Energy-Saving Control in Multistage Production Systems Using a State-Based Method

Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws, and severe environmental crisis. This article proposes to boost the energy efficiency of production systems by controlling the production. It e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 19; no. 4; pp. 3324 - 3337
Main Authors Li, Yang, Cui, Peng-Hao, Wang, Jun-Qiang, Chang, Qing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws, and severe environmental crisis. This article proposes to boost the energy efficiency of production systems by controlling the production. It extends the existing energy-saving control research by presenting integrated modeling, analyzing, and controlling approaches. The work starts from the modeling of the production systems and establishes an analytical model to systematically quantify the production loss resulted from energy-saving control and the various disruptions. A dynamic control algorithm is proposed to reduce energy consumption and maintain desirable productivity. Simulation studies are utilized to demonstrate the application of the proposed method and verify its effectiveness. Note to Practitioners-The previous research indicates that it is possible to strategically turn off stations during production for energy saving. However, production systems are complex dynamic systems consisting of interconnected stations and supporting subsystems. Similar to station random failures, turning off stations for energy saving can severely jeopardize the production, and deviate the production from the desired target. Therefore, a quantitative method is established to calculate the production loss resulted from the energy-saving control and disruptions. The method is important to understand the real control cost. Based on the analysis, a dynamic control algorithm is formulated to balance the achieved control benefit and the production loss. It provides plant managers a useful tool to make energy-saving control decisions with a thorough understanding of production system dynamics. The presented research is established for serial batch production systems. The examples of batch stations include the refrigerator foaming equipment in refrigerator assembly lines and the vacuum oven in battery assembly lines. The model cannot be directly applied in serial-parallel production systems.
AbstractList Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws, and severe environmental crisis. This article proposes to boost the energy efficiency of production systems by controlling the production. It extends the existing energy-saving control research by presenting integrated modeling, analyzing, and controlling approaches. The work starts from the modeling of the production systems and establishes an analytical model to systematically quantify the production loss resulted from energy-saving control and the various disruptions. A dynamic control algorithm is proposed to reduce energy consumption and maintain desirable productivity. Simulation studies are utilized to demonstrate the application of the proposed method and verify its effectiveness. Note to Practitioners—The previous research indicates that it is possible to strategically turn off stations during production for energy saving. However, production systems are complex dynamic systems consisting of interconnected stations and supporting subsystems. Similar to station random failures, turning off stations for energy saving can severely jeopardize the production, and deviate the production from the desired target. Therefore, a quantitative method is established to calculate the production loss resulted from the energy-saving control and disruptions. The method is important to understand the real control cost. Based on the analysis, a dynamic control algorithm is formulated to balance the achieved control benefit and the production loss. It provides plant managers a useful tool to make energy-saving control decisions with a thorough understanding of production system dynamics. The presented research is established for serial batch production systems. The examples of batch stations include the refrigerator foaming equipment in refrigerator assembly lines and the vacuum oven in battery assembly lines. The model cannot be directly applied in serial-parallel production systems.
Author Chang, Qing
Li, Yang
Wang, Jun-Qiang
Cui, Peng-Hao
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-7127-9905
  surname: Li
  fullname: Li, Yang
  email: yangmli@nwpu.edu.cn
  organization: Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Peng-Hao
  orcidid: 0000-0001-8270-894X
  surname: Cui
  fullname: Cui, Peng-Hao
  email: pacpos.phcui@gmail.com
  organization: Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jun-Qiang
  orcidid: 0000-0001-5244-6483
  surname: Wang
  fullname: Wang, Jun-Qiang
  email: wangjq@nwpu.edu.cn
  organization: Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Qing
  orcidid: 0000-0003-3744-1371
  surname: Chang
  fullname: Chang, Qing
  email: qc9nq@virginia.edu
  organization: Department of Mechanical and Aerospace Engineering, The University of Virginia, Charlottesville, VA, USA
BookMark eNo9kE1rAjEQhkOxULX9AaWXQM9r87HZTY5W7AcobVHPIetO7IomNskW_Pd1UXqZdw7POwPPAPWcd4DQPSUjSol6Wo4X0xEjjI44pZKx4gr1qRAy46XkvW7PRSaUEDdoEOOWEJZLRfroa-ogbI7Zwvw2boMn3qXgd7hxeN7uUhOT2QD-DL5u16nxDi-OMcE-4lXscIMXySTInk2EGs8hffv6Fl1bs4twd8khWr1Ml5O3bPbx-j4Zz7I150XqJiFW1rUtc6OIJbkSJWO1VbxWIK0AxamteCGVhYIAcCUqIqqcVsKSquBD9Hi-ewj-p4WY9Na3wZ1ealayvOSilB1Fz9Q6-BgDWH0Izd6Eo6ZEd-Z0Z0535vTF3KnzcO40APDPKyELUXD-B_n4a1g
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_eswa_2023_123065
crossref_primary_10_1109_ACCESS_2023_3321219
crossref_primary_10_1016_j_apenergy_2023_121467
crossref_primary_10_3390_su141811448
crossref_primary_10_1007_s10696_022_09481_8
Cites_doi 10.1080/00207543.2014.893067
10.1016/j.energy.2015.10.038
10.1038/nature14236
10.1109/LRA.2017.2784547
10.1080/00207543.2017.1349948
10.1109/CASE48305.2020.9216883
10.1109/TASE.2014.2356337
10.1109/TAC.2009.2036328
10.1109/LRA.2016.2582925
10.1109/TASE.2016.2641743
10.1287/ijoc.2015.0645
10.1109/TASE.2016.2585679
10.1109/TASE.2013.2265917
10.1016/j.enpol.2018.07.034
10.1016/j.energy.2017.03.123
10.1109/TASE.2012.2210874
10.1109/TASE.2015.2434054
10.1109/TASE.2012.2195173
10.1109/COASE.2019.8843072
10.1016/j.apenergy.2015.11.044
10.1109/TSMC.2015.2450679
10.1080/00207540500385980
10.1115/1.4005789
10.1109/TASE.2018.2861837
10.1080/19397038.2014.1001470
10.1007/s10479-011-0961-9
10.1115/1.4033757
10.1115/1.4024815
10.1080/00207543.2013.813983
10.1109/TSMC.2014.2316268
10.1016/j.apenergy.2015.03.065
10.1007/springerreference_6729
10.1016/j.ejor.2015.07.017
10.1007/978-0-387-75579-3
10.1080/00207543.2015.1082666
10.1016/j.neunet.2014.09.003
10.1016/j.procir.2017.02.037
10.1080/24725854.2018.1511937
10.1080/24725854.2018.1519745
10.1007/s00170-014-5756-0
10.1109/TASE.2012.2202226
10.1016/j.isci.2021.102332
10.1002/SERIES1345
10.1016/j.procir.2016.03.147
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2021.3118226
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 3337
ExternalDocumentID 10_1109_TASE_2021_3118226
9586563
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52175485; 52075453; 71931007
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program, China
  grantid: 2019YFB1703800
  funderid: 10.13039/501100012166
– fundername: National Science Foundation through the CAREER Award
  grantid: CMMI-1351160
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-c3300f8ddf74a90f0495722df93d9e8f5e931fb3689fe60ee395b05b41b5f0b63
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Thu Oct 10 18:35:29 EDT 2024
Fri Aug 23 02:22:57 EDT 2024
Mon Nov 04 12:06:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-c3300f8ddf74a90f0495722df93d9e8f5e931fb3689fe60ee395b05b41b5f0b63
ORCID 0000-0003-3744-1371
0000-0001-5244-6483
0000-0001-8270-894X
0000-0002-7127-9905
OpenAccessLink https://doi.org/10.1109/tase.2021.3118226
PQID 2724735786
PQPubID 27623
PageCount 14
ParticipantIDs crossref_primary_10_1109_TASE_2021_3118226
proquest_journals_2724735786
ieee_primary_9586563
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Mohr (ref5) 2012
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Salama (ref31)
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
(ref1) 2018
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref17
  doi: 10.1080/00207543.2014.893067
– ident: ref25
  doi: 10.1016/j.energy.2015.10.038
– ident: ref44
  doi: 10.1038/nature14236
– ident: ref33
  doi: 10.1109/LRA.2017.2784547
– ident: ref21
  doi: 10.1080/00207543.2017.1349948
– ident: ref37
  doi: 10.1109/CASE48305.2020.9216883
– ident: ref3
  doi: 10.1109/TASE.2014.2356337
– ident: ref34
  doi: 10.1109/TAC.2009.2036328
– ident: ref38
  doi: 10.1109/LRA.2016.2582925
– ident: ref14
  doi: 10.1109/TASE.2016.2641743
– ident: ref43
  doi: 10.1287/ijoc.2015.0645
– ident: ref7
  doi: 10.1109/TASE.2016.2585679
– ident: ref23
  doi: 10.1109/TASE.2013.2265917
– ident: ref2
  doi: 10.1016/j.enpol.2018.07.034
– ident: ref24
  doi: 10.1016/j.energy.2017.03.123
– ident: ref28
  doi: 10.1109/TASE.2012.2210874
– ident: ref10
  doi: 10.1109/TASE.2015.2434054
– ident: ref15
  doi: 10.1109/TASE.2012.2195173
– ident: ref18
  doi: 10.1109/COASE.2019.8843072
– volume-title: Europe Leads the Global Clean Energy Transition: Commission Welcomes Ambitious Agreement on Further Renewable Energy Development in the EU
  year: 2018
  ident: ref1
– ident: ref19
  doi: 10.1016/j.apenergy.2015.11.044
– ident: ref26
  doi: 10.1109/TSMC.2015.2450679
– ident: ref29
  doi: 10.1080/00207540500385980
– ident: ref8
  doi: 10.1115/1.4005789
– ident: ref9
  doi: 10.1109/TASE.2018.2861837
– ident: ref22
  doi: 10.1080/19397038.2014.1001470
– ident: ref41
  doi: 10.1007/s10479-011-0961-9
– ident: ref35
  doi: 10.1115/1.4033757
– ident: ref42
  doi: 10.1115/1.4024815
– ident: ref39
  doi: 10.1080/00207543.2013.813983
– volume-title: Manufacturing Resource Productivity
  year: 2012
  ident: ref5
  contributor:
    fullname: Mohr
– ident: ref11
  doi: 10.1109/TSMC.2014.2316268
– ident: ref12
  doi: 10.1016/j.apenergy.2015.03.065
– ident: ref4
  doi: 10.1007/springerreference_6729
– ident: ref20
  doi: 10.1016/j.ejor.2015.07.017
– ident: ref40
  doi: 10.1007/978-0-387-75579-3
– ident: ref27
  doi: 10.1080/00207543.2015.1082666
– ident: ref45
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref16
  doi: 10.1016/j.procir.2017.02.037
– ident: ref36
  doi: 10.1080/24725854.2018.1511937
– ident: ref30
  doi: 10.1080/24725854.2018.1519745
– ident: ref13
  doi: 10.1007/s00170-014-5756-0
– start-page: 145
  volume-title: Proc. 47th Int. Conf. Comput. Ind. Eng.
  ident: ref31
  article-title: Assembly line balancing using discrete event simulation and design of experiments: A case study in a home appliances production line
  contributor:
    fullname: Salama
– ident: ref6
  doi: 10.1109/TASE.2012.2202226
– ident: ref32
  doi: 10.1016/j.isci.2021.102332
– ident: ref46
  doi: 10.1002/SERIES1345
– ident: ref47
  doi: 10.1016/j.procir.2016.03.147
SSID ssj0024890
Score 2.442803
Snippet Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 3324
SubjectTerms Algorithms
Analytical models
Assembly lines
Batch production
Control algorithms
Control theory
Cost analysis
Dynamic control
Dynamical systems
Energy conservation
Energy consumption
Energy efficiency
Energy-saving control
Heuristic algorithms
Job shop scheduling
Mathematical models
Modelling
multistage production system
production loss
Production systems
Refrigerators
Subsystems
System dynamics
Title Energy-Saving Control in Multistage Production Systems Using a State-Based Method
URI https://ieeexplore.ieee.org/document/9586563
https://www.proquest.com/docview/2724735786
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT3rwtYrrixw8iVnTPNrkqLIiwoqiC95KniLCKrp78debpF1d1IOX0kMLYSbtfDP55huAw0IEUQVeYSW9x9xSg7U1DlMtq-AcsyrXO4bX5eWIXz2Ihw4cf_XCeO8z-cz3020-y3cvdppKZSdKyAg_2AIsVEo1vVrfunoy11MSIsBCCdGeYBZEndyf3g1iJkiLmKBGOJ10FOZiUB6q8utPnMPLxSoMZwtrWCXP_enE9O3HD83G_658DVZanIlOm42xDh0_3oDlOfXBLtwOct8fvtOpqIDOG9I6ehqj3JUbYeOjRzeNImz0HmrFzVFmGSCNMk7FZzEMOjTMg6g3YXQxuD-_xO2EBWwZKyfpSkiQzoWKa0VCTBdERakLijnlZRBesSIYVkoVfEm8Z0oYIgwvjAjElGwLFscvY78NiHHHuLCWa5oEbaQmjngdky1nOaOa9-BoZvP6tRHSqHMCQlSdHFQnB9Wtg3rQTTb8erA1Xw_2Zl6q20_tvaYVTeOTK1nu_P3WLizR1LOQGXh7sDh5m_r9iCQm5iBvoU-HL8Ve
link.rule.ids 315,783,787,799,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6FcCgcCn2J0AA-cKrq1OvHrn0MVaJAk4qqqdTbys8KISVVSS78emzvJlSlBy6rPexK1ox355vxN98AfC5EEFXgFVbSe8wtNVhb4zDVsgrOMatyvWN2WU5u-LdbcduB020vjPc-k8_8IN3ms3y3tOtUKjtTQkb4wV7Ay4irZdV0a_1V1pO5opIwARZKiPYMsyDqbD68HsVckBYxRY2AOikpPIpCeazKP__iHGDGb2C2WVrDK_k5WK_MwP5-otr4v2t_C7st0kTDZmvsQccv9uH1I_3BA7ga5c4_fK1TWQGdN7R19GOBcl9uBI53Hn1vNGGj_1Arb44yzwBplJEq_hIDoUOzPIr6EG7Go_n5BLczFrBlrFylKyFBOhcqrhUJMWEQFaUuKOaUl0F4xYpgWClV8CXxnilhiDC8MCIQU7Ij6C6WC_8OEOOOcWEt1zRJ2khNHPE6plvOckY178HJxub1fSOlUecUhKg6OahODqpbB_XgINlw-2Brvh70N16q24_tV00rmgYoV7J8__xbn2BnMp9N6-nXy4tjeEVTB0Pm4_Whu3pY-w8RV6zMx7yd_gAJCMiq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Saving+Control+in+Multistage+Production+Systems+Using+a+State-Based+Method&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Li%2C+Yang&rft.au=Cui%2C+Peng-Hao&rft.au=Wang%2C+Jun-Qiang&rft.au=Chang%2C+Qing&rft.date=2022-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=4&rft.spage=3324&rft.epage=3337&rft_id=info:doi/10.1109%2FTASE.2021.3118226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2021_3118226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon