese3_1571 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105108 crossref_primary_10_1080_10255842_2023_2256946 crossref_primary_10_1016_j_oceaneng_2025_120437 crossref_primary_10_1016_j_apor_2023_103629 crossref_primary_10_1016_j_oceaneng_2023_116431 crossref_primary_10_1088_1742_6596_2854_1_012029 crossref_primary_10_1088_1361_6501_acf4b2 crossref_primary_10_1016_j_ijmecsci_2023_108735 crossref_primary_10_1108_EC_05_2023_0212 crossref_primary_10_1108_EC_04_2023_0181 crossref_primary_10_3390_w16223195 crossref_primary_10_1063_5_0205843 crossref_primary_10_1016_j_energy_2024_130260 crossref_primary_10_1063_5_0181235 crossref_primary_10_1063_5_0248918 crossref_primary_10_1016_j_oceaneng_2024_116803 crossref_primary_10_1016_j_energy_2024_130261 crossref_primary_10_1177_09576509241240012 crossref_primary_10_1063_5_0200112 crossref_primary_10_1016_j_ast_2024_109400 crossref_primary_10_1016_j_oceaneng_2024_117216 crossref_primary_10_1088_1742_6596_2854_1_012010 crossref_primary_10_1016_j_oceaneng_2024_117235 crossref_primary_10_1016_j_oceaneng_2024_119081 crossref_primary_10_1016_j_energy_2024_130325 crossref_primary_10_1007_s40997_023_00719_w crossref_primary_10_1016_j_est_2024_110763 crossref_primary_10_1016_j_est_2024_112743 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104745 crossref_primary_10_1002_ese3_1778 crossref_primary_10_1088_1742_6596_2752_1_012127 crossref_primary_10_1016_j_apor_2024_103973 crossref_primary_10_1016_j_apor_2024_103993 crossref_primary_10_1016_j_expthermflusci_2025_111466 crossref_primary_10_3390_w15152776 crossref_primary_10_1063_5_0253531 crossref_primary_10_1177_09576509241236533 |
Cites_doi | 10.1063/5.0085388 10.1017/S0022112007006842 10.1115/1.4030914 10.1016/j.ijmultiphaseflow.2020.103357 10.1115/1.4047287 10.1016/j.oceaneng.2019.106170 10.1063/5.0099070 10.1017/S0022112008005430 10.1063/5.0059746 10.1016/j.apm.2019.08.005 10.1016/j.renene.2020.03.142 10.1016/j.ijmultiphaseflow.2019.06.010 10.1007/s00348-010-0975-0 10.1016/j.oceaneng.2020.107661 10.1016/j.renene.2018.06.032 10.1016/j.energy.2021.121381 10.1016/j.renene.2003.09.007 10.1016/j.ijmultiphaseflow.2015.09.006 10.1115/1.4030614 10.1016/j.oceaneng.2022.112114 10.1016/j.oceaneng.2021.110315 10.1115/1.4003065 10.2514/1.J051491 10.1063/5.0073634 10.1063/5.0060590 10.1063/1.2354544 10.1016/j.renene.2020.11.146 10.2514/1.5270 10.1016/j.icheatmasstransfer.2016.08.007 10.1007/s12206-022-0219-2 10.1016/j.renene.2020.08.033 10.1007/s00348-011-1189-9 10.1007/s00348-014-1849-7 10.1016/j.oceaneng.2018.04.028 10.1016/j.ijheatmasstransfer.2018.03.086 10.3390/en10020191 10.1063/5.0040618 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2023.104445 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2023_104445 S0301932223000666 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c336t-c7626cfdcaf8e9c006e6ce353dc0ab392eebb6f09fe09471614aa067eb16de893 |
IEDL.DBID | .~1 |
ISSN | 0301-9322 |
IngestDate | Thu Apr 24 22:57:49 EDT 2025 Tue Jul 01 00:39:11 EDT 2025 Fri Feb 23 02:37:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tip leakage cavitation Experiment Mixed flow pump Tip leakage vortex High-speed visualization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-c7626cfdcaf8e9c006e6ce353dc0ab392eebb6f09fe09471614aa067eb16de893 |
ORCID | 0000-0001-5415-787X |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijmultiphaseflow_2023_104445 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104445 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2023_104445 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dreyer, Decaix, Münch-Alligné, Farhat (bib0006) 2014; 55 You, Wang, Moin, Mittal (bib0038) 2007; 586 Zhang, He, Guan, Wang, Som (bib0039) 2018; 124 Jiang, Wang, Chen, Huang (bib0013) 2022; 243 Li, Huo, Wang, Li, Zhu (bib0019) 2021; 33 Shen, Zhang, Xu, Wu, Wang, Shi (bib0026) 2022; 36 Thakker, Dhanasekaran (bib0028) 2003; 29 Choi, Hsiao, Chahine, Ceccio (bib0003) 2009; 624 Miorini, Wu, Katz (bib0022) 2012; 134 Arabnejad, Eslamdoost, Svennberg, Bensow (bib0001) 2020 Zhang, Shi, Pan, Dubuisson (bib0041) 2015; 137 Liu, Tan (bib0017) 2019; 129 Wu, Huang, Wang, Cao, Zhu (bib0031) 2018; 160 Wu, Tan, Miorini, Katz (bib0033) 2011; 51 Shang, Li, Luo, Fan, Liu (bib0025) 2021; 33 Tan, Cao, Wang, Zhu (bib0030) 2012; 226 Li, Ji, Li, Shi, Agarwal, Zhou (bib0015) 2021; 167 Wu, Miorini, Tan, Katz (bib0032) 2012; 50 Muthanna, Devenport (bib0021) 2004; 42 Chen, Doeller, Li, Katz (bib0005) 2020; 142 Qian, Wang, Geng, Luo (bib0024) 2022; 34 Ji, Li, Shi, Tian, Agarwal (bib0014) 2021; 236 Xu, Cheng, Ji, Peng (bib0036) 2020; 213 Zhao, Wang, Jiang, Huang (bib0040) 2016; 78 Cheng, Bai, Long, Ji, Peng, Farhat (bib0004) 2019; 77 Zhang, Shi, Shi, Zhao, Wang, Van Esch (bib0042) 2015; 77 Shu, Shi, Tao, Tang, Li (bib0027) 2021; 33 Long, An, Zhu, Chen (bib0020) 2021; 33 Arabnejad, Amini, Farhat, Bensow (bib0002) 2019; 119 Han, Tan (bib0010) 2020; 155 Han, Liu, Tan (bib0011) 2022; 261 Liu, Tan (bib0018) 2018; 129 Wang, Wang, Huang (bib0035) 2020; 130 Guo, Huang, Qiu (bib0008) 2019; 187 Huang, Qiu, Zhi, Wang (bib0012) 2022; 34 Liu, Tan, Hao, Xu (bib0016) 2017; 10 Wu, Miorini, Katz (bib0034) 2011; 50 Fei, Zhang, Xu, Feng, Mu (bib0007) 2022; 34 Tan, Li, Wilkes, Vagnoni, Miorini, Katz (bib0029) 2015; 137 You, Wang, Moin, Mittal (bib0037) 2006; 18 Han, Tan (bib0009) 2020; 162 Qin, Pan, Huang, Zhang, Ke (bib0023) 2018; 15 Zhang (10.1016/j.ijmultiphaseflow.2023.104445_bib0041) 2015; 137 Li (10.1016/j.ijmultiphaseflow.2023.104445_bib0015) 2021; 167 Liu (10.1016/j.ijmultiphaseflow.2023.104445_bib0016) 2017; 10 Qin (10.1016/j.ijmultiphaseflow.2023.104445_bib0023) 2018; 15 Zhao (10.1016/j.ijmultiphaseflow.2023.104445_bib0040) 2016; 78 Arabnejad (10.1016/j.ijmultiphaseflow.2023.104445_bib0001) 2020 Cheng (10.1016/j.ijmultiphaseflow.2023.104445_bib0004) 2019; 77 Zhang (10.1016/j.ijmultiphaseflow.2023.104445_bib0039) 2018; 124 Dreyer (10.1016/j.ijmultiphaseflow.2023.104445_bib0006) 2014; 55 Choi (10.1016/j.ijmultiphaseflow.2023.104445_bib0003) 2009; 624 Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0033) 2011; 51 Shu (10.1016/j.ijmultiphaseflow.2023.104445_bib0027) 2021; 33 Xu (10.1016/j.ijmultiphaseflow.2023.104445_bib0036) 2020; 213 Han (10.1016/j.ijmultiphaseflow.2023.104445_bib0010) 2020; 155 Li (10.1016/j.ijmultiphaseflow.2023.104445_bib0019) 2021; 33 Tan (10.1016/j.ijmultiphaseflow.2023.104445_bib0029) 2015; 137 Han (10.1016/j.ijmultiphaseflow.2023.104445_bib0009) 2020; 162 Miorini (10.1016/j.ijmultiphaseflow.2023.104445_bib0022) 2012; 134 Qian (10.1016/j.ijmultiphaseflow.2023.104445_bib0024) 2022; 34 Fei (10.1016/j.ijmultiphaseflow.2023.104445_bib0007) 2022; 34 Guo (10.1016/j.ijmultiphaseflow.2023.104445_bib0008) 2019; 187 Jiang (10.1016/j.ijmultiphaseflow.2023.104445_bib0013) 2022; 243 Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0031) 2018; 160 Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0032) 2012; 50 Huang (10.1016/j.ijmultiphaseflow.2023.104445_bib0012) 2022; 34 You (10.1016/j.ijmultiphaseflow.2023.104445_bib0037) 2006; 18 Ji (10.1016/j.ijmultiphaseflow.2023.104445_bib0014) 2021; 236 Liu (10.1016/j.ijmultiphaseflow.2023.104445_bib0018) 2018; 129 Muthanna (10.1016/j.ijmultiphaseflow.2023.104445_bib0021) 2004; 42 Chen (10.1016/j.ijmultiphaseflow.2023.104445_bib0005) 2020; 142 Liu (10.1016/j.ijmultiphaseflow.2023.104445_bib0017) 2019; 129 Wu (10.1016/j.ijmultiphaseflow.2023.104445_bib0034) 2011; 50 Wang (10.1016/j.ijmultiphaseflow.2023.104445_bib0035) 2020; 130 Zhang (10.1016/j.ijmultiphaseflow.2023.104445_bib0042) 2015; 77 Long (10.1016/j.ijmultiphaseflow.2023.104445_bib0020) 2021; 33 Shen (10.1016/j.ijmultiphaseflow.2023.104445_bib0026) 2022; 36 Arabnejad (10.1016/j.ijmultiphaseflow.2023.104445_bib0002) 2019; 119 Tan (10.1016/j.ijmultiphaseflow.2023.104445_bib0030) 2012; 226 Thakker (10.1016/j.ijmultiphaseflow.2023.104445_bib0028) 2003; 29 You (10.1016/j.ijmultiphaseflow.2023.104445_bib0038) 2007; 586 Shang (10.1016/j.ijmultiphaseflow.2023.104445_bib0025) 2021; 33 Han (10.1016/j.ijmultiphaseflow.2023.104445_bib0011) 2022; 261 |
References_xml | – volume: 34 year: 2022 ident: bib0024 article-title: Vortex and cavity dynamics for the tip-leakage cavitation over a hydrofoil publication-title: Phys. Fluid – volume: 586 start-page: 177 year: 2007 end-page: 204 ident: bib0038 article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow publication-title: J. Fluid Mech. – volume: 137 year: 2015 ident: bib0041 article-title: Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump publication-title: J. Fluid Eng. – volume: 34 year: 2022 ident: bib0012 article-title: Investigations into the ventilated cavities around a surface-piercing hydrofoil at high Froude numbers publication-title: Phys. Fluid – volume: 134 year: 2012 ident: bib0022 article-title: The internal structure of the tip leakage cortex within the rotor of an axial waterjet pump publication-title: J. Turbomach. – volume: 15 year: 2018 ident: bib0023 article-title: Numerical investigation of different tip clearances effect on the hydrodynamic performance of pumpjet propulsor publication-title: Int. J. Comp. Method – volume: 137 year: 2015 ident: bib0029 article-title: Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump publication-title: J. Fluid Eng. – volume: 78 start-page: 39 year: 2016 end-page: 47 ident: bib0040 article-title: Numerical analysis of developed tip leakage cavitating flows using a new transport-based model publication-title: Int. Commun. Heat Mass – volume: 624 start-page: 255 year: 2009 end-page: 279 ident: bib0003 article-title: Growth, oscillation and collapse of vortex cavitation bubbles publication-title: J. Fluid Mech. – volume: 130 year: 2020 ident: bib0035 article-title: Characteristics and dynamics of compressible cavitating flows with special emphasis on compressibility effects publication-title: Int. J. Multiphase Flow – volume: 261 year: 2022 ident: bib0011 article-title: Method of data-driven mode decomposition for cavitating flow in a Venturi nozzle publication-title: Ocean Eng. – volume: 162 start-page: 144 year: 2020 end-page: 150 ident: bib0009 article-title: Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode publication-title: Renew. Energy – volume: 77 start-page: 788 year: 2019 end-page: 809 ident: bib0004 article-title: Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence publication-title: Appl. Math. Model – volume: 55 start-page: 1 year: 2014 end-page: 13 ident: bib0006 article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV publication-title: Exp. Fluids – volume: 77 start-page: 244 year: 2015 end-page: 259 ident: bib0042 article-title: Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump publication-title: Int. J. Multiphase Flow – volume: 119 start-page: 123 year: 2019 end-page: 143 ident: bib0002 article-title: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation publication-title: Int. J. Multiphase Flow – volume: 42 start-page: 2320 year: 2004 end-page: 2331 ident: bib0021 article-title: Wake of a compressor cascade with tip gap, part 1: mean flow and turbulence structure publication-title: AIAA J. – volume: 236 year: 2021 ident: bib0014 article-title: Effect of blade thickness on rotating stall of mixed flow pump using entropy generation analysis publication-title: Energy – volume: 243 year: 2022 ident: bib0013 article-title: Large-eddy simulation of three-dimensional aerofoil tip-gap flow publication-title: Ocean Eng. – volume: 187 year: 2019 ident: bib0008 article-title: Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump publication-title: Ocean Eng. – volume: 34 year: 2022 ident: bib0007 article-title: Energy performance and flow characteristics of a slanted axial-flow pump under cavitation conditions publication-title: Phys. Fluid – volume: 155 start-page: 725 year: 2020 end-page: 734 ident: bib0010 article-title: Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode publication-title: Renew. Energy – volume: 33 year: 2021 ident: bib0020 article-title: Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions publication-title: Phys. Fluid – volume: 36 start-page: 1289 year: 2022 end-page: 1302 ident: bib0026 article-title: Comparative study of tip leakage vortex trajectory and cavitation in an axial flow pump with various tip clearances publication-title: J. Mech. Sci. Technol. – volume: 33 year: 2021 ident: bib0019 article-title: Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters publication-title: Phys. Fluid – volume: 124 start-page: 900 year: 2018 end-page: 911 ident: bib0039 article-title: Simulations on the cavitating flow and corresponding risk of erosion in diesel injector nozzles with double array holes publication-title: Int. J. Heat Mass Transf. – volume: 18 start-page: 683 year: 2006 ident: bib0037 article-title: Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade publication-title: Phys. Fluid – volume: 50 start-page: 2574 year: 2012 end-page: 2587 ident: bib0032 article-title: Turbulence within the tip-leakage vortex of an axial waterjet pump publication-title: AIAA J. – volume: 129 start-page: 606 year: 2019 end-page: 615 ident: bib0017 article-title: Spatial-temporal evolution of tip leakage vortex in a mixed flow pump with tip clearance publication-title: J. Fluid Eng. – volume: 51 start-page: 1721 year: 2011 end-page: 1737 ident: bib0033 article-title: Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade publication-title: Exp. Fluids – volume: 50 start-page: 989 year: 2011 end-page: 1003 ident: bib0034 article-title: Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump publication-title: Exp. Fluids – year: 2020 ident: bib0001 article-title: Scale resolving simulations of the non-cavitating and cavitating flows in an axial water jet pump publication-title: 33rd Symposium on Naval Hydrodynamics, Osaka, Japan – volume: 33 start-page: 683 year: 2021 ident: bib0027 article-title: Three-dimensional spatial-temporal evolution and dynamics of the tip leakage vortex in an oil-gas multiphase pump publication-title: Phys. Fluid – volume: 33 year: 2021 ident: bib0025 article-title: Effects of tip clearance size on vortical structures and turbulence statistics in tip leakage flows: a direct numerical simulation study publication-title: Phys. Fluid – volume: 213 year: 2020 ident: bib0036 article-title: LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model publication-title: Ocean Eng. – volume: 10 start-page: 191 year: 2017 ident: bib0016 article-title: Energy performance and flow patterns of a mixed flow pump with different tip clearance sizes publication-title: Energies – volume: 167 start-page: 740 year: 2021 end-page: 760 ident: bib0015 article-title: Numerical investigation of energy loss mechanism of mixed flow pump under stall condition publication-title: Renew. Energy – volume: 160 start-page: 143 year: 2018 end-page: 155 ident: bib0031 article-title: Numerical modelling of unsteady cavitation and induced noise around a marine propeller publication-title: Ocean Eng. – volume: 29 start-page: 529 year: 2003 end-page: 547 ident: bib0028 article-title: Computed effects of tip clearance on performance of impulse turbine for wave energy conversion publication-title: Renew. Energ. – volume: 226 start-page: 764 year: 2012 end-page: 775 ident: bib0030 article-title: Direct and inverse iterative design method for centrifugal pump impellers publication-title: P. I. Mech. Eng. A-J. Pow. – volume: 129 start-page: 606 year: 2018 end-page: 615 ident: bib0018 article-title: Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode publication-title: Renew. Energy – volume: 142 year: 2020 ident: bib0005 article-title: Experimental investigations of cavitation performance breakdown in an axial waterjet pump publication-title: J. Fluid Eng. – volume: 34 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0007 article-title: Energy performance and flow characteristics of a slanted axial-flow pump under cavitation conditions publication-title: Phys. Fluid doi: 10.1063/5.0085388 – volume: 586 start-page: 177 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0038 article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112007006842 – volume: 137 issue: 12 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0041 article-title: Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump publication-title: J. Fluid Eng. doi: 10.1115/1.4030914 – volume: 130 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0035 article-title: Characteristics and dynamics of compressible cavitating flows with special emphasis on compressibility effects publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2020.103357 – volume: 142 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0005 article-title: Experimental investigations of cavitation performance breakdown in an axial waterjet pump publication-title: J. Fluid Eng. doi: 10.1115/1.4047287 – volume: 187 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0008 article-title: Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106170 – volume: 34 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0024 article-title: Vortex and cavity dynamics for the tip-leakage cavitation over a hydrofoil publication-title: Phys. Fluid doi: 10.1063/5.0099070 – volume: 624 start-page: 255 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0003 article-title: Growth, oscillation and collapse of vortex cavitation bubbles publication-title: J. Fluid Mech. doi: 10.1017/S0022112008005430 – volume: 33 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0025 article-title: Effects of tip clearance size on vortical structures and turbulence statistics in tip leakage flows: a direct numerical simulation study publication-title: Phys. Fluid doi: 10.1063/5.0059746 – volume: 77 start-page: 788 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0004 article-title: Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence publication-title: Appl. Math. Model doi: 10.1016/j.apm.2019.08.005 – volume: 155 start-page: 725 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0010 article-title: Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.142 – volume: 119 start-page: 123 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0002 article-title: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2019.06.010 – volume: 34 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0012 article-title: Investigations into the ventilated cavities around a surface-piercing hydrofoil at high Froude numbers publication-title: Phys. Fluid – volume: 129 start-page: 606 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0017 article-title: Spatial-temporal evolution of tip leakage vortex in a mixed flow pump with tip clearance publication-title: J. Fluid Eng. – volume: 50 start-page: 989 issue: 4 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0034 article-title: Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump publication-title: Exp. Fluids doi: 10.1007/s00348-010-0975-0 – volume: 213 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0036 article-title: LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107661 – volume: 15 issue: 05 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0023 article-title: Numerical investigation of different tip clearances effect on the hydrodynamic performance of pumpjet propulsor publication-title: Int. J. Comp. Method – volume: 129 start-page: 606 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0018 article-title: Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode publication-title: Renew. Energy doi: 10.1016/j.renene.2018.06.032 – volume: 236 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0014 article-title: Effect of blade thickness on rotating stall of mixed flow pump using entropy generation analysis publication-title: Energy doi: 10.1016/j.energy.2021.121381 – volume: 29 start-page: 529 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0028 article-title: Computed effects of tip clearance on performance of impulse turbine for wave energy conversion publication-title: Renew. Energ. doi: 10.1016/j.renene.2003.09.007 – volume: 77 start-page: 244 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0042 article-title: Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2015.09.006 – volume: 137 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0029 article-title: Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump publication-title: J. Fluid Eng. doi: 10.1115/1.4030614 – volume: 261 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0011 article-title: Method of data-driven mode decomposition for cavitating flow in a Venturi nozzle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112114 – volume: 243 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0013 article-title: Large-eddy simulation of three-dimensional aerofoil tip-gap flow publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110315 – volume: 134 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0022 article-title: The internal structure of the tip leakage cortex within the rotor of an axial waterjet pump publication-title: J. Turbomach. doi: 10.1115/1.4003065 – volume: 50 start-page: 2574 issue: 11 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0032 article-title: Turbulence within the tip-leakage vortex of an axial waterjet pump publication-title: AIAA J. doi: 10.2514/1.J051491 – year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0001 article-title: Scale resolving simulations of the non-cavitating and cavitating flows in an axial water jet pump – volume: 33 start-page: 683 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0027 article-title: Three-dimensional spatial-temporal evolution and dynamics of the tip leakage vortex in an oil-gas multiphase pump publication-title: Phys. Fluid doi: 10.1063/5.0073634 – volume: 33 issue: 9 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0019 article-title: Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters publication-title: Phys. Fluid doi: 10.1063/5.0060590 – volume: 18 start-page: 683 issue: 10 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0037 article-title: Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade publication-title: Phys. Fluid doi: 10.1063/1.2354544 – volume: 167 start-page: 740 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0015 article-title: Numerical investigation of energy loss mechanism of mixed flow pump under stall condition publication-title: Renew. Energy doi: 10.1016/j.renene.2020.11.146 – volume: 42 start-page: 2320 issue: 11 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0021 article-title: Wake of a compressor cascade with tip gap, part 1: mean flow and turbulence structure publication-title: AIAA J. doi: 10.2514/1.5270 – volume: 78 start-page: 39 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0040 article-title: Numerical analysis of developed tip leakage cavitating flows using a new transport-based model publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2016.08.007 – volume: 36 start-page: 1289 issue: 3 year: 2022 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0026 article-title: Comparative study of tip leakage vortex trajectory and cavitation in an axial flow pump with various tip clearances publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-022-0219-2 – volume: 162 start-page: 144 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0009 article-title: Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.033 – volume: 51 start-page: 1721 issue: 6 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0033 article-title: Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade publication-title: Exp. Fluids doi: 10.1007/s00348-011-1189-9 – volume: 55 start-page: 1 issue: 11 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0006 article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV publication-title: Exp. Fluids doi: 10.1007/s00348-014-1849-7 – volume: 226 start-page: 764 issue: A6 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0030 article-title: Direct and inverse iterative design method for centrifugal pump impellers publication-title: P. I. Mech. Eng. A-J. Pow. – volume: 160 start-page: 143 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0031 article-title: Numerical modelling of unsteady cavitation and induced noise around a marine propeller publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.04.028 – volume: 124 start-page: 900 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0039 article-title: Simulations on the cavitating flow and corresponding risk of erosion in diesel injector nozzles with double array holes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.03.086 – volume: 10 start-page: 191 issue: 2 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0016 article-title: Energy performance and flow patterns of a mixed flow pump with different tip clearance sizes publication-title: Energies doi: 10.3390/en10020191 – volume: 33 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2023.104445_bib0020 article-title: Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions publication-title: Phys. Fluid doi: 10.1063/5.0040618 |
SSID | ssj0005743 |
Score | 2.545276 |
Snippet | •A cavitation structure of double-hump PTLVC is firstly observed in mixed flow pump.•Double-hump PTLVC is classified: incepting, growing, merging, propagating... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104445 |
SubjectTerms | Experiment High-speed visualization Mixed flow pump Tip leakage cavitation Tip leakage vortex |
Title | Experimental investigation on spatial-temporal evolution of tip leakage cavitation in a mixed flow pump with tip clearance |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2023.104445 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hIhAMCAqI8qg8ILb0QdKUDAxV1aqA6AKVukWOfRYpoa1oKYiB385d4tKCGBiQsiSyLcd3uof9-TuA04j0JtCKlNd3fYczBCcIztGJompF1VVU05K3Bm67fqfnXfdr_RVozu_CMKzS2v7MpqfW2n4p29Usj-O4fMfBfMAHBW7qOJl22_PqrOWljyWYRway58YOt16HswXGKx5ksL0H8hgmGb2WuJg4H3t6fL3pN0e15Hza27Blo0bRyCa2Ays4zMPmEpdgHtZSLKea7MJ7a4m1X8QLIo3RUNAzYQy1TBxLSpUInFn1EyMjaJoiQflIZkYoObMM3jSKkOIpfkMt-A_EmLRA8B5u2kFx7QlWnz3otVv3zY5jSyw4ynX9qaPIFvrKaCXNBQaK1hF9hW7N1aoiI4qdEKPIN5XAIOWBlFtVPSnJwZGF9zVSrLMPueFoiAcgqqaiUXrKyJryDFImZYJzppfDelVL7Rbgcr6eobKz5zIYSTgHmg3Cn_IIWR5hJo8C1L_6jzMmjj_3bMzFF37TrZDcxh_HOPyHMY5gg98ysO8x5KbPL3hCIc00KqY6W4TVxtVNp_sJwaP-GA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4VEK8B8RTl6QGxhbYkdcnAgFCrAm0XQGKLHPssAqGtoBTEwG_nLnGhIAYGpEyJbTm-yz3sL98B7MWkN6HRpLzSlx5nCF4YHqIXx5Wyrum4ahRvDbQ7snkdnN9UbwpwOvoXhmGVzvbnNj2z1u5Oya1mqZ8kpUsO5kM-KPAzxyknYCqgz5fLGBy8j-E8cpQ9t_a4-Qzsf4G8krsct3dLLsOmvZcDribO554B_9_0m6ca8z6NRVhwYaM4yWe2BAXsLsP8GJngMkxnYE79tAJv9THafpF8MWn0uoKuJwZRq9RzrFSpwKHTP9GzgqYpUlT3ZGeEVkNH4U2jCCUeklc0gt9A9EkNBG_iZh00F59g_VmF60b96rTpuRoLnvZ9OfA0GUOprdHKHmGoaSFRavSrvtFlFVPwhBjH0pZDi5QIUnJVCZQiD0cmXhqkYGcNJru9Lq6DqNiyQRVoq6o6sEiplA0PmV8OaxWjjF-E49F6RtrNnutgpNEIaXYX_ZRHxPKIcnkUofbZv59Tcfy558lIfNE35YrIb_xxjI1_GGMXZptX7VbUOutcbMIcP8mRv1swOXh8xm2KbwbxTqa_H35R_6Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+spatial-temporal+evolution+of+tip+leakage+cavitation+in+a+mixed+flow+pump+with+tip+clearance&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Han%2C+Yadong&rft.au=Tan%2C+Lei&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=164&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2023.104445&rft.externalDocID=S0301932223000666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |