Efficient backward decoding of high-order hidden Markov models
The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700] has resulted in increases in speed of up to 40 in expensive tim...
Saved in:
Published in | Pattern recognition Vol. 43; no. 1; pp. 99 - 112 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2009.06.004 |
Cover
Abstract | The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700] has resulted in increases in speed of up to 40 in expensive time-synchronous beam searches in hidden Markov model (HMM) based speech recognition [R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11; L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95; A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596]. This is typically achieved by using a simplified forward search to decrease computation in the following detailed backward search. FBS implicitly assumes that forward and backward searches of HMMs are computationally equivalent. In this paper we present experimental results, obtained on the CallFriend database, that show that this assumption is incorrect for conventional high-order HMMs. Therefore, any improvement in computational efficiency that is gained by using conventional low-order HMMs in the simplified backward search of FBS is lost.
This problem is solved by presenting a new definition of HMMs termed a right-context HMM, which is equivalent to conventional HMMs. We show that the computational expense of backward Viterbi-beam decoding right-context HMMs is similar to that of forward decoding conventional HMMs. Though not the subject of this paper, this allows us to more efficiently decode high-order HMMs, by capitalising on the improvements in computational efficiency that is obtained by using the FBS algorithm. |
---|---|
AbstractList | The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700] has resulted in increases in speed of up to 40 in expensive time-synchronous beam searches in hidden Markov model (HMM) based speech recognition [R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11; L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95; A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596]. This is typically achieved by using a simplified forward search to decrease computation in the following detailed backward search. FBS implicitly assumes that forward and backward searches of HMMs are computationally equivalent. In this paper we present experimental results, obtained on the CallFriend database, that show that this assumption is incorrect for conventional high-order HMMs. Therefore, any improvement in computational efficiency that is gained by using conventional low-order HMMs in the simplified backward search of FBS is lost.
This problem is solved by presenting a new definition of HMMs termed a right-context HMM, which is equivalent to conventional HMMs. We show that the computational expense of backward Viterbi-beam decoding right-context HMMs is similar to that of forward decoding conventional HMMs. Though not the subject of this paper, this allows us to more efficiently decode high-order HMMs, by capitalising on the improvements in computational efficiency that is obtained by using the FBS algorithm. |
Author | du Preez, J.A. Engelbrecht, H.A. |
Author_xml | – sequence: 1 givenname: H.A. surname: Engelbrecht fullname: Engelbrecht, H.A. email: hebrecht@sun.ac.za – sequence: 2 givenname: J.A. surname: du Preez fullname: du Preez, J.A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22598805$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw978bjrJNmveChIqR9Q8aLnkE1m2_RjU5Kl4r83ZcWDBz3NwLzPy_BMyKhzHRJyTSGjQMvbTXZQvXarjAGIDMoMID8jY1pXPC1ozkZkDMBpyhnwCzIJYQNAq3gYk9miba222PVJo_T2Q3mTGNTO2G6VuDZZ29U6dd6gj6sx2CUvym_dMdk7g7twSc5btQt49T2n5P1h8TZ_Spevj8_z-2WqOS_7tEFWVciZagslTF2jKKGqTZkXomo0skJTAbpuKS0gvqYF5E2j46kRwjDO-JTcDL0HFbTatV512gZ58Hav_KdkrBB1DUXM5UNOexeCx_YnQkGeXMmNHFzJkysJpYyuInb3C9O2V711Xe-V3f0HzwY4-sCjRS_DSahGYz3qXhpn_y74AuqAiOE |
CODEN | PTNRA8 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2013_01_051 crossref_primary_10_1016_j_envsoft_2013_03_014 crossref_primary_10_1016_j_ins_2017_05_038 crossref_primary_10_1371_journal_pcbi_1002286 crossref_primary_10_1007_s10336_010_0636_3 crossref_primary_10_1142_S0218213016400017 crossref_primary_10_1016_j_patcog_2011_05_005 crossref_primary_10_1016_j_jmarsys_2023_103941 crossref_primary_10_1007_s12541_016_0173_y crossref_primary_10_1155_2014_231704 |
Cites_doi | 10.1109/89.554265 10.1214/aoms/1177697196 10.1109/PROC.1973.9030 10.1090/S0002-9904-1967-11751-8 10.1109/TPAMI.1983.4767370 10.1109/5.18626 10.1006/csla.1997.0037 10.1109/TPAMI.2005.221 10.1080/03610929908832439 10.21236/ADA460351 10.21437/ICSLP.1994-538 10.1109/78.124938 10.1109/ICASSP.1991.150435 10.21236/ADA457473 10.1081/STM-120004464 10.1109/TIT.1967.1054010 10.1109/ICASSP.1999.759736 10.1109/PROC.1985.13344 10.1109/MASSP.1986.1165342 10.1109/PROC.1976.10159 10.1214/aoms/1177699147 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.patcog.2009.06.004 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1873-5142 |
EndPage | 112 |
ExternalDocumentID | 22598805 10_1016_j_patcog_2009_06_004 S0031320309002234 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c336t-be277e32af5a9d88e96078d64597bce25c190c8f1150001c904bbc7bcb99d2323 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Mon Jul 21 09:15:30 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Tue Jul 01 02:36:07 EDT 2025 Fri Feb 23 02:33:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hidden Markov model Decoding High-order Search Performance evaluation High performance Vocabulary Probabilistic approach Acoustic signal processing Search algorithm Algorithm performance Hidden Markov models Speech recognition Database Natural language Viterbi decoding Speech processing |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-be277e32af5a9d88e96078d64597bce25c190c8f1150001c904bbc7bcb99d2323 |
PageCount | 14 |
ParticipantIDs | pascalfrancis_primary_22598805 crossref_primary_10_1016_j_patcog_2009_06_004 crossref_citationtrail_10_1016_j_patcog_2009_06_004 elsevier_sciencedirect_doi_10_1016_j_patcog_2009_06_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010 2010-01-00 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Pattern recognition |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | C. Eng, A. Thibessard, S. Hergalant, J.-F. Mari, P. Leblond, Data mining using hidden Markov models (HMM2) to detect heterogeneities into bacteria genomes, Journes Ouvertes Biol. Inf. Math., (JOBIM) 2005, Lyon, France, (2005). B.T. Lowerre, The HARPY speech recognition system, Ph.D. Dissertation, Carnegie-Mellon University, 1976. Baum, Eagon (bib5) 1967; 73 A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596. S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700. Berchtold (bib10) 1999; 28 Forney (bib16) 1973; 61 Ney, Mergel, Noll, Paeseler (bib23) 1992; 40 Levinson (bib18) 1985; 73 A.B. Poritz, Hidden Markov models: a guided tour, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, 1988, pp. 215–218. Mari, Haton, Kriouile (bib21) 1997; 5 Rabiner, Juang (bib27) 1986; 1 L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95. Bahl, Jelinek, Mercer (bib4) 1983; 5 Baum, Petrie, Soules, Weiss (bib7) 1970; 41 Canavan, Zipperlen (bib12) 1996 Baum, Petrie (bib6) 1966; 37 Nel, Du Preez, Herbst (bib22) 2005; 27 R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11. H.A. Engelbrecht, Efficient decoding of high-order hidden Markov models, Ph.D. Dissertation, Stellenbosch University, 2007. Du Preez (bib13) 1998; 12 V. Steinbiss, B.-H. Tran, H. Ney, Improvements in beam search, in: International Conference on Spoken Language Processing, vol. 4, 1994, pp. 2143–2146. Berchtold (bib11) 2002; 18 Aycard, Mari, Washington (bib2) 2004; 1 Bellman (bib8) 1957 Bengio (bib9) 1999; 2 . L.R. Bahl, P.F. Brown, P.V. de Souza, R.L. Mercer, Speech recognition with continuous-parameter hidden Markov models, IBM Research Report RC13123, T.J. Watson Research Center, Yorktown Height, NY, 1987. Jelinek (bib17) 1976; 64 Rabiner (bib26) 1989; 77 J. Mari, D. Fohr, J. Junqua, A second-order HMM for high-performance word and phoneme-based continuous speech recognition, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1996, pp. 435–438. M. Ravishankar, Efficient algorithms for speech recognition, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-96-143, 1996. Viterbi (bib32) 1967; 13 10.1016/j.patcog.2009.06.004_bib3 Bahl (10.1016/j.patcog.2009.06.004_bib4) 1983; 5 10.1016/j.patcog.2009.06.004_bib30 10.1016/j.patcog.2009.06.004_bib1 10.1016/j.patcog.2009.06.004_bib31 10.1016/j.patcog.2009.06.004_bib14 10.1016/j.patcog.2009.06.004_bib15 Rabiner (10.1016/j.patcog.2009.06.004_bib26) 1989; 77 Baum (10.1016/j.patcog.2009.06.004_bib7) 1970; 41 Berchtold (10.1016/j.patcog.2009.06.004_bib10) 1999; 28 10.1016/j.patcog.2009.06.004_bib29 Du Preez (10.1016/j.patcog.2009.06.004_bib13) 1998; 12 Jelinek (10.1016/j.patcog.2009.06.004_bib17) 1976; 64 Bengio (10.1016/j.patcog.2009.06.004_bib9) 1999; 2 10.1016/j.patcog.2009.06.004_bib20 Baum (10.1016/j.patcog.2009.06.004_bib5) 1967; 73 Aycard (10.1016/j.patcog.2009.06.004_bib2) 2004; 1 Berchtold (10.1016/j.patcog.2009.06.004_bib11) 2002; 18 Canavan (10.1016/j.patcog.2009.06.004_bib12) 1996 Ney (10.1016/j.patcog.2009.06.004_bib23) 1992; 40 10.1016/j.patcog.2009.06.004_bib25 Levinson (10.1016/j.patcog.2009.06.004_bib18) 1985; 73 10.1016/j.patcog.2009.06.004_bib28 Bellman (10.1016/j.patcog.2009.06.004_bib8) 1957 Nel (10.1016/j.patcog.2009.06.004_bib22) 2005; 27 10.1016/j.patcog.2009.06.004_bib24 10.1016/j.patcog.2009.06.004_bib19 Baum (10.1016/j.patcog.2009.06.004_bib6) 1966; 37 Viterbi (10.1016/j.patcog.2009.06.004_bib32) 1967; 13 Mari (10.1016/j.patcog.2009.06.004_bib21) 1997; 5 Forney (10.1016/j.patcog.2009.06.004_bib16) 1973; 61 Rabiner (10.1016/j.patcog.2009.06.004_bib27) 1986; 1 |
References_xml | – year: 1996 ident: bib12 article-title: CALLFRIEND American English-Non-Southern Dialect – volume: 5 start-page: 179 year: 1983 end-page: 190 ident: bib4 article-title: A maximum likelihood approach to continuous speech recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95. – volume: 73 start-page: 360 year: 1967 end-page: 363 ident: bib5 article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology publication-title: Bull. Am. Math. Soc. – reference: L.R. Bahl, P.F. Brown, P.V. de Souza, R.L. Mercer, Speech recognition with continuous-parameter hidden Markov models, IBM Research Report RC13123, T.J. Watson Research Center, Yorktown Height, NY, 1987. – volume: 41 start-page: 164 year: 1970 end-page: 171 ident: bib7 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib26 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE – volume: 61 start-page: 268 year: 1973 end-page: 278 ident: bib16 article-title: The Viterbi algorithm publication-title: Proc. IEEE – year: 1957 ident: bib8 article-title: Dynamic Programming – volume: 27 start-page: 1733 year: 2005 end-page: 1746 ident: bib22 article-title: Estimating the pen trajectories of static signatures using hidden Markov models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 start-page: 260 year: 1967 end-page: 269 ident: bib32 article-title: Error bounds for convolutional codes and asymptotically optimum decoding algorithms publication-title: IEEE Trans. Inf. Theory – reference: A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596. – volume: 28 start-page: 2569 year: 1999 end-page: 2589 ident: bib10 article-title: The double chain Markov model publication-title: Commun. Stat. Theory Methods – volume: 2 start-page: 129 year: 1999 end-page: 162 ident: bib9 article-title: Markovian models for sequential data publication-title: Neural Comput. Surv. – reference: M. Ravishankar, Efficient algorithms for speech recognition, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-96-143, 1996. – volume: 12 start-page: 23 year: 1998 end-page: 39 ident: bib13 article-title: Efficient training of high-order hidden Markov models, using first-order representations publication-title: Comput. Speech Lang. – volume: 64 start-page: 532 year: 1976 end-page: 556 ident: bib17 article-title: Continuous speech recognition by statistical methods publication-title: IEEE Proc. – volume: 1 start-page: 231 year: 2004 end-page: 245 ident: bib2 article-title: Learning to automatically detect features for mobile robots using second-order hidden Markov models publication-title: Int. J. Adv. Robotic Syst. – reference: J. Mari, D. Fohr, J. Junqua, A second-order HMM for high-performance word and phoneme-based continuous speech recognition, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1996, pp. 435–438. – reference: V. Steinbiss, B.-H. Tran, H. Ney, Improvements in beam search, in: International Conference on Spoken Language Processing, vol. 4, 1994, pp. 2143–2146. – volume: 73 start-page: 1625 year: 1985 end-page: 1650 ident: bib18 article-title: Structural methods in automatic speech recognition publication-title: IEEE Proc. – reference: R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11. – volume: 40 start-page: 272 year: 1992 end-page: 281 ident: bib23 article-title: Data driven search organization for continuous speech recognition publication-title: IEEE Trans. Signal Process. – volume: 5 start-page: 22 year: 1997 end-page: 25 ident: bib21 article-title: Automatic word recognition based on second-order hidden Markov models publication-title: IEEE Trans. Speech Audio Process. – reference: B.T. Lowerre, The HARPY speech recognition system, Ph.D. Dissertation, Carnegie-Mellon University, 1976. – volume: 37 start-page: 1554 year: 1966 end-page: 1563 ident: bib6 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: Ann. Math. Stat. – reference: A.B. Poritz, Hidden Markov models: a guided tour, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, 1988, pp. 215–218. – volume: 18 start-page: 193 year: 2002 end-page: 227 ident: bib11 article-title: High-order extensions of the double chain Markov model publication-title: Stochastic Models – reference: S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700. – volume: 1 start-page: 4 year: 1986 end-page: 16 ident: bib27 article-title: An introduction to hidden Markov models publication-title: IEEE ASSP Mag. – reference: C. Eng, A. Thibessard, S. Hergalant, J.-F. Mari, P. Leblond, Data mining using hidden Markov models (HMM2) to detect heterogeneities into bacteria genomes, Journes Ouvertes Biol. Inf. Math., (JOBIM) 2005, Lyon, France, (2005). – reference: . – reference: H.A. Engelbrecht, Efficient decoding of high-order hidden Markov models, Ph.D. Dissertation, Stellenbosch University, 2007. – volume: 5 start-page: 22 issue: 3 year: 1997 ident: 10.1016/j.patcog.2009.06.004_bib21 article-title: Automatic word recognition based on second-order hidden Markov models publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.554265 – volume: 41 start-page: 164 issue: 1 year: 1970 ident: 10.1016/j.patcog.2009.06.004_bib7 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697196 – ident: 10.1016/j.patcog.2009.06.004_bib14 – volume: 61 start-page: 268 year: 1973 ident: 10.1016/j.patcog.2009.06.004_bib16 article-title: The Viterbi algorithm publication-title: Proc. IEEE doi: 10.1109/PROC.1973.9030 – volume: 73 start-page: 360 year: 1967 ident: 10.1016/j.patcog.2009.06.004_bib5 article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1967-11751-8 – volume: 2 start-page: 129 year: 1999 ident: 10.1016/j.patcog.2009.06.004_bib9 article-title: Markovian models for sequential data publication-title: Neural Comput. Surv. – volume: 5 start-page: 179 year: 1983 ident: 10.1016/j.patcog.2009.06.004_bib4 article-title: A maximum likelihood approach to continuous speech recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1983.4767370 – year: 1957 ident: 10.1016/j.patcog.2009.06.004_bib8 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.patcog.2009.06.004_bib26 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.18626 – ident: 10.1016/j.patcog.2009.06.004_bib25 – volume: 12 start-page: 23 issue: 1 year: 1998 ident: 10.1016/j.patcog.2009.06.004_bib13 article-title: Efficient training of high-order hidden Markov models, using first-order representations publication-title: Comput. Speech Lang. doi: 10.1006/csla.1997.0037 – ident: 10.1016/j.patcog.2009.06.004_bib3 – volume: 27 start-page: 1733 issue: 11 year: 2005 ident: 10.1016/j.patcog.2009.06.004_bib22 article-title: Estimating the pen trajectories of static signatures using hidden Markov models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.221 – volume: 28 start-page: 2569 issue: 11 year: 1999 ident: 10.1016/j.patcog.2009.06.004_bib10 article-title: The double chain Markov model publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610929908832439 – ident: 10.1016/j.patcog.2009.06.004_bib29 doi: 10.21236/ADA460351 – ident: 10.1016/j.patcog.2009.06.004_bib31 doi: 10.21437/ICSLP.1994-538 – volume: 40 start-page: 272 issue: 2 year: 1992 ident: 10.1016/j.patcog.2009.06.004_bib23 article-title: Data driven search organization for continuous speech recognition publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.124938 – ident: 10.1016/j.patcog.2009.06.004_bib28 – ident: 10.1016/j.patcog.2009.06.004_bib15 – ident: 10.1016/j.patcog.2009.06.004_bib1 doi: 10.1109/ICASSP.1991.150435 – volume: 1 start-page: 231 issue: 4 year: 2004 ident: 10.1016/j.patcog.2009.06.004_bib2 article-title: Learning to automatically detect features for mobile robots using second-order hidden Markov models publication-title: Int. J. Adv. Robotic Syst. – ident: 10.1016/j.patcog.2009.06.004_bib24 doi: 10.21236/ADA457473 – volume: 18 start-page: 193 issue: 2 year: 2002 ident: 10.1016/j.patcog.2009.06.004_bib11 article-title: High-order extensions of the double chain Markov model publication-title: Stochastic Models doi: 10.1081/STM-120004464 – year: 1996 ident: 10.1016/j.patcog.2009.06.004_bib12 – volume: 13 start-page: 260 issue: 2 year: 1967 ident: 10.1016/j.patcog.2009.06.004_bib32 article-title: Error bounds for convolutional codes and asymptotically optimum decoding algorithms publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1054010 – ident: 10.1016/j.patcog.2009.06.004_bib20 – ident: 10.1016/j.patcog.2009.06.004_bib30 doi: 10.1109/ICASSP.1999.759736 – volume: 73 start-page: 1625 issue: 11 year: 1985 ident: 10.1016/j.patcog.2009.06.004_bib18 article-title: Structural methods in automatic speech recognition publication-title: IEEE Proc. doi: 10.1109/PROC.1985.13344 – ident: 10.1016/j.patcog.2009.06.004_bib19 – volume: 1 start-page: 4 issue: 3 year: 1986 ident: 10.1016/j.patcog.2009.06.004_bib27 article-title: An introduction to hidden Markov models publication-title: IEEE ASSP Mag. doi: 10.1109/MASSP.1986.1165342 – volume: 64 start-page: 532 issue: 4 year: 1976 ident: 10.1016/j.patcog.2009.06.004_bib17 article-title: Continuous speech recognition by statistical methods publication-title: IEEE Proc. doi: 10.1109/PROC.1976.10159 – volume: 37 start-page: 1554 year: 1966 ident: 10.1016/j.patcog.2009.06.004_bib6 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177699147 |
SSID | ssj0017142 |
Score | 2.0348163 |
Snippet | The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Applied sciences Coding, codes Decoding Exact sciences and technology Hidden Markov model High-order Information, signal and communications theory Miscellaneous Search Signal and communications theory Signal processing Speech processing Telecommunications and information theory |
Title | Efficient backward decoding of high-order hidden Markov models |
URI | https://dx.doi.org/10.1016/j.patcog.2009.06.004 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvgjitzg_Rh58jduapGlehDE2psKeHOytNGkqE1mHmz76t3uXpsM9yMC30iZtuV5_d5fc_Y6Qu1jHUTfjCoKc2DCR6IQZG2UMTmuhpNPc-CzfSTyeiqeZnDXIoK6FwbTKgP0Vpnu0Dmc6QZqd5XyONb5IO4hbBGiIOHKCCqFQ1--_N2ke2N-7YgznPYaj6_I5n-O1BLgrXwNrJe5KiL_M08EyW4HQiqrbxS8TNDomh8F3pP3q9U5Iwy1OyVHdl4GG3_SMPAw9LwSYE2pweQ6UgOYQZqKZomVBkaKYec5NOETgoVixU35R3xZndU6mo-HLYMxCnwRmOY_XzLhIKcejrJCZzpPEQVSikhxpYpSxLpIWrL5NCnT-QCJWd4UxFi4ZrXPwqPgFaS7KhbskFKKPXpzxTMqcC2nyLFGqABfIcJPEXatbhNfiSW0gEcdeFu9pnS32llZCxf6WOvVJc6JF2GbWsiLR2DFe1ZJPt5QhBZzfMbO99aE2jwPY0gBV8urft74m-1XmAC6_3JDm-uPT3YJDsjZtr3Ftstd_fB5PfgCFcd4C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO4CEeCPGY-TANWJrkqa5IKGJabCx05B2q5q0RSC0VWzw-7HbdGIHhMStSpu2ctPPdmx_BrgOTRh0EqHRyQktl5GJuHVBwnHYSK0yI2yZ5TsOB8_ycaqmG9Cra2EordJjf4XpJVr7kRsvzZvi9ZVqfIl2kEIEpIiE3ISmVOjtNaB59zAcjFfBBN2VFWm46HKaUFfQlWleBSLe_MUTV1JgQv6moXaKZIFyy6uGFz-0UH8fdr35yO6qNzyAjWx2CHt1awbm_9QjuL0vqSFQozBLO3S4DliKniZpKjbPGbEU85J2Ew8JexgV7cy_WNkZZ3EMz_37SW_AfasE7oQIl9xmgdaZCJJcJSaNogwdEx2lxBSjrcsC5VDxuygn-w8l4kxHWuvwlDUmRaNKnEBjNp9lp8DQAemGiUiUSoVUNk0irXO0gqywUdhxpgWiFk_sPI84tbN4j-uEsbe4Eiq1uDRxmTcnW8BXs4qKR-OP63Ut-XhtPcQI9X_MbK99qNXjELkMopU6-_etr2BrMHkaxaOH8fActqtEAtqNuYDG8uMzu0T7ZGnbfv19AzyN4Lk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+backward+decoding+of+high-order+hidden+Markov+models&rft.jtitle=Pattern+recognition&rft.au=Engelbrecht%2C+H.A.&rft.au=du+Preez%2C+J.A.&rft.date=2010&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=43&rft.issue=1&rft.spage=99&rft.epage=112&rft_id=info:doi/10.1016%2Fj.patcog.2009.06.004&rft.externalDocID=S0031320309002234 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |