Curve Tilting With Nonlinear Model Predictive Control for Enhancing Motion Comfort

The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to raise the comfort level in automated passenger vehicles by enabling new functionalities in chassis control. One example is to actively lean the v...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 30; no. 4; pp. 1538 - 1549
Main Authors Zheng, Yanggu, Shyrokau, Barys, Keviczky, Tamas, Sakka, Monzer Al, Dhaens, Miguel
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2021.3113037

Cover

Abstract The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to raise the comfort level in automated passenger vehicles by enabling new functionalities in chassis control. One example is to actively lean the vehicle body toward the center of the corner to counteract the inertial lateral acceleration. Commonly known as curve tilting, the concept is deemed effective in reducing postural disturbance on the occupants and the visual-vestibular conflict when the occupants do not have an external view. We present in this article a nonlinear model predictive control (NMPC) method for the curve tilting functionality. The controller incorporates the nonlinear suspension forces in the prediction model to help achieve high tracking accuracy near the physical limit of the suspension system. The optimization process is accelerated with an explicit initialization method that is based on piecewise-affine (PWA) modeling and offline solution to an alternative optimal control problem (OCP). The controller is able to operate at 20 Hz in a hardware-in-the-loop (HIL) setup. Given sufficient computational resources, we observe a significant reduction in the lateral acceleration sensed by the passenger over a vehicle with passive suspensions, namely, by 46.5%, 25.4%, and 25.4% in the highway, rural, and urban driving scenarios, respectively. The NMPC also outperforms the baseline proportional-integral-derivative (PID) controller by achieving lower tracking error, namely, by 12.9%, 16.4%, and 38.0% in the aforementioned scenarios.
AbstractList The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to raise the comfort level in automated passenger vehicles by enabling new functionalities in chassis control. One example is to actively lean the vehicle body toward the center of the corner to counteract the inertial lateral acceleration. Commonly known as curve tilting, the concept is deemed effective in reducing postural disturbance on the occupants and the visual-vestibular conflict when the occupants do not have an external view. We present in this article a nonlinear model predictive control (NMPC) method for the curve tilting functionality. The controller incorporates the nonlinear suspension forces in the prediction model to help achieve high tracking accuracy near the physical limit of the suspension system. The optimization process is accelerated with an explicit initialization method that is based on piecewise-affine (PWA) modeling and offline solution to an alternative optimal control problem (OCP). The controller is able to operate at 20 Hz in a hardware-in-the-loop (HIL) setup. Given sufficient computational resources, we observe a significant reduction in the lateral acceleration sensed by the passenger over a vehicle with passive suspensions, namely, by 46.5%, 25.4%, and 25.4% in the highway, rural, and urban driving scenarios, respectively. The NMPC also outperforms the baseline proportional-integral-derivative (PID) controller by achieving lower tracking error, namely, by 12.9%, 16.4%, and 38.0% in the aforementioned scenarios.
Author Sakka, Monzer Al
Zheng, Yanggu
Dhaens, Miguel
Keviczky, Tamas
Shyrokau, Barys
Author_xml – sequence: 1
  givenname: Yanggu
  orcidid: 0000-0002-8724-2488
  surname: Zheng
  fullname: Zheng, Yanggu
  email: y.zheng-2@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
– sequence: 2
  givenname: Barys
  orcidid: 0000-0003-4530-8853
  surname: Shyrokau
  fullname: Shyrokau, Barys
  email: b.shyrokau@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
– sequence: 3
  givenname: Tamas
  orcidid: 0000-0002-2428-2300
  surname: Keviczky
  fullname: Keviczky, Tamas
  email: t.keviczky@tudelft.nl
  organization: Delft Center of Systems and Control, Delft University of Technology, Delft, The Netherlands
– sequence: 4
  givenname: Monzer Al
  surname: Sakka
  fullname: Sakka, Monzer Al
  email: msakka@driv.com
  organization: DRiV Inc., Sint-Truiden, Belgium
– sequence: 5
  givenname: Miguel
  surname: Dhaens
  fullname: Dhaens, Miguel
  email: mdhaens@driv.com
  organization: DRiV Inc., Sint-Truiden, Belgium
BookMark eNp9kE1Lw0AQhhdRsK3-APES8Jw6m_1KjhLqB7QqWvEYNptduyXdrZut4L83ocWDB08zzLzPvMw7RsfOO43QBYYpxlBcL8vX5TSDDE8JxgSIOEIjzFieQs7Zcd8DJylnhJ-icdetATBlmRihl3IXvnSytG207iN5t3GVPHrXWqdlSBa-0W3yHHRjVbS9rvQuBt8mxodk5lbSqYFa-Gi965ebfh7P0ImRbafPD3WC3m5ny_I-nT_dPZQ381QRwmOqqBJ1U4MyAI3OMiBY1FIZApRjKUQujJG8yGjRKKlBG2FqVRPQQghCqSATdLW_uw3-c6e7WK39Lrjessp4DqQoaE57Fd6rVPBdF7SptsFuZPiuMFRDdNUQXTVEVx2i6xnxh1E2yuHHGKRt_yUv96TVWv86FYwxTgvyA8POfjI
CODEN IETTE2
CitedBy_id crossref_primary_10_1109_OJITS_2023_3275275
crossref_primary_10_1016_j_rineng_2024_103816
crossref_primary_10_1109_LCSYS_2024_3411931
crossref_primary_10_1109_TITS_2024_3462495
crossref_primary_10_1080_03081060_2022_2134866
crossref_primary_10_1177_09544070241241444
crossref_primary_10_3390_app12136657
crossref_primary_10_3390_en16155724
crossref_primary_10_3390_s24020600
crossref_primary_10_1080_10447318_2024_2359204
crossref_primary_10_1177_09544070241269607
crossref_primary_10_1007_s11071_024_09391_4
crossref_primary_10_3846_transport_2022_16919
Cites_doi 10.2140/pjm.1966.16.1
10.1007/s38311-018-0172-y
10.1137/S0363012902400713
10.1016/S0005-1098(01)00059-0
10.23919/ECC.2013.6669862
10.1109/ACC.2000.876977
10.1177/0018720814522484
10.1080/15472450.2017.1291351
10.23919/ECC.1999.7099363
10.1109/ICMECH.2019.8722930
10.1109/TAC.2011.2108450
10.3390/vehicles2040036
10.1109/3468.784175
10.1016/j.trf.2015.04.014
10.1504/IJVAS.2005.008237
10.1109/CDC.2011.6160715
10.1109/TCST.2017.2753169
10.1109/CDC.2010.5717242
10.1109/TMECH.2011.2107331
10.1016/j.arcontrol.2012.03.011
10.3390/machines7020026
10.1080/00423114.2015.1037313
10.1007/BF02326482
10.1243/0954409981530634
10.1016/j.jterra.2007.05.001
10.1243/PIME_PROC_1982_196_005_02
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2021.3113037
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 1549
ExternalDocumentID 10_1109_TCST_2021_3113037
9555649
Genre orig-research
GrantInformation_xml – fundername: European Union Horizon 2020 Framework Program, Marie Skłodowska-Curie Actions
  grantid: 872907
  funderid: 10.13039/100010665
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c336t-c4c7bdb0cf00de220317bacf30461a7787ffa69249dcae0ef7fbcb30e77734473
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Mon Jun 30 04:19:44 EDT 2025
Tue Jul 01 02:36:04 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Wed Aug 27 02:23:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-c4c7bdb0cf00de220317bacf30461a7787ffa69249dcae0ef7fbcb30e77734473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4530-8853
0000-0002-8724-2488
0000-0002-2428-2300
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9555649
PQID 2680399484
PQPubID 85425
PageCount 12
ParticipantIDs proquest_journals_2680399484
ieee_primary_9555649
crossref_citationtrail_10_1109_TCST_2021_3113037
crossref_primary_10_1109_TCST_2021_3113037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-July
2022-7-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Milliken (ref23) 1995; 400
ref15
ref14
ref31
ref11
ref10
ref1
ref17
ref16
ref19
ref18
ref24
ref26
ref25
Oman (ref7) 1991
ref20
Griffin (ref2) 2004; 75
ref22
ref21
Bär (ref8) 2014
ref28
ref27
ref29
ref9
ref4
ref3
ref6
ref5
Donohew (ref30) 2004; 75
References_xml – ident: ref29
  doi: 10.2140/pjm.1966.16.1
– volume-title: Vorausschauende Fahrwerkregelung zur Reduktion Der Auf Die Insassen wirkenden Querbeschleunigung
  year: 2014
  ident: ref8
– ident: ref10
  doi: 10.1007/s38311-018-0172-y
– ident: ref16
  doi: 10.1137/S0363012902400713
– ident: ref24
  doi: 10.1016/S0005-1098(01)00059-0
– ident: ref28
  doi: 10.23919/ECC.2013.6669862
– start-page: 362
  year: 1991
  ident: ref7
  article-title: Sensory conflict in motion sickness: An observer theory approach
  publication-title: Pictorial Commun. Virtual Real Environ.
– ident: ref21
  doi: 10.1109/ACC.2000.876977
– ident: ref3
  doi: 10.1177/0018720814522484
– ident: ref11
  doi: 10.1080/15472450.2017.1291351
– ident: ref25
  doi: 10.23919/ECC.1999.7099363
– ident: ref19
  doi: 10.1109/ICMECH.2019.8722930
– ident: ref17
  doi: 10.1109/TAC.2011.2108450
– ident: ref31
  doi: 10.3390/vehicles2040036
– ident: ref13
  doi: 10.1109/3468.784175
– ident: ref1
  doi: 10.1016/j.trf.2015.04.014
– ident: ref14
  doi: 10.1504/IJVAS.2005.008237
– volume: 75
  start-page: 739
  issue: 9
  year: 2004
  ident: ref2
  article-title: Visual field effects on motion sickness in cars
  publication-title: Aviation, Space, Environ. Med.
– ident: ref18
  doi: 10.1109/CDC.2011.6160715
– volume: 75
  start-page: 649
  issue: 8
  year: 2004
  ident: ref30
  article-title: Motion sickness: Effect of the frequency of lateral oscillation
  publication-title: Aviation, Space, Environ. Med.
– ident: ref15
  doi: 10.1109/TCST.2017.2753169
– volume: 400
  volume-title: Race Car Vehicle Dynamics
  year: 1995
  ident: ref23
– ident: ref26
  doi: 10.1109/CDC.2010.5717242
– ident: ref22
  doi: 10.1109/TMECH.2011.2107331
– ident: ref5
  doi: 10.1016/j.arcontrol.2012.03.011
– ident: ref20
  doi: 10.3390/machines7020026
– ident: ref6
  doi: 10.1080/00423114.2015.1037313
– ident: ref27
  doi: 10.1007/BF02326482
– ident: ref9
  doi: 10.1243/0954409981530634
– ident: ref4
  doi: 10.1016/j.jterra.2007.05.001
– ident: ref12
  doi: 10.1243/PIME_PROC_1982_196_005_02
SSID ssj0014527
Score 2.485533
Snippet The benefits of automated driving can only be fully realized if the occupants are protected from motion sickness. Active suspensions hold the potential to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1538
SubjectTerms Active suspension
Automation
Computational modeling
Controllers
Cost function
Dynamics
model predictive control
motion comfort
Motion sickness
Nonlinear control
Optimal control
Optimization
Passengers
Prediction models
Predictive control
Predictive models
Proportional integral derivative
real-time optimization
Real-time systems
Suspension systems
Suspensions (mechanical systems)
Tracking errors
Vehicle dynamics
Title Curve Tilting With Nonlinear Model Predictive Control for Enhancing Motion Comfort
URI https://ieeexplore.ieee.org/document/9555649
https://www.proquest.com/docview/2680399484
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayDGSzlwQnRkbdqsRzQxTUibEGxitypPMTEGGh0Hfj1O2k28hLhVbSxFthPbtf0Z4BTDHpUongSpsDJgRrQCiZY2ENZINJdUa-0anPuDpDdi1-N4XIHzVS-MMcYXn5mme_S5fP2sFu5X2UUax3HC0ipUUc2KXq1VxoAV41kxwomCxKckGyWe5sWwczfESDBsYYDqrmz-xQb5oSo_bmJvXrqb0F9urKgqeWwuctlU798wG_-78y3YKP1MclkoxjZUzGwH1j-hD9bhtrOYvxkynExd6TO5n-QPZFAgZ4g5cUPSpuRm7hI57koknaKonaCXS65mDw6nA6n6fgoQfnzC9_kujLpXw04vKEcsBCqKkjxQTHGpJVWWUm3CEI84l0JZj8MuOLLZWpG4GE0rYaix3EolI2o45w4rMNqD2ux5ZvaBtHXaQnVIYyY5i62W6ChwEUdhW8YCud8AumR6pkr8cTcGY5r5OISmmZNT5uSUlXJqwNmK5KUA3_hrcd3xfbWwZHkDjpaSzcrj-ZqFSZuiZ8ba7OB3qkNYC12fg6_LPYJaPl-YY_Q-cnni1e4Dj8bWnA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB6lcGg5FFpAhFLYA6cKh429642PKAKFR6IKHMHN2qcSEQIKDof--s6unai0FeJm2TvSamZ3Hp6ZbwAOMezRqRZplEmnImZlO1JoaSPprEJzSY0xvsG5P0h7Q3Zxx-8acLTshbHWhuIz2_KPIZdvHvXc_yo7zjjnKcs-wCrafcarbq1lzoBVA1oxxkmiNCQlmzWi5nHevckxFozbGKJ6pS1eWaEwVuUfXRwMzNk69Bdbq-pK7lvzUrX0r79QG9-79w34XHua5KQ6Gl-gYadfYe0P_MFNuO7OZy-W5OOJL34mt-NyRAYVdoacET8mbUJ-znwqxytF0q3K2gn6ueR0OvJIHUjVD3OA8OMDvi-3YHh2mnd7UT1kIdJJkpaRZlooo6h2lBobx3jJhZLaBSR2KfA-OydTH6UZLS21TjilVUKtEMKjBSbbsDJ9nNodIB2TtfFAZJwpwbgzCl0FIXkSdxSXyP0m0AXTC10jkPtBGJMiRCI0K7ycCi-nopZTE34sSZ4q-I23Fm96vi8X1ixvwt5CskV9QZ-LOO1Q9M1Yh-3-n-oAPvby_lVxdT64_AafYt_1EKp092ClnM3td_RFSrUfjuBv9uXZ6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curve+Tilting+With+Nonlinear+Model+Predictive+Control+for+Enhancing+Motion+Comfort&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Zheng%2C+Yanggu&rft.au=Shyrokau%2C+Barys&rft.au=Keviczky%2C+Tamas&rft.au=Monzer+Al+Sakka&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=4&rft.spage=1538&rft_id=info:doi/10.1109%2FTCST.2021.3113037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon