Energy-Saving Control in Multistage Production Systems Using a State-Based Method
Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws, and severe environmental crisis. This article proposes to boost the energy efficiency of production systems by controlling the production. It e...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 19; no. 4; pp. 3324 - 3337 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws, and severe environmental crisis. This article proposes to boost the energy efficiency of production systems by controlling the production. It extends the existing energy-saving control research by presenting integrated modeling, analyzing, and controlling approaches. The work starts from the modeling of the production systems and establishes an analytical model to systematically quantify the production loss resulted from energy-saving control and the various disruptions. A dynamic control algorithm is proposed to reduce energy consumption and maintain desirable productivity. Simulation studies are utilized to demonstrate the application of the proposed method and verify its effectiveness. Note to Practitioners-The previous research indicates that it is possible to strategically turn off stations during production for energy saving. However, production systems are complex dynamic systems consisting of interconnected stations and supporting subsystems. Similar to station random failures, turning off stations for energy saving can severely jeopardize the production, and deviate the production from the desired target. Therefore, a quantitative method is established to calculate the production loss resulted from the energy-saving control and disruptions. The method is important to understand the real control cost. Based on the analysis, a dynamic control algorithm is formulated to balance the achieved control benefit and the production loss. It provides plant managers a useful tool to make energy-saving control decisions with a thorough understanding of production system dynamics. The presented research is established for serial batch production systems. The examples of batch stations include the refrigerator foaming equipment in refrigerator assembly lines and the vacuum oven in battery assembly lines. The model cannot be directly applied in serial-parallel production systems. |
---|---|
AbstractList | Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws, and severe environmental crisis. This article proposes to boost the energy efficiency of production systems by controlling the production. It extends the existing energy-saving control research by presenting integrated modeling, analyzing, and controlling approaches. The work starts from the modeling of the production systems and establishes an analytical model to systematically quantify the production loss resulted from energy-saving control and the various disruptions. A dynamic control algorithm is proposed to reduce energy consumption and maintain desirable productivity. Simulation studies are utilized to demonstrate the application of the proposed method and verify its effectiveness. Note to Practitioners—The previous research indicates that it is possible to strategically turn off stations during production for energy saving. However, production systems are complex dynamic systems consisting of interconnected stations and supporting subsystems. Similar to station random failures, turning off stations for energy saving can severely jeopardize the production, and deviate the production from the desired target. Therefore, a quantitative method is established to calculate the production loss resulted from the energy-saving control and disruptions. The method is important to understand the real control cost. Based on the analysis, a dynamic control algorithm is formulated to balance the achieved control benefit and the production loss. It provides plant managers a useful tool to make energy-saving control decisions with a thorough understanding of production system dynamics. The presented research is established for serial batch production systems. The examples of batch stations include the refrigerator foaming equipment in refrigerator assembly lines and the vacuum oven in battery assembly lines. The model cannot be directly applied in serial-parallel production systems. |
Author | Chang, Qing Li, Yang Wang, Jun-Qiang Cui, Peng-Hao |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-7127-9905 surname: Li fullname: Li, Yang email: yangmli@nwpu.edu.cn organization: Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Peng-Hao orcidid: 0000-0001-8270-894X surname: Cui fullname: Cui, Peng-Hao email: pacpos.phcui@gmail.com organization: Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Jun-Qiang orcidid: 0000-0001-5244-6483 surname: Wang fullname: Wang, Jun-Qiang email: wangjq@nwpu.edu.cn organization: Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Qing orcidid: 0000-0003-3744-1371 surname: Chang fullname: Chang, Qing email: qc9nq@virginia.edu organization: Department of Mechanical and Aerospace Engineering, The University of Virginia, Charlottesville, VA, USA |
BookMark | eNo9kE1rAjEQhkOxULX9AaWXQM9r87HZTY5W7AcobVHPIetO7IomNskW_Pd1UXqZdw7POwPPAPWcd4DQPSUjSol6Wo4X0xEjjI44pZKx4gr1qRAy46XkvW7PRSaUEDdoEOOWEJZLRfroa-ogbI7Zwvw2boMn3qXgd7hxeN7uUhOT2QD-DL5u16nxDi-OMcE-4lXscIMXySTInk2EGs8hffv6Fl1bs4twd8khWr1Ml5O3bPbx-j4Zz7I150XqJiFW1rUtc6OIJbkSJWO1VbxWIK0AxamteCGVhYIAcCUqIqqcVsKSquBD9Hi-ewj-p4WY9Na3wZ1ealayvOSilB1Fz9Q6-BgDWH0Izd6Eo6ZEd-Z0Z0535vTF3KnzcO40APDPKyELUXD-B_n4a1g |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_123065 crossref_primary_10_1109_ACCESS_2023_3321219 crossref_primary_10_1016_j_apenergy_2023_121467 crossref_primary_10_3390_su141811448 crossref_primary_10_1007_s10696_022_09481_8 |
Cites_doi | 10.1080/00207543.2014.893067 10.1016/j.energy.2015.10.038 10.1038/nature14236 10.1109/LRA.2017.2784547 10.1080/00207543.2017.1349948 10.1109/CASE48305.2020.9216883 10.1109/TASE.2014.2356337 10.1109/TAC.2009.2036328 10.1109/LRA.2016.2582925 10.1109/TASE.2016.2641743 10.1287/ijoc.2015.0645 10.1109/TASE.2016.2585679 10.1109/TASE.2013.2265917 10.1016/j.enpol.2018.07.034 10.1016/j.energy.2017.03.123 10.1109/TASE.2012.2210874 10.1109/TASE.2015.2434054 10.1109/TASE.2012.2195173 10.1109/COASE.2019.8843072 10.1016/j.apenergy.2015.11.044 10.1109/TSMC.2015.2450679 10.1080/00207540500385980 10.1115/1.4005789 10.1109/TASE.2018.2861837 10.1080/19397038.2014.1001470 10.1007/s10479-011-0961-9 10.1115/1.4033757 10.1115/1.4024815 10.1080/00207543.2013.813983 10.1109/TSMC.2014.2316268 10.1016/j.apenergy.2015.03.065 10.1007/springerreference_6729 10.1016/j.ejor.2015.07.017 10.1007/978-0-387-75579-3 10.1080/00207543.2015.1082666 10.1016/j.neunet.2014.09.003 10.1016/j.procir.2017.02.037 10.1080/24725854.2018.1511937 10.1080/24725854.2018.1519745 10.1007/s00170-014-5756-0 10.1109/TASE.2012.2202226 10.1016/j.isci.2021.102332 10.1002/SERIES1345 10.1016/j.procir.2016.03.147 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2021.3118226 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 3337 |
ExternalDocumentID | 10_1109_TASE_2021_3118226 9586563 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52175485; 52075453; 71931007 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program, China grantid: 2019YFB1703800 funderid: 10.13039/501100012166 – fundername: National Science Foundation through the CAREER Award grantid: CMMI-1351160 funderid: 10.13039/100000001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACGFS ACIWK AENEX AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c336t-c3300f8ddf74a90f0495722df93d9e8f5e931fb3689fe60ee395b05b41b5f0b63 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Thu Oct 10 18:35:29 EDT 2024 Fri Aug 23 02:22:57 EDT 2024 Mon Nov 04 12:06:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-c3300f8ddf74a90f0495722df93d9e8f5e931fb3689fe60ee395b05b41b5f0b63 |
ORCID | 0000-0003-3744-1371 0000-0001-5244-6483 0000-0001-8270-894X 0000-0002-7127-9905 |
OpenAccessLink | https://doi.org/10.1109/tase.2021.3118226 |
PQID | 2724735786 |
PQPubID | 27623 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TASE_2021_3118226 proquest_journals_2724735786 ieee_primary_9586563 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 Mohr (ref5) 2012 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Salama (ref31) ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 (ref1) 2018 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref17 doi: 10.1080/00207543.2014.893067 – ident: ref25 doi: 10.1016/j.energy.2015.10.038 – ident: ref44 doi: 10.1038/nature14236 – ident: ref33 doi: 10.1109/LRA.2017.2784547 – ident: ref21 doi: 10.1080/00207543.2017.1349948 – ident: ref37 doi: 10.1109/CASE48305.2020.9216883 – ident: ref3 doi: 10.1109/TASE.2014.2356337 – ident: ref34 doi: 10.1109/TAC.2009.2036328 – ident: ref38 doi: 10.1109/LRA.2016.2582925 – ident: ref14 doi: 10.1109/TASE.2016.2641743 – ident: ref43 doi: 10.1287/ijoc.2015.0645 – ident: ref7 doi: 10.1109/TASE.2016.2585679 – ident: ref23 doi: 10.1109/TASE.2013.2265917 – ident: ref2 doi: 10.1016/j.enpol.2018.07.034 – ident: ref24 doi: 10.1016/j.energy.2017.03.123 – ident: ref28 doi: 10.1109/TASE.2012.2210874 – ident: ref10 doi: 10.1109/TASE.2015.2434054 – ident: ref15 doi: 10.1109/TASE.2012.2195173 – ident: ref18 doi: 10.1109/COASE.2019.8843072 – volume-title: Europe Leads the Global Clean Energy Transition: Commission Welcomes Ambitious Agreement on Further Renewable Energy Development in the EU year: 2018 ident: ref1 – ident: ref19 doi: 10.1016/j.apenergy.2015.11.044 – ident: ref26 doi: 10.1109/TSMC.2015.2450679 – ident: ref29 doi: 10.1080/00207540500385980 – ident: ref8 doi: 10.1115/1.4005789 – ident: ref9 doi: 10.1109/TASE.2018.2861837 – ident: ref22 doi: 10.1080/19397038.2014.1001470 – ident: ref41 doi: 10.1007/s10479-011-0961-9 – ident: ref35 doi: 10.1115/1.4033757 – ident: ref42 doi: 10.1115/1.4024815 – ident: ref39 doi: 10.1080/00207543.2013.813983 – volume-title: Manufacturing Resource Productivity year: 2012 ident: ref5 contributor: fullname: Mohr – ident: ref11 doi: 10.1109/TSMC.2014.2316268 – ident: ref12 doi: 10.1016/j.apenergy.2015.03.065 – ident: ref4 doi: 10.1007/springerreference_6729 – ident: ref20 doi: 10.1016/j.ejor.2015.07.017 – ident: ref40 doi: 10.1007/978-0-387-75579-3 – ident: ref27 doi: 10.1080/00207543.2015.1082666 – ident: ref45 doi: 10.1016/j.neunet.2014.09.003 – ident: ref16 doi: 10.1016/j.procir.2017.02.037 – ident: ref36 doi: 10.1080/24725854.2018.1511937 – ident: ref30 doi: 10.1080/24725854.2018.1519745 – ident: ref13 doi: 10.1007/s00170-014-5756-0 – start-page: 145 volume-title: Proc. 47th Int. Conf. Comput. Ind. Eng. ident: ref31 article-title: Assembly line balancing using discrete event simulation and design of experiments: A case study in a home appliances production line contributor: fullname: Salama – ident: ref6 doi: 10.1109/TASE.2012.2202226 – ident: ref32 doi: 10.1016/j.isci.2021.102332 – ident: ref46 doi: 10.1002/SERIES1345 – ident: ref47 doi: 10.1016/j.procir.2016.03.147 |
SSID | ssj0024890 |
Score | 2.442803 |
Snippet | Manufacturers are pursuing energy-efficient production in response to the fluctuating energy price, growing global competition, rigorous international laws,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 3324 |
SubjectTerms | Algorithms Analytical models Assembly lines Batch production Control algorithms Control theory Cost analysis Dynamic control Dynamical systems Energy conservation Energy consumption Energy efficiency Energy-saving control Heuristic algorithms Job shop scheduling Mathematical models Modelling multistage production system production loss Production systems Refrigerators Subsystems System dynamics |
Title | Energy-Saving Control in Multistage Production Systems Using a State-Based Method |
URI | https://ieeexplore.ieee.org/document/9586563 https://www.proquest.com/docview/2724735786 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT3rwtYrrixw8iVnTPNrkqLIiwoqiC95KniLCKrp78debpF1d1IOX0kMLYSbtfDP55huAw0IEUQVeYSW9x9xSg7U1DlMtq-AcsyrXO4bX5eWIXz2Ihw4cf_XCeO8z-cz3020-y3cvdppKZSdKyAg_2AIsVEo1vVrfunoy11MSIsBCCdGeYBZEndyf3g1iJkiLmKBGOJ10FOZiUB6q8utPnMPLxSoMZwtrWCXP_enE9O3HD83G_658DVZanIlOm42xDh0_3oDlOfXBLtwOct8fvtOpqIDOG9I6ehqj3JUbYeOjRzeNImz0HmrFzVFmGSCNMk7FZzEMOjTMg6g3YXQxuD-_xO2EBWwZKyfpSkiQzoWKa0VCTBdERakLijnlZRBesSIYVkoVfEm8Z0oYIgwvjAjElGwLFscvY78NiHHHuLCWa5oEbaQmjngdky1nOaOa9-BoZvP6tRHSqHMCQlSdHFQnB9Wtg3rQTTb8erA1Xw_2Zl6q20_tvaYVTeOTK1nu_P3WLizR1LOQGXh7sDh5m_r9iCQm5iBvoU-HL8Ve |
link.rule.ids | 315,783,787,799,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6FcCgcCn2J0AA-cKrq1OvHrn0MVaJAk4qqqdTbys8KISVVSS78emzvJlSlBy6rPexK1ox355vxN98AfC5EEFXgFVbSe8wtNVhb4zDVsgrOMatyvWN2WU5u-LdbcduB020vjPc-k8_8IN3ms3y3tOtUKjtTQkb4wV7Ay4irZdV0a_1V1pO5opIwARZKiPYMsyDqbD68HsVckBYxRY2AOikpPIpCeazKP__iHGDGb2C2WVrDK_k5WK_MwP5-otr4v2t_C7st0kTDZmvsQccv9uH1I_3BA7ga5c4_fK1TWQGdN7R19GOBcl9uBI53Hn1vNGGj_1Arb44yzwBplJEq_hIDoUOzPIr6EG7Go_n5BLczFrBlrFylKyFBOhcqrhUJMWEQFaUuKOaUl0F4xYpgWClV8CXxnilhiDC8MCIQU7Ij6C6WC_8OEOOOcWEt1zRJ2khNHPE6plvOckY178HJxub1fSOlUecUhKg6OahODqpbB_XgINlw-2Brvh70N16q24_tV00rmgYoV7J8__xbn2BnMp9N6-nXy4tjeEVTB0Pm4_Whu3pY-w8RV6zMx7yd_gAJCMiq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Saving+Control+in+Multistage+Production+Systems+Using+a+State-Based+Method&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Li%2C+Yang&rft.au=Cui%2C+Peng-Hao&rft.au=Wang%2C+Jun-Qiang&rft.au=Chang%2C+Qing&rft.date=2022-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=4&rft.spage=3324&rft.epage=3337&rft_id=info:doi/10.1109%2FTASE.2021.3118226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2021_3118226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |