Statistical BER Analysis of Wireline Links With Non-Binary Linear Block Codes Subject to DFE Error Propagation
This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors t...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 67; no. 1; pp. 284 - 297 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques including state aggregation, time aggregation, state reduction, and dynamic programming are introduced making the time complexity to compute post-FEC BER below 10 -15 reasonable. Error bounds associated with each method are found. The efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more sophisticated linear block codes than prior work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a 7 nm FinFET technology is used as a test vehicle to validate this model. Measured data with two different channels reveals that the statistical model can properly predict the post-FEC error floor with standard FEC codes. While this paper demonstrates the method for capturing DFE error propagation, the method is general and can be applied to model other communication systems having memory effects. Moreover, our proposed model can be easily extended to higher-level PAM schemes and other advanced equalizer architectures to assist in making architectural choices for wireline transceivers. |
---|---|
AbstractList | This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques including state aggregation, time aggregation, state reduction, and dynamic programming are introduced making the time complexity to compute post-FEC BER below 10 -15 reasonable. Error bounds associated with each method are found. The efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more sophisticated linear block codes than prior work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a 7 nm FinFET technology is used as a test vehicle to validate this model. Measured data with two different channels reveals that the statistical model can properly predict the post-FEC error floor with standard FEC codes. While this paper demonstrates the method for capturing DFE error propagation, the method is general and can be applied to model other communication systems having memory effects. Moreover, our proposed model can be easily extended to higher-level PAM schemes and other advanced equalizer architectures to assist in making architectural choices for wireline transceivers. This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques including state aggregation, time aggregation, state reduction, and dynamic programming are introduced making the time complexity to compute post-FEC BER below 10−15 reasonable. Error bounds associated with each method are found. The efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more sophisticated linear block codes than prior work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a 7 nm FinFET technology is used as a test vehicle to validate this model. Measured data with two different channels reveals that the statistical model can properly predict the post-FEC error floor with standard FEC codes. While this paper demonstrates the method for capturing DFE error propagation, the method is general and can be applied to model other communication systems having memory effects. Moreover, our proposed model can be easily extended to higher-level PAM schemes and other advanced equalizer architectures to assist in making architectural choices for wireline transceivers. |
Author | Carusone, Anthony Chan Shahramian, Shayan Shakiba, Hossein Yang, Ming Krotnev, Peter Wong, Henry |
Author_xml | – sequence: 1 givenname: Ming orcidid: 0000-0002-2739-7496 surname: Yang fullname: Yang, Ming email: ming.yang@isl.utoronto.ca organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada – sequence: 2 givenname: Shayan surname: Shahramian fullname: Shahramian, Shayan email: shayan.shahramian@huawei.com organization: Huawei Technologies Canada, Ottawa, Canada – sequence: 3 givenname: Hossein surname: Shakiba fullname: Shakiba, Hossein email: hossein.shakiba@huawei.com organization: Huawei Technologies Canada, Ottawa, Canada – sequence: 4 givenname: Henry surname: Wong fullname: Wong, Henry email: henry.wong@huawei.com organization: Huawei Technologies Canada, Ottawa, Canada – sequence: 5 givenname: Peter orcidid: 0000-0001-7180-0396 surname: Krotnev fullname: Krotnev, Peter email: peter.krotnev@huawei.com organization: Huawei Technologies Canada, Ottawa, Canada – sequence: 6 givenname: Anthony Chan orcidid: 0000-0002-0977-7516 surname: Carusone fullname: Carusone, Anthony Chan email: tony.chan.carusone@isl.utoronto.ca organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada |
BookMark | eNp9kLtOwzAUhi0EEtcHQCyWmFN8SVx7pKVApQoQLWKMHOcEXIJdbHfo25PQioGB6Vz0_-fyHaN95x0gdE7JgFKirhbj-XTACFUDpnJeCLWHjmhRyIxIIvb7PFeZ5EweouMYl4QwRTg9Qm6edLIxWaNbPJo842un2020EfsGv9oArXWAZ9Z9xK5M7_jBu2xknQ6bvgs64FHrzQce-xoinq-rJZiEk8c3txM8CcEH_BT8Sr91a7w7RQeNbiOc7eIJermdLMb32ezxbjq-nmWGc5EyI3JDKxA6p5QrxpuhbHIttalZRXNlRE1ACQ0UumZTqbqqckFlAYoOCTDNT9Dldu4q-K81xFQu_Tp0r8WSca54LhhjnWq4VZngYwzQlMamnztT0LYtKSl7uGUPt-zhlju4nZP-ca6C_eyg_Ou52HosAPzqpRwqQTj_Bv11h0E |
CODEN | ITCSCH |
CitedBy_id | crossref_primary_10_1109_OJSSCS_2024_3421868 crossref_primary_10_1109_JLT_2023_3324602 crossref_primary_10_1109_OJCAS_2024_3391698 crossref_primary_10_1109_TCSI_2023_3298954 crossref_primary_10_3788_COL202422_050604 crossref_primary_10_1109_OJCAS_2020_3040947 crossref_primary_10_1109_OJSSCS_2024_3433324 crossref_primary_10_1109_TCSI_2020_3038865 crossref_primary_10_1109_OJCAS_2022_3173686 crossref_primary_10_3390_electronics12153272 crossref_primary_10_1109_TCSII_2021_3099767 crossref_primary_10_3390_electronics12183912 crossref_primary_10_1109_JSSC_2021_3109167 crossref_primary_10_1109_TVLSI_2023_3286803 crossref_primary_10_1364_JOCN_402593 crossref_primary_10_1109_ACCESS_2022_3222757 crossref_primary_10_1109_ACCESS_2022_3229427 |
Cites_doi | 10.1109/ISSCC.2019.8662322 10.1002/j.1538-7305.1960.tb03959.x 10.1002/j.1538-7305.1963.tb00955.x 10.1109/TIT.1986.1057212 10.1109/TCSI.2011.2162465 10.1109/JLT.2015.2450537 10.4218/etrij.15.0114.0306 10.1109/GLOCOM.2009.5426027 10.1016/S0005-1098(01)00282-5 10.1109/JETCAS.2016.2528041 10.1109/ACSSC.2008.5074674 10.1109/TCOM.1987.1096682 10.1109/TCPMT.2018.2853080 10.1109/ISSCC.2018.8310207 10.1137/1031050 10.1109/TADVP.2008.923388 10.1109/VLSIC.2002.1015043 10.2307/3214403 10.1109/TCOM.1974.1092338 10.1109/CICC.2003.1249467 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCSI.2019.2943569 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0806 |
EndPage | 297 |
ExternalDocumentID | 10_1109_TCSI_2019_2943569 8879603 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: CRDPJ 505827-16; CGSD2-518889 funderid: 10.13039/501100000038 – fundername: Fonds de Recherche du Québec - Nature et Technologies grantid: 208736 funderid: 10.13039/501100003151 |
GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c336t-c64c1be6a4113923f78f4a8acd2b149c6d0e96ae1ea8afb9dbb46185e9170e2a3 |
IEDL.DBID | RIE |
ISSN | 1549-8328 |
IngestDate | Mon Jun 30 10:23:52 EDT 2025 Tue Jul 01 04:15:11 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Wed Aug 27 02:40:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-c64c1be6a4113923f78f4a8acd2b149c6d0e96ae1ea8afb9dbb46185e9170e2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2739-7496 0000-0001-7180-0396 0000-0002-0977-7516 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8879603 |
PQID | 2339346222 |
PQPubID | 85411 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCSI_2019_2943569 ieee_primary_8879603 crossref_citationtrail_10_1109_TCSI_2019_2943569 proquest_journals_2339346222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
PublicationTitleAbbrev | TCSI |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | (ref14) 2014 ref34 xiao (ref15) 2008 ref30 ref33 ref11 ref32 ref10 ref2 kim (ref19) 2018 ref1 ref17 ref16 ref18 bertsekas (ref31) 1996 gopalakrishnan (ref20) 2016 loi (ref25) 2019 (ref13) 2011 tang (ref22) 2018 dong (ref24) 2018 (ref23) 2014 ref21 leon-garcia (ref26) 2007 ref27 ref29 ref8 ref7 szczepanek (ref12) 2019 kemeny (ref28) 1976 ref9 ref4 (ref3) 2014 ref6 ref5 |
References_xml | – year: 1976 ident: ref28 publication-title: Finite Markov Chains – start-page: 102 year: 2018 ident: ref19 article-title: A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – ident: ref34 doi: 10.1109/ISSCC.2019.8662322 – ident: ref9 doi: 10.1002/j.1538-7305.1960.tb03959.x – ident: ref10 doi: 10.1002/j.1538-7305.1963.tb00955.x – year: 2018 ident: ref24 article-title: Improved engineering analysis in FEC system gain for 56G PAM4 applications publication-title: Proc DesignCon – start-page: 114 year: 2018 ident: ref22 article-title: A 32Gb/s 133mW PAM-4 transceiver with DFE based on adaptive clock phase and threshold voltage in 65nm CMOS publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – ident: ref33 doi: 10.1109/TIT.1986.1057212 – ident: ref6 doi: 10.1109/TCSI.2011.2162465 – ident: ref2 doi: 10.1109/JLT.2015.2450537 – year: 2014 ident: ref14 – ident: ref4 doi: 10.4218/etrij.15.0114.0306 – year: 2019 ident: ref12 publication-title: 10GBASE-KR FEC Tutorial – ident: ref16 doi: 10.1109/GLOCOM.2009.5426027 – ident: ref32 doi: 10.1016/S0005-1098(01)00282-5 – ident: ref18 doi: 10.1109/JETCAS.2016.2528041 – year: 2011 ident: ref13 – ident: ref1 doi: 10.1109/ACSSC.2008.5074674 – ident: ref27 doi: 10.1109/TCOM.1987.1096682 – year: 2014 ident: ref23 – start-page: 62 year: 2016 ident: ref20 article-title: A 40/50/100Gb/s PAM-4 Ethernet transceiver in 28nm CMOS publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – start-page: 1 year: 2008 ident: ref15 article-title: A Flexible and efficient bit error rate simulation method for high-speed differential link analysis using time-domain interpolation and superposition publication-title: Proc IEEE Int Symp Electromagn Compat – ident: ref5 doi: 10.1109/TCPMT.2018.2853080 – ident: ref21 doi: 10.1109/ISSCC.2018.8310207 – ident: ref30 doi: 10.1137/1031050 – ident: ref8 doi: 10.1109/TADVP.2008.923388 – ident: ref11 doi: 10.1109/VLSIC.2002.1015043 – ident: ref29 doi: 10.2307/3214403 – start-page: 1 year: 2014 ident: ref3 – ident: ref17 doi: 10.1109/TCOM.1974.1092338 – ident: ref7 doi: 10.1109/CICC.2003.1249467 – year: 1996 ident: ref31 publication-title: Neuro-Dynamic Programming – year: 2007 ident: ref26 publication-title: Probability Statistics and Random Processes for Electrical Engineering – start-page: 120 year: 2019 ident: ref25 article-title: 6.5 A 400Gb/s transceiver for PAM-4 optical direct-detect application in 16nm FinFET publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers |
SSID | ssj0029031 |
Score | 2.4072466 |
Snippet | This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 284 |
SubjectTerms | Agglomeration BER estimation Binary codes Block codes burst error Communications systems Computational modeling decision feedback equalization (DFE) Decision feedback equalizers Dynamic programming error propagation Estimation Forward error correction forward error correction (FEC) linear block code Markov chains Markov model Markov processes Propagation pulse amplitude modulation (PAM) state aggregation State reduction Statistical models Test vehicles time aggregation Transceivers wireline channel |
Title | Statistical BER Analysis of Wireline Links With Non-Binary Linear Block Codes Subject to DFE Error Propagation |
URI | https://ieeexplore.ieee.org/document/8879603 https://www.proquest.com/docview/2339346222 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SnNJDP5KWbpsWHXoK9caWtPLq2N3ukhYSQpNAbkYfowYS7OD1XvrrO5K9S0hL6c0WEgieRvOeNDMC-KRLPjFENDIxRRIogUzRmsAzxz2iKS15wJgofHauTq_l95vJzQ583ubCIGIKPsNx_Ex3-b5x63hUdkIGQYRb7MIuCbc-V2srrnQu-tqoUme0SqfDDWaR65Or-eW3GMSlx1wTO4ixzY98UHpU5Y-dOLmX5Qs420ysjyq5G687O3a_ntRs_N-Zv4TnA89kX_qF8Qp2sD6AZ4-qDx5CHYlmqtNMHWeLH2xToIQ1gcWo2MhAWRSrK_rtbtl5U2ezlL8bW8lE2Ixc4R2bNx5XjLageKbDuoZ9XS7Yom2bll20JMp_JvRfw_VycTU_zYbnFzInhOoyp6QrLCojC6KJXIRyGqSZGue5JV3llM9RK4MFUmOw2lsrFbl_JAWYIzfiDezVTY1vgZWae9JJufJGSgwTo7gMGIyfyLIsfDGCfANI5Yba5PGJjPsqaZRcVxHDKmJYDRiO4Hg75KEvzPGvzocRk23HAY4RHG1QrwbTXVVcCC2kIt707u-j3sM-j6I7ncMcwV7XrvEDMZPOfkxL8jeiX99k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGOAAHBoyJjg184IRIl9iOUx9p16qDtULQSbtF_vEM0lCC0vSyv55nJ62mgRC3xLIlS5-f3_fZ7z0T8k4VLNdINBI-AhQoHk3RaM8SyxyALgx6wJAovFjK-ZX4dJ1f75EPu1wYAIjBZzAMn_Eu39V2E47KztAgkHDzB-Qh-v0867K1dvJKpbyrjipUgut01N9hZqk6W02-XYQwLjVkCvlBiG6-44Xisyp_7MXRwcwOyGI7tS6u5Ga4ac3Q3t6r2vi_c39GnvZMk37slsZzsgfVC_LkTv3BQ1IFqhkrNWPH8fQr3ZYoobWnIS42cFAa5Ooaf9sfdFlXyThm8IZWNBI6Rmd4Qye1gzXFTSic6tC2puezKZ02Td3QLw3K8u8R_5fkajZdTeZJ_wBDYjmXbWKlsJkBqUWGRJFxX4y80CNtHTOorKx0KSipIQNs9EY5Y4REAgCoAVNgmh-R_aqu4BWhhWIOlVIqnRYCfK4lEx68drkoisxlA5JuASltX508PJLxs4wqJVVlwLAMGJY9hgPyfjfkV1ea41-dDwMmu449HANyskW97I13XTLOFRcSmdPx30e9JY_mq8VleXmx_PyaPGZBgsdTmROy3zYbOEWe0po3cXn-BnKM4q0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+BER+Analysis+of+Wireline+Links+With+Non-Binary+Linear+Block+Codes+Subject+to+DFE+Error+Propagation&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Yang%2C+Ming&rft.au=Shahramian%2C+Shayan&rft.au=Shakiba%2C+Hossein&rft.au=Wong%2C+Henry&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=1549-8328&rft.volume=67&rft.issue=1&rft.spage=284&rft.epage=297&rft_id=info:doi/10.1109%2FTCSI.2019.2943569&rft.externalDocID=8879603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |