Curve Tilting With Nonlinear Model Predictive Control for Enhancing Motion Comfort
The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to raise the comfort level in automated passenger vehicles by enabling new functionalities in chassis control. One example is to actively lean the v...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 30; no. 4; pp. 1538 - 1549 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2021.3113037 |
Cover
Abstract | The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to raise the comfort level in automated passenger vehicles by enabling new functionalities in chassis control. One example is to actively lean the vehicle body toward the center of the corner to counteract the inertial lateral acceleration. Commonly known as curve tilting, the concept is deemed effective in reducing postural disturbance on the occupants and the visual-vestibular conflict when the occupants do not have an external view. We present in this article a nonlinear model predictive control (NMPC) method for the curve tilting functionality. The controller incorporates the nonlinear suspension forces in the prediction model to help achieve high tracking accuracy near the physical limit of the suspension system. The optimization process is accelerated with an explicit initialization method that is based on piecewise-affine (PWA) modeling and offline solution to an alternative optimal control problem (OCP). The controller is able to operate at 20 Hz in a hardware-in-the-loop (HIL) setup. Given sufficient computational resources, we observe a significant reduction in the lateral acceleration sensed by the passenger over a vehicle with passive suspensions, namely, by 46.5%, 25.4%, and 25.4% in the highway, rural, and urban driving scenarios, respectively. The NMPC also outperforms the baseline proportional-integral-derivative (PID) controller by achieving lower tracking error, namely, by 12.9%, 16.4%, and 38.0% in the aforementioned scenarios. |
---|---|
AbstractList | The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to raise the comfort level in automated passenger vehicles by enabling new functionalities in chassis control. One example is to actively lean the vehicle body toward the center of the corner to counteract the inertial lateral acceleration. Commonly known as curve tilting, the concept is deemed effective in reducing postural disturbance on the occupants and the visual-vestibular conflict when the occupants do not have an external view. We present in this article a nonlinear model predictive control (NMPC) method for the curve tilting functionality. The controller incorporates the nonlinear suspension forces in the prediction model to help achieve high tracking accuracy near the physical limit of the suspension system. The optimization process is accelerated with an explicit initialization method that is based on piecewise-affine (PWA) modeling and offline solution to an alternative optimal control problem (OCP). The controller is able to operate at 20 Hz in a hardware-in-the-loop (HIL) setup. Given sufficient computational resources, we observe a significant reduction in the lateral acceleration sensed by the passenger over a vehicle with passive suspensions, namely, by 46.5%, 25.4%, and 25.4% in the highway, rural, and urban driving scenarios, respectively. The NMPC also outperforms the baseline proportional-integral-derivative (PID) controller by achieving lower tracking error, namely, by 12.9%, 16.4%, and 38.0% in the aforementioned scenarios. |
Author | Sakka, Monzer Al Zheng, Yanggu Dhaens, Miguel Keviczky, Tamas Shyrokau, Barys |
Author_xml | – sequence: 1 givenname: Yanggu orcidid: 0000-0002-8724-2488 surname: Zheng fullname: Zheng, Yanggu email: y.zheng-2@tudelft.nl organization: Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands – sequence: 2 givenname: Barys orcidid: 0000-0003-4530-8853 surname: Shyrokau fullname: Shyrokau, Barys email: b.shyrokau@tudelft.nl organization: Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands – sequence: 3 givenname: Tamas orcidid: 0000-0002-2428-2300 surname: Keviczky fullname: Keviczky, Tamas email: t.keviczky@tudelft.nl organization: Delft Center of Systems and Control, Delft University of Technology, Delft, The Netherlands – sequence: 4 givenname: Monzer Al surname: Sakka fullname: Sakka, Monzer Al email: msakka@driv.com organization: DRiV Inc., Sint-Truiden, Belgium – sequence: 5 givenname: Miguel surname: Dhaens fullname: Dhaens, Miguel email: mdhaens@driv.com organization: DRiV Inc., Sint-Truiden, Belgium |
BookMark | eNp9kE1Lw0AQhhdRsK3-APES8Jw6m_1KjhLqB7QqWvEYNptduyXdrZut4L83ocWDB08zzLzPvMw7RsfOO43QBYYpxlBcL8vX5TSDDE8JxgSIOEIjzFieQs7Zcd8DJylnhJ-icdetATBlmRihl3IXvnSytG207iN5t3GVPHrXWqdlSBa-0W3yHHRjVbS9rvQuBt8mxodk5lbSqYFa-Gi965ebfh7P0ImRbafPD3WC3m5ny_I-nT_dPZQ381QRwmOqqBJ1U4MyAI3OMiBY1FIZApRjKUQujJG8yGjRKKlBG2FqVRPQQghCqSATdLW_uw3-c6e7WK39Lrjessp4DqQoaE57Fd6rVPBdF7SptsFuZPiuMFRDdNUQXTVEVx2i6xnxh1E2yuHHGKRt_yUv96TVWv86FYwxTgvyA8POfjI |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1109_OJITS_2023_3275275 crossref_primary_10_1016_j_rineng_2024_103816 crossref_primary_10_1109_LCSYS_2024_3411931 crossref_primary_10_1109_TITS_2024_3462495 crossref_primary_10_1080_03081060_2022_2134866 crossref_primary_10_1177_09544070241241444 crossref_primary_10_3390_app12136657 crossref_primary_10_3390_en16155724 crossref_primary_10_3390_s24020600 crossref_primary_10_1080_10447318_2024_2359204 crossref_primary_10_1177_09544070241269607 crossref_primary_10_1007_s11071_024_09391_4 crossref_primary_10_3846_transport_2022_16919 |
Cites_doi | 10.2140/pjm.1966.16.1 10.1007/s38311-018-0172-y 10.1137/S0363012902400713 10.1016/S0005-1098(01)00059-0 10.23919/ECC.2013.6669862 10.1109/ACC.2000.876977 10.1177/0018720814522484 10.1080/15472450.2017.1291351 10.23919/ECC.1999.7099363 10.1109/ICMECH.2019.8722930 10.1109/TAC.2011.2108450 10.3390/vehicles2040036 10.1109/3468.784175 10.1016/j.trf.2015.04.014 10.1504/IJVAS.2005.008237 10.1109/CDC.2011.6160715 10.1109/TCST.2017.2753169 10.1109/CDC.2010.5717242 10.1109/TMECH.2011.2107331 10.1016/j.arcontrol.2012.03.011 10.3390/machines7020026 10.1080/00423114.2015.1037313 10.1007/BF02326482 10.1243/0954409981530634 10.1016/j.jterra.2007.05.001 10.1243/PIME_PROC_1982_196_005_02 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2021.3113037 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 1549 |
ExternalDocumentID | 10_1109_TCST_2021_3113037 9555649 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Union Horizon 2020 Framework Program, Marie Skłodowska-Curie Actions grantid: 872907 funderid: 10.13039/100010665 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c336t-c4c7bdb0cf00de220317bacf30461a7787ffa69249dcae0ef7fbcb30e77734473 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Mon Jun 30 04:19:44 EDT 2025 Tue Jul 01 02:36:04 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Wed Aug 27 02:23:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-c4c7bdb0cf00de220317bacf30461a7787ffa69249dcae0ef7fbcb30e77734473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4530-8853 0000-0002-8724-2488 0000-0002-2428-2300 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9555649 |
PQID | 2680399484 |
PQPubID | 85425 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2680399484 ieee_primary_9555649 crossref_citationtrail_10_1109_TCST_2021_3113037 crossref_primary_10_1109_TCST_2021_3113037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-July 2022-7-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-July |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Milliken (ref23) 1995; 400 ref15 ref14 ref31 ref11 ref10 ref1 ref17 ref16 ref19 ref18 ref24 ref26 ref25 Oman (ref7) 1991 ref20 Griffin (ref2) 2004; 75 ref22 ref21 Bär (ref8) 2014 ref28 ref27 ref29 ref9 ref4 ref3 ref6 ref5 Donohew (ref30) 2004; 75 |
References_xml | – ident: ref29 doi: 10.2140/pjm.1966.16.1 – volume-title: Vorausschauende Fahrwerkregelung zur Reduktion Der Auf Die Insassen wirkenden Querbeschleunigung year: 2014 ident: ref8 – ident: ref10 doi: 10.1007/s38311-018-0172-y – ident: ref16 doi: 10.1137/S0363012902400713 – ident: ref24 doi: 10.1016/S0005-1098(01)00059-0 – ident: ref28 doi: 10.23919/ECC.2013.6669862 – start-page: 362 year: 1991 ident: ref7 article-title: Sensory conflict in motion sickness: An observer theory approach publication-title: Pictorial Commun. Virtual Real Environ. – ident: ref21 doi: 10.1109/ACC.2000.876977 – ident: ref3 doi: 10.1177/0018720814522484 – ident: ref11 doi: 10.1080/15472450.2017.1291351 – ident: ref25 doi: 10.23919/ECC.1999.7099363 – ident: ref19 doi: 10.1109/ICMECH.2019.8722930 – ident: ref17 doi: 10.1109/TAC.2011.2108450 – ident: ref31 doi: 10.3390/vehicles2040036 – ident: ref13 doi: 10.1109/3468.784175 – ident: ref1 doi: 10.1016/j.trf.2015.04.014 – ident: ref14 doi: 10.1504/IJVAS.2005.008237 – volume: 75 start-page: 739 issue: 9 year: 2004 ident: ref2 article-title: Visual field effects on motion sickness in cars publication-title: Aviation, Space, Environ. Med. – ident: ref18 doi: 10.1109/CDC.2011.6160715 – volume: 75 start-page: 649 issue: 8 year: 2004 ident: ref30 article-title: Motion sickness: Effect of the frequency of lateral oscillation publication-title: Aviation, Space, Environ. Med. – ident: ref15 doi: 10.1109/TCST.2017.2753169 – volume: 400 volume-title: Race Car Vehicle Dynamics year: 1995 ident: ref23 – ident: ref26 doi: 10.1109/CDC.2010.5717242 – ident: ref22 doi: 10.1109/TMECH.2011.2107331 – ident: ref5 doi: 10.1016/j.arcontrol.2012.03.011 – ident: ref20 doi: 10.3390/machines7020026 – ident: ref6 doi: 10.1080/00423114.2015.1037313 – ident: ref27 doi: 10.1007/BF02326482 – ident: ref9 doi: 10.1243/0954409981530634 – ident: ref4 doi: 10.1016/j.jterra.2007.05.001 – ident: ref12 doi: 10.1243/PIME_PROC_1982_196_005_02 |
SSID | ssj0014527 |
Score | 2.485533 |
Snippet | The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1538 |
SubjectTerms | Active suspension Automation Computational modeling Controllers Cost function Dynamics model predictive control motion comfort Motion sickness Nonlinear control Optimal control Optimization Passengers Prediction models Predictive control Predictive models Proportional integral derivative real-time optimization Real-time systems Suspension systems Suspensions (mechanical systems) Tracking errors Vehicle dynamics |
Title | Curve Tilting With Nonlinear Model Predictive Control for Enhancing Motion Comfort |
URI | https://ieeexplore.ieee.org/document/9555649 https://www.proquest.com/docview/2680399484 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayDGSzlwQnRkbdqsRzQxTUibEGxitypPMTEGGh0Hfj1O2k28hLhVbSxFthPbtf0Z4BTDHpUongSpsDJgRrQCiZY2ENZINJdUa-0anPuDpDdi1-N4XIHzVS-MMcYXn5mme_S5fP2sFu5X2UUax3HC0ipUUc2KXq1VxoAV41kxwomCxKckGyWe5sWwczfESDBsYYDqrmz-xQb5oSo_bmJvXrqb0F9urKgqeWwuctlU798wG_-78y3YKP1MclkoxjZUzGwH1j-hD9bhtrOYvxkynExd6TO5n-QPZFAgZ4g5cUPSpuRm7hI57koknaKonaCXS65mDw6nA6n6fgoQfnzC9_kujLpXw04vKEcsBCqKkjxQTHGpJVWWUm3CEI84l0JZj8MuOLLZWpG4GE0rYaix3EolI2o45w4rMNqD2ux5ZvaBtHXaQnVIYyY5i62W6ChwEUdhW8YCud8AumR6pkr8cTcGY5r5OISmmZNT5uSUlXJqwNmK5KUA3_hrcd3xfbWwZHkDjpaSzcrj-ZqFSZuiZ8ba7OB3qkNYC12fg6_LPYJaPl-YY_Q-cnni1e4Dj8bWnA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB6lcGg5FFpAhFLYA6cKh429642PKAKFR6IKHMHN2qcSEQIKDof--s6unai0FeJm2TvSamZ3Hp6ZbwAOMezRqRZplEmnImZlO1JoaSPprEJzSY0xvsG5P0h7Q3Zxx-8acLTshbHWhuIz2_KPIZdvHvXc_yo7zjjnKcs-wCrafcarbq1lzoBVA1oxxkmiNCQlmzWi5nHevckxFozbGKJ6pS1eWaEwVuUfXRwMzNk69Bdbq-pK7lvzUrX0r79QG9-79w34XHua5KQ6Gl-gYadfYe0P_MFNuO7OZy-W5OOJL34mt-NyRAYVdoacET8mbUJ-znwqxytF0q3K2gn6ueR0OvJIHUjVD3OA8OMDvi-3YHh2mnd7UT1kIdJJkpaRZlooo6h2lBobx3jJhZLaBSR2KfA-OydTH6UZLS21TjilVUKtEMKjBSbbsDJ9nNodIB2TtfFAZJwpwbgzCl0FIXkSdxSXyP0m0AXTC10jkPtBGJMiRCI0K7ycCi-nopZTE34sSZ4q-I23Fm96vi8X1ixvwt5CskV9QZ-LOO1Q9M1Yh-3-n-oAPvby_lVxdT64_AafYt_1EKp092ClnM3td_RFSrUfjuBv9uXZ6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curve+Tilting+With+Nonlinear+Model+Predictive+Control+for+Enhancing+Motion+Comfort&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Zheng%2C+Yanggu&rft.au=Shyrokau%2C+Barys&rft.au=Keviczky%2C+Tamas&rft.au=Monzer+Al+Sakka&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=4&rft.spage=1538&rft_id=info:doi/10.1109%2FTCST.2021.3113037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |