Efficient backward decoding of high-order hidden Markov models

The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700] has resulted in increases in speed of up to 40 in expensive tim...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 43; no. 1; pp. 99 - 112
Main Authors Engelbrecht, H.A., du Preez, J.A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 2010
Elsevier
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2009.06.004

Cover

Abstract The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700] has resulted in increases in speed of up to 40 in expensive time-synchronous beam searches in hidden Markov model (HMM) based speech recognition [R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11; L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95; A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596]. This is typically achieved by using a simplified forward search to decrease computation in the following detailed backward search. FBS implicitly assumes that forward and backward searches of HMMs are computationally equivalent. In this paper we present experimental results, obtained on the CallFriend database, that show that this assumption is incorrect for conventional high-order HMMs. Therefore, any improvement in computational efficiency that is gained by using conventional low-order HMMs in the simplified backward search of FBS is lost. This problem is solved by presenting a new definition of HMMs termed a right-context HMM, which is equivalent to conventional HMMs. We show that the computational expense of backward Viterbi-beam decoding right-context HMMs is similar to that of forward decoding conventional HMMs. Though not the subject of this paper, this allows us to more efficiently decode high-order HMMs, by capitalising on the improvements in computational efficiency that is obtained by using the FBS algorithm.
AbstractList The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700] has resulted in increases in speed of up to 40 in expensive time-synchronous beam searches in hidden Markov model (HMM) based speech recognition [R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11; L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95; A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596]. This is typically achieved by using a simplified forward search to decrease computation in the following detailed backward search. FBS implicitly assumes that forward and backward searches of HMMs are computationally equivalent. In this paper we present experimental results, obtained on the CallFriend database, that show that this assumption is incorrect for conventional high-order HMMs. Therefore, any improvement in computational efficiency that is gained by using conventional low-order HMMs in the simplified backward search of FBS is lost. This problem is solved by presenting a new definition of HMMs termed a right-context HMM, which is equivalent to conventional HMMs. We show that the computational expense of backward Viterbi-beam decoding right-context HMMs is similar to that of forward decoding conventional HMMs. Though not the subject of this paper, this allows us to more efficiently decode high-order HMMs, by capitalising on the improvements in computational efficiency that is obtained by using the FBS algorithm.
Author du Preez, J.A.
Engelbrecht, H.A.
Author_xml – sequence: 1
  givenname: H.A.
  surname: Engelbrecht
  fullname: Engelbrecht, H.A.
  email: hebrecht@sun.ac.za
– sequence: 2
  givenname: J.A.
  surname: du Preez
  fullname: du Preez, J.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22598805$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-Aw978bjrJNmveChIqR9Q8aLnkE1m2_RjU5Kl4r83ZcWDBz3NwLzPy_BMyKhzHRJyTSGjQMvbTXZQvXarjAGIDMoMID8jY1pXPC1ozkZkDMBpyhnwCzIJYQNAq3gYk9miba222PVJo_T2Q3mTGNTO2G6VuDZZ29U6dd6gj6sx2CUvym_dMdk7g7twSc5btQt49T2n5P1h8TZ_Spevj8_z-2WqOS_7tEFWVciZagslTF2jKKGqTZkXomo0skJTAbpuKS0gvqYF5E2j46kRwjDO-JTcDL0HFbTatV512gZ58Hav_KdkrBB1DUXM5UNOexeCx_YnQkGeXMmNHFzJkysJpYyuInb3C9O2V711Xe-V3f0HzwY4-sCjRS_DSahGYz3qXhpn_y74AuqAiOE
CODEN PTNRA8
CitedBy_id crossref_primary_10_1016_j_eswa_2013_01_051
crossref_primary_10_1016_j_envsoft_2013_03_014
crossref_primary_10_1016_j_ins_2017_05_038
crossref_primary_10_1371_journal_pcbi_1002286
crossref_primary_10_1007_s10336_010_0636_3
crossref_primary_10_1142_S0218213016400017
crossref_primary_10_1016_j_patcog_2011_05_005
crossref_primary_10_1016_j_jmarsys_2023_103941
crossref_primary_10_1007_s12541_016_0173_y
crossref_primary_10_1155_2014_231704
Cites_doi 10.1109/89.554265
10.1214/aoms/1177697196
10.1109/PROC.1973.9030
10.1090/S0002-9904-1967-11751-8
10.1109/TPAMI.1983.4767370
10.1109/5.18626
10.1006/csla.1997.0037
10.1109/TPAMI.2005.221
10.1080/03610929908832439
10.21236/ADA460351
10.21437/ICSLP.1994-538
10.1109/78.124938
10.1109/ICASSP.1991.150435
10.21236/ADA457473
10.1081/STM-120004464
10.1109/TIT.1967.1054010
10.1109/ICASSP.1999.759736
10.1109/PROC.1985.13344
10.1109/MASSP.1986.1165342
10.1109/PROC.1976.10159
10.1214/aoms/1177699147
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2009.06.004
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 112
ExternalDocumentID 22598805
10_1016_j_patcog_2009_06_004
S0031320309002234
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c336t-be277e32af5a9d88e96078d64597bce25c190c8f1150001c904bbc7bcb99d2323
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Mon Jul 21 09:15:30 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Tue Jul 01 02:36:07 EDT 2025
Fri Feb 23 02:33:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hidden Markov model
Decoding
High-order
Search
Performance evaluation
High performance
Vocabulary
Probabilistic approach
Acoustic signal processing
Search algorithm
Algorithm performance
Hidden Markov models
Speech recognition
Database
Natural language
Viterbi decoding
Speech processing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-be277e32af5a9d88e96078d64597bce25c190c8f1150001c904bbc7bcb99d2323
PageCount 14
ParticipantIDs pascalfrancis_primary_22598805
crossref_primary_10_1016_j_patcog_2009_06_004
crossref_citationtrail_10_1016_j_patcog_2009_06_004
elsevier_sciencedirect_doi_10_1016_j_patcog_2009_06_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010
2010-01-00
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References C. Eng, A. Thibessard, S. Hergalant, J.-F. Mari, P. Leblond, Data mining using hidden Markov models (HMM2) to detect heterogeneities into bacteria genomes, Journes Ouvertes Biol. Inf. Math., (JOBIM) 2005, Lyon, France, (2005).
B.T. Lowerre, The HARPY speech recognition system, Ph.D. Dissertation, Carnegie-Mellon University, 1976.
Baum, Eagon (bib5) 1967; 73
A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596.
S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700.
Berchtold (bib10) 1999; 28
Forney (bib16) 1973; 61
Ney, Mergel, Noll, Paeseler (bib23) 1992; 40
Levinson (bib18) 1985; 73
A.B. Poritz, Hidden Markov models: a guided tour, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, 1988, pp. 215–218.
Mari, Haton, Kriouile (bib21) 1997; 5
Rabiner, Juang (bib27) 1986; 1
L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95.
Bahl, Jelinek, Mercer (bib4) 1983; 5
Baum, Petrie, Soules, Weiss (bib7) 1970; 41
Canavan, Zipperlen (bib12) 1996
Baum, Petrie (bib6) 1966; 37
Nel, Du Preez, Herbst (bib22) 2005; 27
R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11.
H.A. Engelbrecht, Efficient decoding of high-order hidden Markov models, Ph.D. Dissertation, Stellenbosch University, 2007.
Du Preez (bib13) 1998; 12
V. Steinbiss, B.-H. Tran, H. Ney, Improvements in beam search, in: International Conference on Spoken Language Processing, vol. 4, 1994, pp. 2143–2146.
Berchtold (bib11) 2002; 18
Aycard, Mari, Washington (bib2) 2004; 1
Bellman (bib8) 1957
Bengio (bib9) 1999; 2
.
L.R. Bahl, P.F. Brown, P.V. de Souza, R.L. Mercer, Speech recognition with continuous-parameter hidden Markov models, IBM Research Report RC13123, T.J. Watson Research Center, Yorktown Height, NY, 1987.
Jelinek (bib17) 1976; 64
Rabiner (bib26) 1989; 77
J. Mari, D. Fohr, J. Junqua, A second-order HMM for high-performance word and phoneme-based continuous speech recognition, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1996, pp. 435–438.
M. Ravishankar, Efficient algorithms for speech recognition, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-96-143, 1996.
Viterbi (bib32) 1967; 13
10.1016/j.patcog.2009.06.004_bib3
Bahl (10.1016/j.patcog.2009.06.004_bib4) 1983; 5
10.1016/j.patcog.2009.06.004_bib30
10.1016/j.patcog.2009.06.004_bib1
10.1016/j.patcog.2009.06.004_bib31
10.1016/j.patcog.2009.06.004_bib14
10.1016/j.patcog.2009.06.004_bib15
Rabiner (10.1016/j.patcog.2009.06.004_bib26) 1989; 77
Baum (10.1016/j.patcog.2009.06.004_bib7) 1970; 41
Berchtold (10.1016/j.patcog.2009.06.004_bib10) 1999; 28
10.1016/j.patcog.2009.06.004_bib29
Du Preez (10.1016/j.patcog.2009.06.004_bib13) 1998; 12
Jelinek (10.1016/j.patcog.2009.06.004_bib17) 1976; 64
Bengio (10.1016/j.patcog.2009.06.004_bib9) 1999; 2
10.1016/j.patcog.2009.06.004_bib20
Baum (10.1016/j.patcog.2009.06.004_bib5) 1967; 73
Aycard (10.1016/j.patcog.2009.06.004_bib2) 2004; 1
Berchtold (10.1016/j.patcog.2009.06.004_bib11) 2002; 18
Canavan (10.1016/j.patcog.2009.06.004_bib12) 1996
Ney (10.1016/j.patcog.2009.06.004_bib23) 1992; 40
10.1016/j.patcog.2009.06.004_bib25
Levinson (10.1016/j.patcog.2009.06.004_bib18) 1985; 73
10.1016/j.patcog.2009.06.004_bib28
Bellman (10.1016/j.patcog.2009.06.004_bib8) 1957
Nel (10.1016/j.patcog.2009.06.004_bib22) 2005; 27
10.1016/j.patcog.2009.06.004_bib24
10.1016/j.patcog.2009.06.004_bib19
Baum (10.1016/j.patcog.2009.06.004_bib6) 1966; 37
Viterbi (10.1016/j.patcog.2009.06.004_bib32) 1967; 13
Mari (10.1016/j.patcog.2009.06.004_bib21) 1997; 5
Forney (10.1016/j.patcog.2009.06.004_bib16) 1973; 61
Rabiner (10.1016/j.patcog.2009.06.004_bib27) 1986; 1
References_xml – year: 1996
  ident: bib12
  article-title: CALLFRIEND American English-Non-Southern Dialect
– volume: 5
  start-page: 179
  year: 1983
  end-page: 190
  ident: bib4
  article-title: A maximum likelihood approach to continuous speech recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: L. Nguyen, R. Schwartz, F. Kubala, P. Placeway, Search algorithms for software-only real-time recognition with very large vocabularies, in: Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95.
– volume: 73
  start-page: 360
  year: 1967
  end-page: 363
  ident: bib5
  article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
  publication-title: Bull. Am. Math. Soc.
– reference: L.R. Bahl, P.F. Brown, P.V. de Souza, R.L. Mercer, Speech recognition with continuous-parameter hidden Markov models, IBM Research Report RC13123, T.J. Watson Research Center, Yorktown Height, NY, 1987.
– volume: 41
  start-page: 164
  year: 1970
  end-page: 171
  ident: bib7
  article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib26
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 61
  start-page: 268
  year: 1973
  end-page: 278
  ident: bib16
  article-title: The Viterbi algorithm
  publication-title: Proc. IEEE
– year: 1957
  ident: bib8
  article-title: Dynamic Programming
– volume: 27
  start-page: 1733
  year: 2005
  end-page: 1746
  ident: bib22
  article-title: Estimating the pen trajectories of static signatures using hidden Markov models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  start-page: 260
  year: 1967
  end-page: 269
  ident: bib32
  article-title: Error bounds for convolutional codes and asymptotically optimum decoding algorithms
  publication-title: IEEE Trans. Inf. Theory
– reference: A. Sixtus, S. Ortmanns, High-quality word graphs using forward–backward pruning, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp. 593–596.
– volume: 28
  start-page: 2569
  year: 1999
  end-page: 2589
  ident: bib10
  article-title: The double chain Markov model
  publication-title: Commun. Stat. Theory Methods
– volume: 2
  start-page: 129
  year: 1999
  end-page: 162
  ident: bib9
  article-title: Markovian models for sequential data
  publication-title: Neural Comput. Surv.
– reference: M. Ravishankar, Efficient algorithms for speech recognition, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-96-143, 1996.
– volume: 12
  start-page: 23
  year: 1998
  end-page: 39
  ident: bib13
  article-title: Efficient training of high-order hidden Markov models, using first-order representations
  publication-title: Comput. Speech Lang.
– volume: 64
  start-page: 532
  year: 1976
  end-page: 556
  ident: bib17
  article-title: Continuous speech recognition by statistical methods
  publication-title: IEEE Proc.
– volume: 1
  start-page: 231
  year: 2004
  end-page: 245
  ident: bib2
  article-title: Learning to automatically detect features for mobile robots using second-order hidden Markov models
  publication-title: Int. J. Adv. Robotic Syst.
– reference: J. Mari, D. Fohr, J. Junqua, A second-order HMM for high-performance word and phoneme-based continuous speech recognition, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1996, pp. 435–438.
– reference: V. Steinbiss, B.-H. Tran, H. Ney, Improvements in beam search, in: International Conference on Spoken Language Processing, vol. 4, 1994, pp. 2143–2146.
– volume: 73
  start-page: 1625
  year: 1985
  end-page: 1650
  ident: bib18
  article-title: Structural methods in automatic speech recognition
  publication-title: IEEE Proc.
– reference: R. Schwartz, S. Austin, Efficient, high-performance algorithms for N-best search, in: Proceedings of the Workshop on Speech and Natural Language, 1990, pp. 6–11.
– volume: 40
  start-page: 272
  year: 1992
  end-page: 281
  ident: bib23
  article-title: Data driven search organization for continuous speech recognition
  publication-title: IEEE Trans. Signal Process.
– volume: 5
  start-page: 22
  year: 1997
  end-page: 25
  ident: bib21
  article-title: Automatic word recognition based on second-order hidden Markov models
  publication-title: IEEE Trans. Speech Audio Process.
– reference: B.T. Lowerre, The HARPY speech recognition system, Ph.D. Dissertation, Carnegie-Mellon University, 1976.
– volume: 37
  start-page: 1554
  year: 1966
  end-page: 1563
  ident: bib6
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Ann. Math. Stat.
– reference: A.B. Poritz, Hidden Markov models: a guided tour, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, 1988, pp. 215–218.
– volume: 18
  start-page: 193
  year: 2002
  end-page: 227
  ident: bib11
  article-title: High-order extensions of the double chain Markov model
  publication-title: Stochastic Models
– reference: S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 697–700.
– volume: 1
  start-page: 4
  year: 1986
  end-page: 16
  ident: bib27
  article-title: An introduction to hidden Markov models
  publication-title: IEEE ASSP Mag.
– reference: C. Eng, A. Thibessard, S. Hergalant, J.-F. Mari, P. Leblond, Data mining using hidden Markov models (HMM2) to detect heterogeneities into bacteria genomes, Journes Ouvertes Biol. Inf. Math., (JOBIM) 2005, Lyon, France, (2005).
– reference: .
– reference: H.A. Engelbrecht, Efficient decoding of high-order hidden Markov models, Ph.D. Dissertation, Stellenbosch University, 2007.
– volume: 5
  start-page: 22
  issue: 3
  year: 1997
  ident: 10.1016/j.patcog.2009.06.004_bib21
  article-title: Automatic word recognition based on second-order hidden Markov models
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.554265
– volume: 41
  start-page: 164
  issue: 1
  year: 1970
  ident: 10.1016/j.patcog.2009.06.004_bib7
  article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697196
– ident: 10.1016/j.patcog.2009.06.004_bib14
– volume: 61
  start-page: 268
  year: 1973
  ident: 10.1016/j.patcog.2009.06.004_bib16
  article-title: The Viterbi algorithm
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1973.9030
– volume: 73
  start-page: 360
  year: 1967
  ident: 10.1016/j.patcog.2009.06.004_bib5
  article-title: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11751-8
– volume: 2
  start-page: 129
  year: 1999
  ident: 10.1016/j.patcog.2009.06.004_bib9
  article-title: Markovian models for sequential data
  publication-title: Neural Comput. Surv.
– volume: 5
  start-page: 179
  year: 1983
  ident: 10.1016/j.patcog.2009.06.004_bib4
  article-title: A maximum likelihood approach to continuous speech recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1983.4767370
– year: 1957
  ident: 10.1016/j.patcog.2009.06.004_bib8
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.patcog.2009.06.004_bib26
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– ident: 10.1016/j.patcog.2009.06.004_bib25
– volume: 12
  start-page: 23
  issue: 1
  year: 1998
  ident: 10.1016/j.patcog.2009.06.004_bib13
  article-title: Efficient training of high-order hidden Markov models, using first-order representations
  publication-title: Comput. Speech Lang.
  doi: 10.1006/csla.1997.0037
– ident: 10.1016/j.patcog.2009.06.004_bib3
– volume: 27
  start-page: 1733
  issue: 11
  year: 2005
  ident: 10.1016/j.patcog.2009.06.004_bib22
  article-title: Estimating the pen trajectories of static signatures using hidden Markov models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.221
– volume: 28
  start-page: 2569
  issue: 11
  year: 1999
  ident: 10.1016/j.patcog.2009.06.004_bib10
  article-title: The double chain Markov model
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610929908832439
– ident: 10.1016/j.patcog.2009.06.004_bib29
  doi: 10.21236/ADA460351
– ident: 10.1016/j.patcog.2009.06.004_bib31
  doi: 10.21437/ICSLP.1994-538
– volume: 40
  start-page: 272
  issue: 2
  year: 1992
  ident: 10.1016/j.patcog.2009.06.004_bib23
  article-title: Data driven search organization for continuous speech recognition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.124938
– ident: 10.1016/j.patcog.2009.06.004_bib28
– ident: 10.1016/j.patcog.2009.06.004_bib15
– ident: 10.1016/j.patcog.2009.06.004_bib1
  doi: 10.1109/ICASSP.1991.150435
– volume: 1
  start-page: 231
  issue: 4
  year: 2004
  ident: 10.1016/j.patcog.2009.06.004_bib2
  article-title: Learning to automatically detect features for mobile robots using second-order hidden Markov models
  publication-title: Int. J. Adv. Robotic Syst.
– ident: 10.1016/j.patcog.2009.06.004_bib24
  doi: 10.21236/ADA457473
– volume: 18
  start-page: 193
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2009.06.004_bib11
  article-title: High-order extensions of the double chain Markov model
  publication-title: Stochastic Models
  doi: 10.1081/STM-120004464
– year: 1996
  ident: 10.1016/j.patcog.2009.06.004_bib12
– volume: 13
  start-page: 260
  issue: 2
  year: 1967
  ident: 10.1016/j.patcog.2009.06.004_bib32
  article-title: Error bounds for convolutional codes and asymptotically optimum decoding algorithms
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1054010
– ident: 10.1016/j.patcog.2009.06.004_bib20
– ident: 10.1016/j.patcog.2009.06.004_bib30
  doi: 10.1109/ICASSP.1999.759736
– volume: 73
  start-page: 1625
  issue: 11
  year: 1985
  ident: 10.1016/j.patcog.2009.06.004_bib18
  article-title: Structural methods in automatic speech recognition
  publication-title: IEEE Proc.
  doi: 10.1109/PROC.1985.13344
– ident: 10.1016/j.patcog.2009.06.004_bib19
– volume: 1
  start-page: 4
  issue: 3
  year: 1986
  ident: 10.1016/j.patcog.2009.06.004_bib27
  article-title: An introduction to hidden Markov models
  publication-title: IEEE ASSP Mag.
  doi: 10.1109/MASSP.1986.1165342
– volume: 64
  start-page: 532
  issue: 4
  year: 1976
  ident: 10.1016/j.patcog.2009.06.004_bib17
  article-title: Continuous speech recognition by statistical methods
  publication-title: IEEE Proc.
  doi: 10.1109/PROC.1976.10159
– volume: 37
  start-page: 1554
  year: 1966
  ident: 10.1016/j.patcog.2009.06.004_bib6
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177699147
SSID ssj0017142
Score 2.0348163
Snippet The forward–backward search (FBS) algorithm [S. Austin, R. Schwartz, P. Placeway, The forward–backward search algorithm, in: Proceedings of the IEEE...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Applied sciences
Coding, codes
Decoding
Exact sciences and technology
Hidden Markov model
High-order
Information, signal and communications theory
Miscellaneous
Search
Signal and communications theory
Signal processing
Speech processing
Telecommunications and information theory
Title Efficient backward decoding of high-order hidden Markov models
URI https://dx.doi.org/10.1016/j.patcog.2009.06.004
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvgjitzg_Rh58jduapGlehDE2psKeHOytNGkqE1mHmz76t3uXpsM9yMC30iZtuV5_d5fc_Y6Qu1jHUTfjCoKc2DCR6IQZG2UMTmuhpNPc-CzfSTyeiqeZnDXIoK6FwbTKgP0Vpnu0Dmc6QZqd5XyONb5IO4hbBGiIOHKCCqFQ1--_N2ke2N-7YgznPYaj6_I5n-O1BLgrXwNrJe5KiL_M08EyW4HQiqrbxS8TNDomh8F3pP3q9U5Iwy1OyVHdl4GG3_SMPAw9LwSYE2pweQ6UgOYQZqKZomVBkaKYec5NOETgoVixU35R3xZndU6mo-HLYMxCnwRmOY_XzLhIKcejrJCZzpPEQVSikhxpYpSxLpIWrL5NCnT-QCJWd4UxFi4ZrXPwqPgFaS7KhbskFKKPXpzxTMqcC2nyLFGqABfIcJPEXatbhNfiSW0gEcdeFu9pnS32llZCxf6WOvVJc6JF2GbWsiLR2DFe1ZJPt5QhBZzfMbO99aE2jwPY0gBV8urft74m-1XmAC6_3JDm-uPT3YJDsjZtr3Ftstd_fB5PfgCFcd4C
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO4CEeCPGY-TANWJrkqa5IKGJabCx05B2q5q0RSC0VWzw-7HbdGIHhMStSpu2ctPPdmx_BrgOTRh0EqHRyQktl5GJuHVBwnHYSK0yI2yZ5TsOB8_ycaqmG9Cra2EordJjf4XpJVr7kRsvzZvi9ZVqfIl2kEIEpIiE3ISmVOjtNaB59zAcjFfBBN2VFWm46HKaUFfQlWleBSLe_MUTV1JgQv6moXaKZIFyy6uGFz-0UH8fdr35yO6qNzyAjWx2CHt1awbm_9QjuL0vqSFQozBLO3S4DliKniZpKjbPGbEU85J2Ew8JexgV7cy_WNkZZ3EMz_37SW_AfasE7oQIl9xmgdaZCJJcJSaNogwdEx2lxBSjrcsC5VDxuygn-w8l4kxHWuvwlDUmRaNKnEBjNp9lp8DQAemGiUiUSoVUNk0irXO0gqywUdhxpgWiFk_sPI84tbN4j-uEsbe4Eiq1uDRxmTcnW8BXs4qKR-OP63Ut-XhtPcQI9X_MbK99qNXjELkMopU6-_etr2BrMHkaxaOH8fActqtEAtqNuYDG8uMzu0T7ZGnbfv19AzyN4Lk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+backward+decoding+of+high-order+hidden+Markov+models&rft.jtitle=Pattern+recognition&rft.au=Engelbrecht%2C+H.A.&rft.au=du+Preez%2C+J.A.&rft.date=2010&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=43&rft.issue=1&rft.spage=99&rft.epage=112&rft_id=info:doi/10.1016%2Fj.patcog.2009.06.004&rft.externalDocID=S0031320309002234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon