Estimation of the Quality of Experience During Video Streaming From Facial Expression and Gaze Direction

This article investigates the possibility to estimate the perceived Quality of Experience (QoE) automatically and unobtrusively by analyzing the face of the consumer of video streaming services, from which facial expression and gaze direction are extracted. If effective, this would be a valuable too...

Full description

Saved in:
Bibliographic Details
Published inIEEE eTransactions on network and service management Vol. 17; no. 4; pp. 2702 - 2716
Main Authors Porcu, Simone, Floris, Alessandro, Voigt-Antons, Jan-Niklas, Atzori, Luigi, Moller, Sebastian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4537
1932-4537
DOI10.1109/TNSM.2020.3018303

Cover

Loading…
Abstract This article investigates the possibility to estimate the perceived Quality of Experience (QoE) automatically and unobtrusively by analyzing the face of the consumer of video streaming services, from which facial expression and gaze direction are extracted. If effective, this would be a valuable tool for the monitoring of personal QoE during video streaming services without asking the user to provide feedback, with great advantages for service management. Additionally, this would eliminate the bias of subjective tests and would avoid bothering the viewers with questions to collect opinions and feedback. The performed analysis relies on two different experiments: i) a crowdsourcing test, where the videos are subject to impairments caused by long initial delays and re-buffering events; ii) a laboratory test, where the videos are affected by blurring effects. The facial Action Units (AU) that represent the contractions of specific facial muscles together with the position of the eyes' pupils are extracted to identify the correlation between perceived quality and facial expressions. An SVM with a quadratic kernel and a k-NN classifier have been tested to predict the QoE from these features. These have also been combined with measured application-level parameters to improve the quality prediction. From the performed experiments, it results that the best performance is obtained with the k-NN classifier by combining all the described features and after training it with both the datasets, with a prediction accuracy as high as 93.9% outperforming the state of the art achievements.
AbstractList This article investigates the possibility to estimate the perceived Quality of Experience (QoE) automatically and unobtrusively by analyzing the face of the consumer of video streaming services, from which facial expression and gaze direction are extracted. If effective, this would be a valuable tool for the monitoring of personal QoE during video streaming services without asking the user to provide feedback, with great advantages for service management. Additionally, this would eliminate the bias of subjective tests and would avoid bothering the viewers with questions to collect opinions and feedback. The performed analysis relies on two different experiments: i) a crowdsourcing test, where the videos are subject to impairments caused by long initial delays and re-buffering events; ii) a laboratory test, where the videos are affected by blurring effects. The facial Action Units (AU) that represent the contractions of specific facial muscles together with the position of the eyes' pupils are extracted to identify the correlation between perceived quality and facial expressions. An SVM with a quadratic kernel and a k-NN classifier have been tested to predict the QoE from these features. These have also been combined with measured application-level parameters to improve the quality prediction. From the performed experiments, it results that the best performance is obtained with the k-NN classifier by combining all the described features and after training it with both the datasets, with a prediction accuracy as high as 93.9% outperforming the state of the art achievements.
Author Voigt-Antons, Jan-Niklas
Moller, Sebastian
Floris, Alessandro
Porcu, Simone
Atzori, Luigi
Author_xml – sequence: 1
  givenname: Simone
  orcidid: 0000-0003-0792-1200
  surname: Porcu
  fullname: Porcu, Simone
  email: simone.porcu@unica.it
  organization: DIEE, University of Cagliari, UdR CNIT of Cagliari, Cagliari, Italy
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0002-8745-1327
  surname: Floris
  fullname: Floris, Alessandro
  email: alessandro.floris84@unica.it
  organization: DIEE, University of Cagliari, UdR CNIT of Cagliari, Cagliari, Italy
– sequence: 3
  givenname: Jan-Niklas
  orcidid: 0000-0002-2786-9262
  surname: Voigt-Antons
  fullname: Voigt-Antons, Jan-Niklas
  email: jan-niklas.voigt-antons@tu-berlin.de
  organization: Quality and Usability Lab, Technische Universität Berlin, Berlin, Germany
– sequence: 4
  givenname: Luigi
  orcidid: 0000-0003-1350-3574
  surname: Atzori
  fullname: Atzori, Luigi
  email: l.atzori@ieee.org
  organization: DIEE, University of Cagliari, UdR CNIT of Cagliari, Cagliari, Italy
– sequence: 5
  givenname: Sebastian
  orcidid: 0000-0003-3057-0760
  surname: Moller
  fullname: Moller, Sebastian
  email: sebastian.moeller@tu-berlin.de
  organization: Quality and Usability Lab, Technische Universität Berlin, Berlin, Germany
BookMark eNp9kM1KAzEURoMo2FYfQNwEXE_Nz7SZWUptq1AVaXU7pMkdmzKd1CQD1qd3YouIC1c3F77zXXK66Li2NSB0QUmfUpJfLx7nD31GGOlzQjNO-BHq0JyzJB1wcfzrfYq63q8JGWQ0Zx20GvtgNjIYW2Nb4rAC_NzIyoRdXMcfW3AGagX4tnGmfsOvRoPF8-BAbuI-cXaDJ1IZWcW0A-9jlaw1nsrPFjMOVGw_QyelrDycH2YPvUzGi9FdMnua3o9uZonifBiSZck0p6UqQWcC9FLmZMklLSXTOeGQUalEprUSVLSfSSVRkuVDqQhTAgap5j10te_dOvvegA_F2jaubk8WLB1mQjAmaJsS-5Ry1nsHZaFM-LYQnDRVQUkRtRZRaxG1FgetLUn_kFvXCnS7f5nLPWMA4CefU0EzQfgXP0iGjw
CODEN ITNSC4
CitedBy_id crossref_primary_10_1007_s11042_023_16184_1
crossref_primary_10_1109_TAI_2022_3207450
crossref_primary_10_1109_TITS_2022_3167685
crossref_primary_10_1109_TMC_2024_3390208
crossref_primary_10_3390_electronics11071011
crossref_primary_10_3390_jsan10010011
crossref_primary_10_1016_j_future_2024_107623
crossref_primary_10_1145_3517240
crossref_primary_10_1007_s41233_022_00049_w
crossref_primary_10_3390_fi14010005
crossref_primary_10_1109_ACCESS_2024_3420103
crossref_primary_10_1016_j_imavis_2024_104961
crossref_primary_10_1145_3638251
crossref_primary_10_3389_frvir_2021_630731
Cites_doi 10.1109/ISPS.2018.8379009
10.1109/MNET.2015.7340419
10.1016/j.ijhcs.2007.10.011
10.1109/CVPRW.2010.5543262
10.1109/TMM.2013.2291663
10.1109/LNET.2020.2984721
10.1007/978-3-319-02681-7_9
10.1109/TMC.2015.2461216
10.1109/ACCESS.2019.2920477
10.1109/TNSM.2019.2926720
10.1109/MCOM.2018.1701156
10.1117/12.863508
10.1109/TNSM.2017.2785298
10.1109/GlobalSIP.2014.7032269
10.1016/j.comnet.2015.07.003
10.1109/TNSM.2019.2942716
10.1109/QoMEX.2017.7965631
10.1109/INFCOMW.2019.8845109
10.1016/j.patcog.2016.07.026
10.1109/QoMEX.2014.6982332
10.1186/2192-1962-2-7
10.1109/JSTSP.2009.2015375
10.1016/j.image.2016.01.011
10.1109/TMM.2019.2903722
10.1109/FG.2018.00019
10.1007/s11760-019-01494-5
10.2352/ISSN.2470-1173.2016.16.HVEI-117
10.1109/TMM.2015.2477042
10.1109/QoMEX.2019.8743186
10.1145/3176648
10.1109/TMM.2018.2844085
10.1109/TNSM.2016.2537645
10.1109/ICIN.2019.8685917
10.1109/JSTSP.2012.2191936
10.1109/FG.2015.7163105
10.1109/TBC.2018.2822869
10.1145/3204949.3208124
10.1109/LSP.2017.2691160
10.1109/ICCV.2015.428
10.1109/TMM.2016.2598092
10.1016/j.patrec.2015.01.013
10.1109/TNSM.2014.2377691
10.2352/ISSN.2470-1173.2017.14.HVEI-124
10.1109/TMM.2018.2827782
10.1109/JSTSP.2016.2609843
10.1109/COMSNETS48256.2020.9027383
10.1109/QoMEX.2017.7965687
10.1088/1741-2552/ab1673
10.1109/QoMEX.2019.8743281
10.1016/j.image.2016.12.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2020.3018303
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 2716
ExternalDocumentID 10_1109_TNSM_2020_3018303
9171870
Genre orig-research
GrantInformation_xml – fundername: Italian Ministry of University and Research (MIUR), within the Smart Cities framework
  grantid: Project Netergit, ID: PON04a200490
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c336t-bf2d31fcfed87edba90b3a1fa2d903e81ac78ddc7175374a0ca296ac02c7e54d3
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Mon Jun 30 06:47:47 EDT 2025
Tue Jul 01 01:55:18 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Wed Aug 27 02:33:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-bf2d31fcfed87edba90b3a1fa2d903e81ac78ddc7175374a0ca296ac02c7e54d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8745-1327
0000-0003-3057-0760
0000-0003-0792-1200
0000-0003-1350-3574
0000-0002-2786-9262
OpenAccessLink https://ieeexplore.ieee.org/document/9171870
PQID 2468772271
PQPubID 85504
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TNSM_2020_3018303
proquest_journals_2468772271
ieee_primary_9171870
crossref_primary_10_1109_TNSM_2020_3018303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Dec.
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
he (ref60) 2008
ref51
ref50
kroupi (ref20) 2014
ref46
he (ref59) 2008
ref45
ref42
ref41
ref44
ref43
ref49
ref8
ref7
(ref1) 2020
ref9
ref4
ref3
ref40
ghadiyaram (ref47) 2016
ref35
ref34
(ref6) 2008
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
le callet (ref5) 2013
baltrušaitis (ref56) 2015; 6
hoßfeld (ref52) 2018
ref24
ref23
ref26
ref25
ref64
crété-roffet (ref61) 2007
(ref63) 2017
ref22
ref21
ref28
ref27
bao (ref62) 2020
ekman (ref57) 1978
ref29
hoßfeld (ref48) 2011
References_xml – ident: ref12
  doi: 10.1109/ISPS.2018.8379009
– ident: ref13
  doi: 10.1109/MNET.2015.7340419
– ident: ref25
  doi: 10.1016/j.ijhcs.2007.10.011
– ident: ref58
  doi: 10.1109/CVPRW.2010.5543262
– year: 2020
  ident: ref1
  publication-title: Cisco Visual Networking Index Forecast and Trends 2017-2022 White Paper
– ident: ref49
  doi: 10.1109/TMM.2013.2291663
– ident: ref34
  doi: 10.1109/LNET.2020.2984721
– ident: ref45
  doi: 10.1007/978-3-319-02681-7_9
– ident: ref33
  doi: 10.1109/TMC.2015.2461216
– year: 2016
  ident: ref47
  publication-title: LIVE Mobile Stall Video Database
– ident: ref38
  doi: 10.1109/ACCESS.2019.2920477
– year: 1978
  ident: ref57
  publication-title: Facial Action Coding System A Technique for the Measurement of Facial Movement
– ident: ref8
  doi: 10.1109/TNSM.2019.2926720
– ident: ref35
  doi: 10.1109/MCOM.2018.1701156
– ident: ref24
  doi: 10.1117/12.863508
– ident: ref10
  doi: 10.1109/TNSM.2017.2785298
– ident: ref46
  doi: 10.1109/GlobalSIP.2014.7032269
– ident: ref50
  doi: 10.1016/j.comnet.2015.07.003
– ident: ref3
  doi: 10.1109/TNSM.2019.2942716
– ident: ref51
  doi: 10.1109/QoMEX.2017.7965631
– ident: ref29
  doi: 10.1109/INFCOMW.2019.8845109
– ident: ref40
  doi: 10.1016/j.patcog.2016.07.026
– ident: ref21
  doi: 10.1109/QoMEX.2014.6982332
– ident: ref14
  doi: 10.1186/2192-1962-2-7
– start-page: ei 6492
  year: 2007
  ident: ref61
  article-title: The blur effect: Perception and estimation with a new no-reference perceptual blur metric
  publication-title: SPIE Elect Imag Symp Conf Human Vision and Elect Imag
– ident: ref26
  doi: 10.1109/JSTSP.2009.2015375
– ident: ref19
  doi: 10.1016/j.image.2016.01.011
– ident: ref4
  doi: 10.1109/TMM.2019.2903722
– year: 2018
  ident: ref52
  publication-title: Confidence interval estimators for MOS values
– year: 2020
  ident: ref62
  publication-title: Image Blur Metrics
– ident: ref54
  doi: 10.1109/FG.2018.00019
– ident: ref27
  doi: 10.1007/s11760-019-01494-5
– ident: ref22
  doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-117
– ident: ref43
  doi: 10.1109/TMM.2015.2477042
– ident: ref16
  doi: 10.1109/QoMEX.2019.8743186
– start-page: 2135
  year: 2014
  ident: ref20
  article-title: EEG correlates during video quality perception
  publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO)
– ident: ref2
  doi: 10.1145/3176648
– ident: ref41
  doi: 10.1109/TMM.2018.2844085
– ident: ref9
  doi: 10.1109/TNSM.2016.2537645
– ident: ref15
  doi: 10.1109/ICIN.2019.8685917
– ident: ref17
  doi: 10.1109/JSTSP.2012.2191936
– start-page: 1322
  year: 2008
  ident: ref60
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell )
– year: 2013
  ident: ref5
  publication-title: European Network on Quality of Experience in Multimedia Systems and Services (COST Action IC 1003) Version 1 2
– year: 2017
  ident: ref63
  publication-title: Models and tools for quality assessment of streamed media
– ident: ref53
  doi: 10.1109/FG.2015.7163105
– ident: ref39
  doi: 10.1109/TBC.2018.2822869
– ident: ref64
  doi: 10.1145/3204949.3208124
– ident: ref37
  doi: 10.1109/LSP.2017.2691160
– year: 2008
  ident: ref6
  publication-title: Subjective video quality assessment methods for multimedia applications
– ident: ref55
  doi: 10.1109/ICCV.2015.428
– ident: ref44
  doi: 10.1109/TMM.2016.2598092
– ident: ref30
  doi: 10.1016/j.patrec.2015.01.013
– ident: ref7
  doi: 10.1109/TNSM.2014.2377691
– start-page: 494
  year: 2011
  ident: ref48
  article-title: Quantification of YouTube QoE via crowdsourcing
  publication-title: Proc IEEE Int Symp Multimedia
– ident: ref23
  doi: 10.2352/ISSN.2470-1173.2017.14.HVEI-124
– ident: ref42
  doi: 10.1109/TMM.2018.2827782
– ident: ref11
  doi: 10.1109/JSTSP.2016.2609843
– ident: ref36
  doi: 10.1109/COMSNETS48256.2020.9027383
– ident: ref32
  doi: 10.1109/QoMEX.2017.7965687
– volume: 6
  start-page: 1
  year: 2015
  ident: ref56
  article-title: Cross-dataset learning and person-specific normalisation for automatic action unit detection
  publication-title: Proc 11th IEEE Int Conf Workshops Autom Face Gesture Recognit (FG)
– ident: ref18
  doi: 10.1088/1741-2552/ab1673
– ident: ref31
  doi: 10.1109/QoMEX.2019.8743281
– start-page: 1322
  year: 2008
  ident: ref59
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell
– ident: ref28
  doi: 10.1016/j.image.2016.12.001
SSID ssj0058192
Score 2.347533
Snippet This article investigates the possibility to estimate the perceived Quality of Experience (QoE) automatically and unobtrusively by analyzing the face of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2702
SubjectTerms Blurring
Brain modeling
Classifiers
Electroencephalography
Face
Face recognition
facial expressions
Feature extraction
Feedback
gaze direction
Laboratory tests
machine learning
Muscles
QoE estimation
Quality of experience
Streaming media
Two dimensional displays
User experience
video key quality indicators
Video streaming
Video transmission
Title Estimation of the Quality of Experience During Video Streaming From Facial Expression and Gaze Direction
URI https://ieeexplore.ieee.org/document/9171870
https://www.proquest.com/docview/2468772271
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQR6YEGmdOM8RQaMKqV1oUbfI8UMgaIJKOsCvx3acggAhtliyI0vf2b7PvvsO4Dz3KEniPHaIlKGjC287FCfc8RmVmMkAU5O3Np6Eo5l_Ow_mLbhc58IIIUzwmejrT_OWz0u20ldlA0UtXGVfG7ChiFudq9XsuoEW9rKvli5OBtPJ3VixP0-RUqystqmJZc8dU0jlx-5rjpR0B8bNZOpIkqf-qsr77P2bTuN_Z7sL29a3RFe1MexBSxT7sPVFcbADD0O1pOtsRVRKpLw_VKtovOnmp-4xujHpi-j-kYsS6adrutDtdFkuUEr1PbvuXQfRFogWHOmwIWR30LI4gFk6nF6PHFtswWGEhJWTS48TVzIpeBwJntME54S6kno8wUTELmVRzDmLtLRn5FPMqJeElGGPRSLwOTmEdlEW4giQEfwJpauoSuL7HFOfBzIkeawGcOU_dAE3UGTMKpHrghjPmWEkOMk0eplGL7PodeFiPeSlluH4q3NHo7HuaIHoQq_BO7ML9TXz_DBWBMOL3OPfR53Apv53HcHSg3a1XIlT5YdU-ZkxwA-kPNu7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShgAcmRIoT5zkiICrQdKEgtsjxQyAgQdAO8OuxHacgQIgtlmzF0nf23fnuvgPYLzxKkriIHSJl6OjG2w7FCXd8RiVmMsDU1K1lw7B_7V_cBrctOJzWwgghTPKZ6OlPE8vnFZvop7Ij5Vq4Sr5mYFbp_cCtq7WaezfQ1F42buni5Gg0vMqU_-cptxQruW26YlnNY1qp_Lh_jVJJlyBrtlPnkjz0JuOix96_MTX-d7_LsGitS3Rci8MKtES5CgtfOAfX4O5MHeq6XhFVEin7D9U8Gm96-Ml8jE5NASO6ueeiQjp4TZ_0OH2pnlBK9Uu7nl2n0ZaIlhzpxCFk79CqXIfr9Gx00ndsuwWHERKOnUJ6nLiSScHjSPCCJrgg1JXU4wkmInYpi2LOWaTJPSOfYka9JKQMeywSgc_JBrTLqhSbgAzlTyhd5awkvs8x9XkgQ1LEagFXFkQHcANFziwXuW6J8ZgbnwQnuUYv1-jlFr0OHEyXPNdEHH9NXtNoTCdaIDrQbfDO7VF9zT0_jJWL4UXu1u-r9mCuP8oG-eB8eLkN8_o_dT5LF9rjl4nYUVbJuNg1wvgBQXPfBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+Quality+of+Experience+During+Video+Streaming+From+Facial+Expression+and+Gaze+Direction&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Porcu%2C+Simone&rft.au=Floris%2C+Alessandro&rft.au=Voigt-Antons%2C+Jan-Niklas&rft.au=Atzori%2C+Luigi&rft.date=2020-12-01&rft.pub=IEEE&rft.eissn=1932-4537&rft.volume=17&rft.issue=4&rft.spage=2702&rft.epage=2716&rft_id=info:doi/10.1109%2FTNSM.2020.3018303&rft.externalDocID=9171870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon