Statistical BER Analysis of Wireline Links With Non-Binary Linear Block Codes Subject to DFE Error Propagation

This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 67; no. 1; pp. 284 - 297
Main Authors Yang, Ming, Shahramian, Shayan, Shakiba, Hossein, Wong, Henry, Krotnev, Peter, Carusone, Anthony Chan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques including state aggregation, time aggregation, state reduction, and dynamic programming are introduced making the time complexity to compute post-FEC BER below 10 -15 reasonable. Error bounds associated with each method are found. The efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more sophisticated linear block codes than prior work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a 7 nm FinFET technology is used as a test vehicle to validate this model. Measured data with two different channels reveals that the statistical model can properly predict the post-FEC error floor with standard FEC codes. While this paper demonstrates the method for capturing DFE error propagation, the method is general and can be applied to model other communication systems having memory effects. Moreover, our proposed model can be easily extended to higher-level PAM schemes and other advanced equalizer architectures to assist in making architectural choices for wireline transceivers.
AbstractList This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques including state aggregation, time aggregation, state reduction, and dynamic programming are introduced making the time complexity to compute post-FEC BER below 10 -15 reasonable. Error bounds associated with each method are found. The efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more sophisticated linear block codes than prior work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a 7 nm FinFET technology is used as a test vehicle to validate this model. Measured data with two different channels reveals that the statistical model can properly predict the post-FEC error floor with standard FEC codes. While this paper demonstrates the method for capturing DFE error propagation, the method is general and can be applied to model other communication systems having memory effects. Moreover, our proposed model can be easily extended to higher-level PAM schemes and other advanced equalizer architectures to assist in making architectural choices for wireline transceivers.
This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques including state aggregation, time aggregation, state reduction, and dynamic programming are introduced making the time complexity to compute post-FEC BER below 10−15 reasonable. Error bounds associated with each method are found. The efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more sophisticated linear block codes than prior work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a 7 nm FinFET technology is used as a test vehicle to validate this model. Measured data with two different channels reveals that the statistical model can properly predict the post-FEC error floor with standard FEC codes. While this paper demonstrates the method for capturing DFE error propagation, the method is general and can be applied to model other communication systems having memory effects. Moreover, our proposed model can be easily extended to higher-level PAM schemes and other advanced equalizer architectures to assist in making architectural choices for wireline transceivers.
Author Carusone, Anthony Chan
Shahramian, Shayan
Shakiba, Hossein
Yang, Ming
Krotnev, Peter
Wong, Henry
Author_xml – sequence: 1
  givenname: Ming
  orcidid: 0000-0002-2739-7496
  surname: Yang
  fullname: Yang, Ming
  email: ming.yang@isl.utoronto.ca
  organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
– sequence: 2
  givenname: Shayan
  surname: Shahramian
  fullname: Shahramian, Shayan
  email: shayan.shahramian@huawei.com
  organization: Huawei Technologies Canada, Ottawa, Canada
– sequence: 3
  givenname: Hossein
  surname: Shakiba
  fullname: Shakiba, Hossein
  email: hossein.shakiba@huawei.com
  organization: Huawei Technologies Canada, Ottawa, Canada
– sequence: 4
  givenname: Henry
  surname: Wong
  fullname: Wong, Henry
  email: henry.wong@huawei.com
  organization: Huawei Technologies Canada, Ottawa, Canada
– sequence: 5
  givenname: Peter
  orcidid: 0000-0001-7180-0396
  surname: Krotnev
  fullname: Krotnev, Peter
  email: peter.krotnev@huawei.com
  organization: Huawei Technologies Canada, Ottawa, Canada
– sequence: 6
  givenname: Anthony Chan
  orcidid: 0000-0002-0977-7516
  surname: Carusone
  fullname: Carusone, Anthony Chan
  email: tony.chan.carusone@isl.utoronto.ca
  organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
BookMark eNp9kLtOwzAUhi0EEtcHQCyWmFN8SVx7pKVApQoQLWKMHOcEXIJdbHfo25PQioGB6Vz0_-fyHaN95x0gdE7JgFKirhbj-XTACFUDpnJeCLWHjmhRyIxIIvb7PFeZ5EweouMYl4QwRTg9Qm6edLIxWaNbPJo842un2020EfsGv9oArXWAZ9Z9xK5M7_jBu2xknQ6bvgs64FHrzQce-xoinq-rJZiEk8c3txM8CcEH_BT8Sr91a7w7RQeNbiOc7eIJermdLMb32ezxbjq-nmWGc5EyI3JDKxA6p5QrxpuhbHIttalZRXNlRE1ACQ0UumZTqbqqckFlAYoOCTDNT9Dldu4q-K81xFQu_Tp0r8WSca54LhhjnWq4VZngYwzQlMamnztT0LYtKSl7uGUPt-zhlju4nZP-ca6C_eyg_Ou52HosAPzqpRwqQTj_Bv11h0E
CODEN ITCSCH
CitedBy_id crossref_primary_10_1109_OJSSCS_2024_3421868
crossref_primary_10_1109_JLT_2023_3324602
crossref_primary_10_1109_OJCAS_2024_3391698
crossref_primary_10_1109_TCSI_2023_3298954
crossref_primary_10_3788_COL202422_050604
crossref_primary_10_1109_OJCAS_2020_3040947
crossref_primary_10_1109_OJSSCS_2024_3433324
crossref_primary_10_1109_TCSI_2020_3038865
crossref_primary_10_1109_OJCAS_2022_3173686
crossref_primary_10_3390_electronics12153272
crossref_primary_10_1109_TCSII_2021_3099767
crossref_primary_10_3390_electronics12183912
crossref_primary_10_1109_JSSC_2021_3109167
crossref_primary_10_1109_TVLSI_2023_3286803
crossref_primary_10_1364_JOCN_402593
crossref_primary_10_1109_ACCESS_2022_3222757
crossref_primary_10_1109_ACCESS_2022_3229427
Cites_doi 10.1109/ISSCC.2019.8662322
10.1002/j.1538-7305.1960.tb03959.x
10.1002/j.1538-7305.1963.tb00955.x
10.1109/TIT.1986.1057212
10.1109/TCSI.2011.2162465
10.1109/JLT.2015.2450537
10.4218/etrij.15.0114.0306
10.1109/GLOCOM.2009.5426027
10.1016/S0005-1098(01)00282-5
10.1109/JETCAS.2016.2528041
10.1109/ACSSC.2008.5074674
10.1109/TCOM.1987.1096682
10.1109/TCPMT.2018.2853080
10.1109/ISSCC.2018.8310207
10.1137/1031050
10.1109/TADVP.2008.923388
10.1109/VLSIC.2002.1015043
10.2307/3214403
10.1109/TCOM.1974.1092338
10.1109/CICC.2003.1249467
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2019.2943569
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 297
ExternalDocumentID 10_1109_TCSI_2019_2943569
8879603
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: CRDPJ 505827-16; CGSD2-518889
  funderid: 10.13039/501100000038
– fundername: Fonds de Recherche du Québec - Nature et Technologies
  grantid: 208736
  funderid: 10.13039/501100003151
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c336t-c64c1be6a4113923f78f4a8acd2b149c6d0e96ae1ea8afb9dbb46185e9170e2a3
IEDL.DBID RIE
ISSN 1549-8328
IngestDate Mon Jun 30 10:23:52 EDT 2025
Tue Jul 01 04:15:11 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Wed Aug 27 02:40:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-c64c1be6a4113923f78f4a8acd2b149c6d0e96ae1ea8afb9dbb46185e9170e2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2739-7496
0000-0001-7180-0396
0000-0002-0977-7516
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8879603
PQID 2339346222
PQPubID 85411
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCSI_2019_2943569
ieee_primary_8879603
crossref_citationtrail_10_1109_TCSI_2019_2943569
proquest_journals_2339346222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References (ref14) 2014
ref34
xiao (ref15) 2008
ref30
ref33
ref11
ref32
ref10
ref2
kim (ref19) 2018
ref1
ref17
ref16
ref18
bertsekas (ref31) 1996
gopalakrishnan (ref20) 2016
loi (ref25) 2019
(ref13) 2011
tang (ref22) 2018
dong (ref24) 2018
(ref23) 2014
ref21
leon-garcia (ref26) 2007
ref27
ref29
ref8
ref7
szczepanek (ref12) 2019
kemeny (ref28) 1976
ref9
ref4
(ref3) 2014
ref6
ref5
References_xml – year: 1976
  ident: ref28
  publication-title: Finite Markov Chains
– start-page: 102
  year: 2018
  ident: ref19
  article-title: A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref34
  doi: 10.1109/ISSCC.2019.8662322
– ident: ref9
  doi: 10.1002/j.1538-7305.1960.tb03959.x
– ident: ref10
  doi: 10.1002/j.1538-7305.1963.tb00955.x
– year: 2018
  ident: ref24
  article-title: Improved engineering analysis in FEC system gain for 56G PAM4 applications
  publication-title: Proc DesignCon
– start-page: 114
  year: 2018
  ident: ref22
  article-title: A 32Gb/s 133mW PAM-4 transceiver with DFE based on adaptive clock phase and threshold voltage in 65nm CMOS
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref33
  doi: 10.1109/TIT.1986.1057212
– ident: ref6
  doi: 10.1109/TCSI.2011.2162465
– ident: ref2
  doi: 10.1109/JLT.2015.2450537
– year: 2014
  ident: ref14
– ident: ref4
  doi: 10.4218/etrij.15.0114.0306
– year: 2019
  ident: ref12
  publication-title: 10GBASE-KR FEC Tutorial
– ident: ref16
  doi: 10.1109/GLOCOM.2009.5426027
– ident: ref32
  doi: 10.1016/S0005-1098(01)00282-5
– ident: ref18
  doi: 10.1109/JETCAS.2016.2528041
– year: 2011
  ident: ref13
– ident: ref1
  doi: 10.1109/ACSSC.2008.5074674
– ident: ref27
  doi: 10.1109/TCOM.1987.1096682
– year: 2014
  ident: ref23
– start-page: 62
  year: 2016
  ident: ref20
  article-title: A 40/50/100Gb/s PAM-4 Ethernet transceiver in 28nm CMOS
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– start-page: 1
  year: 2008
  ident: ref15
  article-title: A Flexible and efficient bit error rate simulation method for high-speed differential link analysis using time-domain interpolation and superposition
  publication-title: Proc IEEE Int Symp Electromagn Compat
– ident: ref5
  doi: 10.1109/TCPMT.2018.2853080
– ident: ref21
  doi: 10.1109/ISSCC.2018.8310207
– ident: ref30
  doi: 10.1137/1031050
– ident: ref8
  doi: 10.1109/TADVP.2008.923388
– ident: ref11
  doi: 10.1109/VLSIC.2002.1015043
– ident: ref29
  doi: 10.2307/3214403
– start-page: 1
  year: 2014
  ident: ref3
– ident: ref17
  doi: 10.1109/TCOM.1974.1092338
– ident: ref7
  doi: 10.1109/CICC.2003.1249467
– year: 1996
  ident: ref31
  publication-title: Neuro-Dynamic Programming
– year: 2007
  ident: ref26
  publication-title: Probability Statistics and Random Processes for Electrical Engineering
– start-page: 120
  year: 2019
  ident: ref25
  article-title: 6.5 A 400Gb/s transceiver for PAM-4 optical direct-detect application in 16nm FinFET
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
SSID ssj0029031
Score 2.4072466
Snippet This paper presents a statistical model to accurately estimate post-FEC BER for high-speed wireline links using standard linear block codes, such as the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 284
SubjectTerms Agglomeration
BER estimation
Binary codes
Block codes
burst error
Communications systems
Computational modeling
decision feedback equalization (DFE)
Decision feedback equalizers
Dynamic programming
error propagation
Estimation
Forward error correction
forward error correction (FEC)
linear block code
Markov chains
Markov model
Markov processes
Propagation
pulse amplitude modulation (PAM)
state aggregation
State reduction
Statistical models
Test vehicles
time aggregation
Transceivers
wireline channel
Title Statistical BER Analysis of Wireline Links With Non-Binary Linear Block Codes Subject to DFE Error Propagation
URI https://ieeexplore.ieee.org/document/8879603
https://www.proquest.com/docview/2339346222
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SnNJDP5KWbpsWHXoK9caWtPLq2N3ukhYSQpNAbkYfowYS7OD1XvrrO5K9S0hL6c0WEgieRvOeNDMC-KRLPjFENDIxRRIogUzRmsAzxz2iKS15wJgofHauTq_l95vJzQ583ubCIGIKPsNx_Ex3-b5x63hUdkIGQYRb7MIuCbc-V2srrnQu-tqoUme0SqfDDWaR65Or-eW3GMSlx1wTO4ixzY98UHpU5Y-dOLmX5Qs420ysjyq5G687O3a_ntRs_N-Zv4TnA89kX_qF8Qp2sD6AZ4-qDx5CHYlmqtNMHWeLH2xToIQ1gcWo2MhAWRSrK_rtbtl5U2ezlL8bW8lE2Ixc4R2bNx5XjLageKbDuoZ9XS7Yom2bll20JMp_JvRfw_VycTU_zYbnFzInhOoyp6QrLCojC6KJXIRyGqSZGue5JV3llM9RK4MFUmOw2lsrFbl_JAWYIzfiDezVTY1vgZWae9JJufJGSgwTo7gMGIyfyLIsfDGCfANI5Yba5PGJjPsqaZRcVxHDKmJYDRiO4Hg75KEvzPGvzocRk23HAY4RHG1QrwbTXVVcCC2kIt707u-j3sM-j6I7ncMcwV7XrvEDMZPOfkxL8jeiX99k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGOAAHBoyJjg184IRIl9iOUx9p16qDtULQSbtF_vEM0lCC0vSyv55nJ62mgRC3xLIlS5-f3_fZ7z0T8k4VLNdINBI-AhQoHk3RaM8SyxyALgx6wJAovFjK-ZX4dJ1f75EPu1wYAIjBZzAMn_Eu39V2E47KztAgkHDzB-Qh-v0867K1dvJKpbyrjipUgut01N9hZqk6W02-XYQwLjVkCvlBiG6-44Xisyp_7MXRwcwOyGI7tS6u5Ga4ac3Q3t6r2vi_c39GnvZMk37slsZzsgfVC_LkTv3BQ1IFqhkrNWPH8fQr3ZYoobWnIS42cFAa5Ooaf9sfdFlXyThm8IZWNBI6Rmd4Qye1gzXFTSic6tC2puezKZ02Td3QLw3K8u8R_5fkajZdTeZJ_wBDYjmXbWKlsJkBqUWGRJFxX4y80CNtHTOorKx0KSipIQNs9EY5Y4REAgCoAVNgmh-R_aqu4BWhhWIOlVIqnRYCfK4lEx68drkoisxlA5JuASltX508PJLxs4wqJVVlwLAMGJY9hgPyfjfkV1ea41-dDwMmu449HANyskW97I13XTLOFRcSmdPx30e9JY_mq8VleXmx_PyaPGZBgsdTmROy3zYbOEWe0po3cXn-BnKM4q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+BER+Analysis+of+Wireline+Links+With+Non-Binary+Linear+Block+Codes+Subject+to+DFE+Error+Propagation&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Yang%2C+Ming&rft.au=Shahramian%2C+Shayan&rft.au=Shakiba%2C+Hossein&rft.au=Wong%2C+Henry&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=1549-8328&rft.volume=67&rft.issue=1&rft.spage=284&rft.epage=297&rft_id=info:doi/10.1109%2FTCSI.2019.2943569&rft.externalDocID=8879603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon