Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures

•A detailed review of soil water retention characteristics (SWRC) of biochar-amended soil is presented.•Biochar feedstock type, pyrolysis temperature, particle size and aging has a strong influence on the SWRC.•The SWRC of biochar-amended soil also depends on soil type and corresponding compaction c...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 204; p. 104713
Main Authors Hussain, Rojimul, Ravi, K., Garg, Ankit
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A detailed review of soil water retention characteristics (SWRC) of biochar-amended soil is presented.•Biochar feedstock type, pyrolysis temperature, particle size and aging has a strong influence on the SWRC.•The SWRC of biochar-amended soil also depends on soil type and corresponding compaction condition.•Correlations among SWRC parameters and biochar properties were developed and presented.•Such a study will be quite handy while applying biochar-amended soil in geotechnical and agricultural applications. Biochar is a stable carbon-rich product obtained through pyrolysis of plant and animal-based biomass. Soil is often amended with biochar due to the beneficial features, such as carbon sequestration, improvement of crop growth and yield by enhancing soil fertility, removal of an organic and inorganic pollutant from the soil, and improvement of water retention properties of the soil. Fundamentally, the amendment of soil with biochar alters the soil water retention characteristics (SWRC) of the soil. This is primarily due to the inherent properties of biochar that includes large specific surface area (SSA) by the intra-particle pores, and the functional groups present in biochar surface. SWRC is vital for both agricultural soil and soil in geotechnical or geo-environmental engineering structures due to the presence of vegetation. The effect of biochar on the SWRC of agricultural soil was extensively studied. However, it is rarely studied for soil in geotechnical or geo-environmental engineering structures, such as landfill cover, bioengineered slope, embankment, green roof, etc. Soil in these structures subjects to a distinct condition, in terms of compaction state and design life compared to agricultural soil. Therefore, a comprehensive gathering of information on the effect of biochar on the SWRC and the factors controlling the biochar influence is needed for potential investigation and application of biochar amendment for soil in geotechnical or geo-environmental engineering structures. In this article, the effect of biochar amendment on the SWRC of soil has been reviewed and summarized by considering various factors controlling the influence of biochar on the SWRC. The literature review revealed that the amendment of soil with biochar could improve the SWRC while few occasions not influence the SWRC. Factors, such as feedstock type and pyrolysis temperature, particle size of biochar, soil type, and compaction state have strong bearing on the influence of biochar on the SWRC.
AbstractList Biochar is a stable carbon-rich product obtained through pyrolysis of plant and animal-based biomass. Soil is often amended with biochar due to the beneficial features, such as carbon sequestration, improvement of crop growth and yield by enhancing soil fertility, removal of an organic and inorganic pollutant from the soil, and improvement of water retention properties of the soil. Fundamentally, the amendment of soil with biochar alters the soil water retention characteristics (SWRC) of the soil. This is primarily due to the inherent properties of biochar that includes large specific surface area (SSA) by the intra-particle pores, and the functional groups present in biochar surface. SWRC is vital for both agricultural soil and soil in geotechnical or geo-environmental engineering structures due to the presence of vegetation. The effect of biochar on the SWRC of agricultural soil was extensively studied. However, it is rarely studied for soil in geotechnical or geo-environmental engineering structures, such as landfill cover, bioengineered slope, embankment, green roof, etc. Soil in these structures subjects to a distinct condition, in terms of compaction state and design life compared to agricultural soil. Therefore, a comprehensive gathering of information on the effect of biochar on the SWRC and the factors controlling the biochar influence is needed for potential investigation and application of biochar amendment for soil in geotechnical or geo-environmental engineering structures. In this article, the effect of biochar amendment on the SWRC of soil has been reviewed and summarized by considering various factors controlling the influence of biochar on the SWRC. The literature review revealed that the amendment of soil with biochar could improve the SWRC while few occasions not influence the SWRC. Factors, such as feedstock type and pyrolysis temperature, particle size of biochar, soil type, and compaction state have strong bearing on the influence of biochar on the SWRC.
•A detailed review of soil water retention characteristics (SWRC) of biochar-amended soil is presented.•Biochar feedstock type, pyrolysis temperature, particle size and aging has a strong influence on the SWRC.•The SWRC of biochar-amended soil also depends on soil type and corresponding compaction condition.•Correlations among SWRC parameters and biochar properties were developed and presented.•Such a study will be quite handy while applying biochar-amended soil in geotechnical and agricultural applications. Biochar is a stable carbon-rich product obtained through pyrolysis of plant and animal-based biomass. Soil is often amended with biochar due to the beneficial features, such as carbon sequestration, improvement of crop growth and yield by enhancing soil fertility, removal of an organic and inorganic pollutant from the soil, and improvement of water retention properties of the soil. Fundamentally, the amendment of soil with biochar alters the soil water retention characteristics (SWRC) of the soil. This is primarily due to the inherent properties of biochar that includes large specific surface area (SSA) by the intra-particle pores, and the functional groups present in biochar surface. SWRC is vital for both agricultural soil and soil in geotechnical or geo-environmental engineering structures due to the presence of vegetation. The effect of biochar on the SWRC of agricultural soil was extensively studied. However, it is rarely studied for soil in geotechnical or geo-environmental engineering structures, such as landfill cover, bioengineered slope, embankment, green roof, etc. Soil in these structures subjects to a distinct condition, in terms of compaction state and design life compared to agricultural soil. Therefore, a comprehensive gathering of information on the effect of biochar on the SWRC and the factors controlling the biochar influence is needed for potential investigation and application of biochar amendment for soil in geotechnical or geo-environmental engineering structures. In this article, the effect of biochar amendment on the SWRC of soil has been reviewed and summarized by considering various factors controlling the influence of biochar on the SWRC. The literature review revealed that the amendment of soil with biochar could improve the SWRC while few occasions not influence the SWRC. Factors, such as feedstock type and pyrolysis temperature, particle size of biochar, soil type, and compaction state have strong bearing on the influence of biochar on the SWRC.
ArticleNumber 104713
Author Hussain, Rojimul
Ravi, K.
Garg, Ankit
Author_xml – sequence: 1
  givenname: Rojimul
  surname: Hussain
  fullname: Hussain, Rojimul
  email: rojmul.hussain@iitg.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Guwahati, India
– sequence: 2
  givenname: K.
  surname: Ravi
  fullname: Ravi, K.
  email: ravi.civil@iitg.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Guwahati, India
– sequence: 3
  givenname: Ankit
  surname: Garg
  fullname: Garg, Ankit
  email: ankit@stu.edu.cn
  organization: Department of Civil and Environmental Engineering, Shantou University, China
BookMark eNqFkctOGzEUhi0EEuHyBGy8pIsJvo1nBokFinqJhFTERSwtj3OSODJ2sD1UfQDeu56kKxbtytJ_vs_W-X2CDn3wgNAFJVNKqLzaTFO2zk0ZYWMiGsoP0IS2TVdxIcQhmhSqqWjXNsfoJKUNIURw1k7Qx9wv3QDeAA5L3Ntg1jri4HFeA07BOvxLZ4g4QgafbRmMgDYls-VNk_Dl48vD7Ms1vg87Qjust1tnjd7R1uMVlIlZ-xI5DH5lPRTZr3DKcTB5iJDO0NFSuwTnf89T9Pzt69PsR3X38_t8dntXGc5lrnqgAtq-Y3RBZSdANoQTaaCWrG6IlLqra2JYA0xQ0vdU17I3VHLdL3rBWMNP0eX-3m0MbwOkrF5tMuCc9hCGpFhd066jLSEF7faoiSGlCEtlbN7tlKO2TlGixurVRu2qV2P1al99cfkndxvtq46__2Pd7C0oDbxbiCoZO_7MwkYwWS2C_af_B7-gopY
CitedBy_id crossref_primary_10_1139_cgj_2020_0666
crossref_primary_10_3390_toxics11020096
crossref_primary_10_1088_1755_1315_1362_1_012004
crossref_primary_10_3390_agriculture11121293
crossref_primary_10_1002_agg2_20197
crossref_primary_10_1016_j_geoderma_2023_116591
crossref_primary_10_1007_s42773_024_00397_0
crossref_primary_10_1016_j_bgtech_2024_100089
crossref_primary_10_1016_j_scitotenv_2023_166978
crossref_primary_10_1016_j_bgtech_2025_100161
crossref_primary_10_1016_j_scitotenv_2022_156493
crossref_primary_10_3390_su15065100
crossref_primary_10_1007_s13399_020_00943_3
crossref_primary_10_3390_su141711104
crossref_primary_10_1007_s13399_022_02833_2
crossref_primary_10_1021_acssusresmgt_4c00174
crossref_primary_10_1007_s42729_021_00472_6
crossref_primary_10_1016_j_rser_2025_115581
crossref_primary_10_1016_j_chemosphere_2021_130378
crossref_primary_10_1002_cjce_24426
crossref_primary_10_1007_s11157_024_09712_4
crossref_primary_10_3390_agronomy15030589
crossref_primary_10_3390_agronomy15010137
crossref_primary_10_1016_j_wasman_2022_09_015
crossref_primary_10_1016_j_chemosphere_2021_133000
crossref_primary_10_1007_s44246_024_00125_0
crossref_primary_10_1007_s42250_021_00293_1
crossref_primary_10_1016_j_renene_2021_05_007
crossref_primary_10_3390_agronomy11040615
crossref_primary_10_1016_j_jenvman_2021_113340
crossref_primary_10_15243_jdmlm_2024_113_5585
crossref_primary_10_3390_polym16223102
crossref_primary_10_1061_JOEEDU_EEENG_7332
crossref_primary_10_3390_w16182671
crossref_primary_10_1016_j_agwat_2024_108953
crossref_primary_10_2478_johh_2023_0008
crossref_primary_10_1007_s11368_023_03701_w
crossref_primary_10_3390_hydrology11080112
crossref_primary_10_1016_j_jes_2021_08_053
crossref_primary_10_1016_j_ufug_2023_128179
crossref_primary_10_3390_designs6050069
crossref_primary_10_3390_su15075744
crossref_primary_10_1111_sum_12655
crossref_primary_10_3390_w15101909
crossref_primary_10_1088_1755_1315_1452_1_012022
crossref_primary_10_3389_fenvs_2023_1277240
crossref_primary_10_1016_j_scitotenv_2021_147591
crossref_primary_10_1680_jenge_23_00082
crossref_primary_10_1007_s11600_024_01375_7
crossref_primary_10_1038_s41598_024_84659_8
crossref_primary_10_1016_j_scitotenv_2022_154520
crossref_primary_10_1016_j_biortech_2023_129792
crossref_primary_10_3390_data7030032
crossref_primary_10_1007_s12649_022_01877_9
crossref_primary_10_3390_agronomy13071845
crossref_primary_10_1016_j_still_2023_105855
crossref_primary_10_1038_s41598_022_22149_5
crossref_primary_10_3389_fmicb_2022_929725
crossref_primary_10_3390_agronomy12081768
crossref_primary_10_3934_agrfood_2021024
crossref_primary_10_3390_agronomy14123067
crossref_primary_10_1016_j_geoderma_2020_114836
crossref_primary_10_1016_j_jes_2022_11_024
crossref_primary_10_1007_s10706_020_01549_2
crossref_primary_10_1007_s10064_025_04134_0
crossref_primary_10_1007_s42773_020_00064_0
crossref_primary_10_3390_en16010410
crossref_primary_10_3390_w13162296
crossref_primary_10_1007_s13399_020_01226_7
crossref_primary_10_1016_j_jhydrol_2021_127040
crossref_primary_10_1520_ACEM20200102
crossref_primary_10_1016_j_jwpe_2025_106983
crossref_primary_10_1007_s11771_024_5609_4
crossref_primary_10_3390_app14167421
crossref_primary_10_1016_j_ecoleng_2022_106645
crossref_primary_10_3390_w16030482
crossref_primary_10_3390_ijerph20032096
crossref_primary_10_1016_j_catena_2021_105143
Cites_doi 10.1007/s11600-020-00423-2
10.1007/s00374-012-0703-4
10.1061/(ASCE)0733-9372(1995)121:3(214)
10.5194/se-5-693-2014
10.2136/sssaj2005.0383
10.1016/j.soilbio.2009.03.016
10.1680/geot.2011.61.4.313
10.1016/j.indcrop.2012.10.017
10.1097/SS.0b013e3181cb7f46
10.1002/jpln.201200639
10.1016/j.catena.2017.08.008
10.3390/agronomy3020313
10.1016/j.eja.2013.11.003
10.1029/95JD02413
10.1016/j.envpol.2017.11.079
10.1139/t79-003
10.1371/journal.pone.0108340
10.1002/esp.3743
10.1007/s11368-016-1401-x
10.1097/SS.0b013e3182482784
10.1016/j.wasman.2014.10.029
10.2136/sssaj2005.0117
10.1016/j.geoderma.2015.03.022
10.1016/j.soilbio.2011.04.022
10.1016/j.chemosphere.2014.12.058
10.1520/JTE102736
10.1097/SS.0b013e3182979eac
10.1007/s13593-017-0419-9
10.1016/j.biortech.2018.05.011
10.1016/j.biombioe.2012.01.033
10.1007/s11356-015-4432-8
10.1186/2251-6832-4-44
10.1016/j.agee.2010.12.005
10.2136/sssaj1997.03615995006100030002x
10.1016/j.still.2015.08.002
10.1139/t00-056
10.1016/j.chemosphere.2013.10.071
10.1071/SR10058
10.1111/gcbb.12005
10.1016/j.biortech.2013.03.186
10.5194/bg-11-6613-2014
10.1016/j.jhazmat.2017.11.025
10.1007/s11356-015-5520-5
10.1038/s41598-018-25039-x
10.1016/j.scitotenv.2016.03.245
10.1016/j.scitotenv.2016.09.025
10.1371/journal.pone.0179079
10.1016/j.geoderma.2017.05.041
10.5194/sed-6-887-2014
10.1007/s11104-013-1980-x
10.1016/j.agwat.2015.09.017
10.1016/j.biombioe.2013.12.010
10.1021/j100834a002
10.1016/j.jenvman.2015.04.032
10.1007/s11440-008-0059-y
10.1021/ez500199t
10.1016/j.still.2015.06.016
10.1071/SR07109
10.1111/gcbb.12026
10.1016/j.geoderma.2013.03.003
10.1007/s11368-012-0554-5
10.1007/s10163-017-0666-5
10.1139/t01-077
10.1007/s11368-013-0738-7
10.1016/j.jenvman.2019.02.010
10.1007/s11270-017-3392-7
10.1126/science.1225987
10.1071/SR10011
10.1007/s11356-015-4871-2
10.1016/j.catena.2014.07.005
10.1016/j.geoderma.2014.04.009
10.1016/j.enggeo.2016.03.006
10.1007/s11104-009-0050-x
10.1016/j.still.2016.01.011
10.2136/sssaj1980.03615995004400050002x
10.2134/jeq2010.0453
10.1016/j.geoderma.2015.02.014
10.2134/jeq2011.0128
10.2136/sssaj1993.03615995005700030003x
10.1016/j.agee.2011.08.015
10.1016/j.still.2015.08.007
10.2135/cropsci1986.0011183X002600020016x
10.1021/jf5034398
10.2134/jeq2017.11.0432
10.1007/s11368-016-1402-9
10.1029/93WR02676
10.4141/cjss68-024
10.1061/(ASCE)GT.1943-5606.0001148
10.1080/03650340.2013.821698
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2020.104713
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2020_104713
S0167198720304955
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c336t-be14e8b921d1694e670306ce56257066a9550c27e2410bb1a56bc163abdb42273
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Fri Jul 11 09:14:24 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 00:57:02 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inter-particle pores
Pyrolysis
Amendment
SWRC
Biochar
Intra-particle pores
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-be14e8b921d1694e670306ce56257066a9550c27e2410bb1a56bc163abdb42273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551991800
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551991800
crossref_citationtrail_10_1016_j_still_2020_104713
crossref_primary_10_1016_j_still_2020_104713
elsevier_sciencedirect_doi_10_1016_j_still_2020_104713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Githinji (bib0180) 2014; 60
Sadasivam, Reddy (bib0390) 2015; 158
Wang, Garg, Huang, Mei (bib0505) 2020
Moragues-Saitua, Arias-González, Gartzia-Bengoetxea (bib0310) 2017; 305
Birle, Heyer, Vogt (bib0050) 2008; 3
Bordoloi, Garg, Sreedeep, Lin, Mei (bib0055) 2018; 263
Ouyang, Wang, Tang, Yu, Zhang (bib0355) 2013; 13
Du, Chen, Qi, Li, Nan, Deng (bib0135) 2016; 16
Malaya, Sreedeep (bib0305) 2010; 38
Shaykewich, Zwarich (bib0410) 1968; 48
Singh, Singh, Cowie (bib0415) 2010; 48
Kumar, Cai, Lai, Chen, Ganesan, Bordoloi, Liu, Wen, Garg, Mei (bib0250) 2020
Lei, Zhang (bib0265) 2013; 13
Castellini, Giglio, Niedda, Palumbo, Ventrella (bib0070) 2015; 154
Clarke, Townley-Smith (bib0095) 1986; 26
Downie, Crosky, Munroe (bib0130) 2009
Nimmo (bib0335) 1997; 61
Ojeda, Mattana, Àvila, Alcañiz, Volkmann, Bachmann (bib0350) 2015; 249
van Genuchten (bib0485) 1980; 44
Garg, Huang, Kushvaha, Madhushri, Kamchoom, Wani, Koshy, Zhu (bib0170) 2019
Tomczyk, Sokołowska, Boguta (bib0470) 2020
Andrenelli, Maienza, Genesio, Miglietta, Pellegrini, Vaccari, Vignozzi (bib0025) 2016; 163
Wu, McKinnell III, Swanston (bib0535) 1979; 16
Chen, Wong, Ng, Wong (bib0090) 2016; 23
Busscher, Novak, Evans, Watts, Niandou, Ahmedna (bib0065) 2010; 175
Gao, Masiello (bib0160) 2017
Devereux, Sturrock, Mooney (bib0120) 2012; 103
Santamarina, Klein, Wang, Prencke (bib0395) 2002; 39
Obia, Mulder, Martinsen, Cornelissen, Børresen (bib0345) 2016; 155
Kameyama, Miyamoto, Shiono, Shinogi (bib0230) 2012; 41
Steinbeiss, Gleixner, Antonietti (bib0440) 2009; 41
Briggs, Breiner, Graham (bib0060) 2012; 177
Banik, Lawrinenko, Bakshi, Laird (bib0030) 2018; 47
Paetsch, Mueller, Kögel-Knabner, Lützow, Girardin, Rumpel (bib0360) 2018; 8
Zhelezova, Cederlund, Stenström (bib0555) 2017; 228
Wong, Chen, Deng, Chai, Ng, Wong (bib0530) 2019; 236
Sorrenti, Masiello, Dugan, Toselli (bib0425) 2016; 563
Lu, Likos (bib0295) 2004
Major, Rondon, Molina, Riha, Lehmann (bib0300) 2012; 41
Liu, Chen, Jing, Li, Zhang, Huang (bib0285) 2014; 123
Jindo, Mizumoto, Sawada, Sanchez-Monedero, Sonoki (bib0225) 2014; 11
Shafrin, Zisman (bib0405) 1960; 64
Mukherjee, Zimmerman, Hamdan, Cooper (bib0320) 2014; 5
Ni, Chen, Ng, Guo (bib0330) 2018
Yargicoglu, Sadasivam, Reddy, Spokas (bib0540) 2015; 36
Eden, Gerke, Houot (bib0145) 2017; 37
Chen, Shinogi, Taira (bib0080) 2010; 48
Dong, Li, Lin, Zhao (bib0125) 2017; 159
Karhu, Mattila, Bergström, Regina (bib0235) 2011; 140
Qiao, Li, Li (bib0365) 2018; 344
de Melo Carvalho, Maia, Madari, Bastiaans, Van Oort, Heinemann, Soler da Silva, Petter, Meinke (bib0110) 2014; 6
Durner (bib0140) 1994; 30
International Biochar Initiative (bib0210) 2015
International Biochar Initiative (bib0205) 2012
Chan, Van Zwieten, Meszaros, Downie, Joseph (bib0075) 2008; 45
Liang, Lehmann, Solomon, Kinyangi, Grossman, O’neill, Skjemstad, Thies, Luizão, Petersen, Neves (bib0275) 2006; 70
Spokas, Novak, Masiello, Johnson, Colosky, Ippolito, Trigo (bib0435) 2014; 1
Kim, Shim, Kim, Hyun, Ryu, Park, Jung (bib0240) 2013; 138
Liu, Dugan, Masiello, Gonnermann (bib0290) 2017; 12
Ajayi, Holthusen, Horn (bib0020) 2016; 155
Fredlund, Rahardjo (bib0150) 1993
Hardie, Clothier, Bound, Oliver, Close (bib0190) 2014; 376
Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bib0245) 2012; 41
Li, Li, Chen, Li (bib0270) 2016; 206
Yu, Tang, Zhang, Wu, Gong (bib0550) 2013; 49
Garg, Coo, Ng (bib0165) 2015; 40
Lim, Spokas, Feyereisen, Weis, Koskinen (bib0280) 2017; 5
Dekker, Jungerius (bib0115) 1990; 18
Sohi (bib0420) 2012; 338
Uzoma, Inoue, Andry, Zahoor, Nishihara (bib0480) 2011; 9
Verheijen, Jeffery, Bastos, Van der Velde, Diafas (bib0495) 2010
Lehmann, Joseph (bib0255) 2009
Baronti, Vaccari, Miglietta, Calzolari, Lugato, Orlandini, Pini, Zulian, Genesio (bib0040) 2014; 53
Gray, Johnson, Dragila, Kleber (bib0185) 2014; 61
Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bib0460) 2015; 125
Wall, Zeiss (bib0500) 1995; 121
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib0010) 2014; 99
Sun, Lu (bib0450) 2014; 177
Suliman, Harsh, Abu-Lail, Fortuna, Dallmeyer, Garcia-Pérez (bib0445) 2017; 574
Saxton, Rawls (bib0400) 2006; 70
Ghani, Mohd, da Silva, Bachmann, Taufiq-Yap, Rashid, Ala’a (bib0175) 2013; 44
Wong, Chen, Chen, Ng, Wong (bib0520) 2017; 17
Ranjan, Rao (bib0370) 2007
Yu, Raichle, Sink (bib0545) 2013; 4
Cuenca, Ek, Mahrt (bib0105) 1996; 101
Rogovska, Laird, Rathke, Karlen (bib0380) 2014; 230
Basso, Miguez, Laird, Horton, Westgate (bib0045) 2013; 5
Ajayi, Horn (bib0015) 2016; 164
Tamari, Bruckler, Halbertsma, Chadoeuf (bib0455) 1993; 57
Tan, Zou, Zhang, Huang (bib0465) 2018; 20
Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bib0005) 2013; 202
Barnes, Gallagher, Masiello, Liu, Dugan (bib0035) 2014; 9
Jeffery, Verheijen, van der Velde, Bastos (bib0215) 2011; 144
Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, van Groenigen (bib0220) 2015; 251
Hussain, Garg, Ravi (bib0195) 2020
Conz, Abbruzzini, de Andrade, Milori, Cerri (bib0100) 2017; 8
Reddy, Yargicoglu, Yue, Yaghoubi (bib0375) 2014; 140
Wong, Chen, Wong, Ng, Wong (bib0525) 2018; 234
Ibrahim, Al-Wabel, Usman, Al-Omran (bib0200) 2013; 178
Chen, Yuan, Qian (bib0085) 2012; 12
Fredlund, Rahardjo, Fredlund (bib0155) 2012
Wong, Chen, Ng, Wong (bib0515) 2016; 23
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib0260) 2011; 43
Ng, Pang (bib0325) 2000; 37
Spokas (bib0430) 2013; 5
Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (bib0490) 2010; 327
Mukherjee, Lal (bib0315) 2013; 3
Romero, Della Vecchia, Jommi (bib0385) 2011; 61
Nimmo (bib0340) 2004; 3
Trigo, Spokas, Cox, Koskinen (bib0475) 2014; 62
Waqas, Li, Khan, Shamshad, Reid, Qamar, Chao (bib0510) 2015; 22
Shaykewich (10.1016/j.still.2020.104713_bib0410) 1968; 48
Obia (10.1016/j.still.2020.104713_bib0345) 2016; 155
Bordoloi (10.1016/j.still.2020.104713_bib0055) 2018; 263
Jeffery (10.1016/j.still.2020.104713_bib0220) 2015; 251
Kumar (10.1016/j.still.2020.104713_bib0250) 2020
Saxton (10.1016/j.still.2020.104713_bib0400) 2006; 70
Wong (10.1016/j.still.2020.104713_bib0520) 2017; 17
Githinji (10.1016/j.still.2020.104713_bib0180) 2014; 60
Tan (10.1016/j.still.2020.104713_bib0460) 2015; 125
Sorrenti (10.1016/j.still.2020.104713_bib0425) 2016; 563
Castellini (10.1016/j.still.2020.104713_bib0070) 2015; 154
Gray (10.1016/j.still.2020.104713_bib0185) 2014; 61
International Biochar Initiative (10.1016/j.still.2020.104713_bib0205) 2012
Ghani (10.1016/j.still.2020.104713_bib0175) 2013; 44
Steinbeiss (10.1016/j.still.2020.104713_bib0440) 2009; 41
Nimmo (10.1016/j.still.2020.104713_bib0335) 1997; 61
Sohi (10.1016/j.still.2020.104713_bib0420) 2012; 338
Wong (10.1016/j.still.2020.104713_bib0525) 2018; 234
Jindo (10.1016/j.still.2020.104713_bib0225) 2014; 11
Abel (10.1016/j.still.2020.104713_bib0005) 2013; 202
Uzoma (10.1016/j.still.2020.104713_bib0480) 2011; 9
Tamari (10.1016/j.still.2020.104713_bib0455) 1993; 57
Cuenca (10.1016/j.still.2020.104713_bib0105) 1996; 101
Gao (10.1016/j.still.2020.104713_bib0160) 2017
Chen (10.1016/j.still.2020.104713_bib0085) 2012; 12
Shafrin (10.1016/j.still.2020.104713_bib0405) 1960; 64
Kameyama (10.1016/j.still.2020.104713_bib0230) 2012; 41
Rogovska (10.1016/j.still.2020.104713_bib0380) 2014; 230
Liu (10.1016/j.still.2020.104713_bib0285) 2014; 123
Chan (10.1016/j.still.2020.104713_bib0075) 2008; 45
Mukherjee (10.1016/j.still.2020.104713_bib0315) 2013; 3
Moragues-Saitua (10.1016/j.still.2020.104713_bib0310) 2017; 305
Yu (10.1016/j.still.2020.104713_bib0550) 2013; 49
Mukherjee (10.1016/j.still.2020.104713_bib0320) 2014; 5
Wang (10.1016/j.still.2020.104713_bib0505) 2020
Fredlund (10.1016/j.still.2020.104713_bib0155) 2012
Dekker (10.1016/j.still.2020.104713_bib0115) 1990; 18
Karhu (10.1016/j.still.2020.104713_bib0235) 2011; 140
Li (10.1016/j.still.2020.104713_bib0270) 2016; 206
Yargicoglu (10.1016/j.still.2020.104713_bib0540) 2015; 36
Tomczyk (10.1016/j.still.2020.104713_bib0470) 2020
Ajayi (10.1016/j.still.2020.104713_bib0015) 2016; 164
Kim (10.1016/j.still.2020.104713_bib0240) 2013; 138
Lu (10.1016/j.still.2020.104713_bib0295) 2004
Malaya (10.1016/j.still.2020.104713_bib0305) 2010; 38
Birle (10.1016/j.still.2020.104713_bib0050) 2008; 3
Devereux (10.1016/j.still.2020.104713_bib0120) 2012; 103
Liang (10.1016/j.still.2020.104713_bib0275) 2006; 70
Lei (10.1016/j.still.2020.104713_bib0265) 2013; 13
Romero (10.1016/j.still.2020.104713_bib0385) 2011; 61
Waqas (10.1016/j.still.2020.104713_bib0510) 2015; 22
Nimmo (10.1016/j.still.2020.104713_bib0340) 2004; 3
Chen (10.1016/j.still.2020.104713_bib0090) 2016; 23
Banik (10.1016/j.still.2020.104713_bib0030) 2018; 47
Yu (10.1016/j.still.2020.104713_bib0545) 2013; 4
van Genuchten (10.1016/j.still.2020.104713_bib0485) 1980; 44
Lehmann (10.1016/j.still.2020.104713_bib0255) 2009
Du (10.1016/j.still.2020.104713_bib0135) 2016; 16
Sun (10.1016/j.still.2020.104713_bib0450) 2014; 177
Ni (10.1016/j.still.2020.104713_bib0330) 2018
Paetsch (10.1016/j.still.2020.104713_bib0360) 2018; 8
Suliman (10.1016/j.still.2020.104713_bib0445) 2017; 574
Andrenelli (10.1016/j.still.2020.104713_bib0025) 2016; 163
Baronti (10.1016/j.still.2020.104713_bib0040) 2014; 53
Eden (10.1016/j.still.2020.104713_bib0145) 2017; 37
Dong (10.1016/j.still.2020.104713_bib0125) 2017; 159
Ahmad (10.1016/j.still.2020.104713_bib0010) 2014; 99
Zhelezova (10.1016/j.still.2020.104713_bib0555) 2017; 228
Downie (10.1016/j.still.2020.104713_bib0130) 2009
Garg (10.1016/j.still.2020.104713_bib0170) 2019
Hussain (10.1016/j.still.2020.104713_bib0195) 2020
Santamarina (10.1016/j.still.2020.104713_bib0395) 2002; 39
Ojeda (10.1016/j.still.2020.104713_bib0350) 2015; 249
Barnes (10.1016/j.still.2020.104713_bib0035) 2014; 9
Sadasivam (10.1016/j.still.2020.104713_bib0390) 2015; 158
Lehmann (10.1016/j.still.2020.104713_bib0260) 2011; 43
Tan (10.1016/j.still.2020.104713_bib0465) 2018; 20
Basso (10.1016/j.still.2020.104713_bib0045) 2013; 5
Major (10.1016/j.still.2020.104713_bib0300) 2012; 41
Singh (10.1016/j.still.2020.104713_bib0415) 2010; 48
Trigo (10.1016/j.still.2020.104713_bib0475) 2014; 62
Busscher (10.1016/j.still.2020.104713_bib0065) 2010; 175
Ng (10.1016/j.still.2020.104713_bib0325) 2000; 37
Wong (10.1016/j.still.2020.104713_bib0530) 2019; 236
Qiao (10.1016/j.still.2020.104713_bib0365) 2018; 344
Lim (10.1016/j.still.2020.104713_bib0280) 2017; 5
Ouyang (10.1016/j.still.2020.104713_bib0355) 2013; 13
Van Zwieten (10.1016/j.still.2020.104713_bib0490) 2010; 327
Spokas (10.1016/j.still.2020.104713_bib0430) 2013; 5
Chen (10.1016/j.still.2020.104713_bib0080) 2010; 48
Hardie (10.1016/j.still.2020.104713_bib0190) 2014; 376
Reddy (10.1016/j.still.2020.104713_bib0375) 2014; 140
Garg (10.1016/j.still.2020.104713_bib0165) 2015; 40
Clarke (10.1016/j.still.2020.104713_bib0095) 1986; 26
Conz (10.1016/j.still.2020.104713_bib0100) 2017; 8
Wall (10.1016/j.still.2020.104713_bib0500) 1995; 121
Ranjan (10.1016/j.still.2020.104713_bib0370) 2007
de Melo Carvalho (10.1016/j.still.2020.104713_bib0110) 2014; 6
Spokas (10.1016/j.still.2020.104713_bib0435) 2014; 1
Ajayi (10.1016/j.still.2020.104713_bib0020) 2016; 155
Verheijen (10.1016/j.still.2020.104713_bib0495) 2010
Wu (10.1016/j.still.2020.104713_bib0535) 1979; 16
Wong (10.1016/j.still.2020.104713_bib0515) 2016; 23
Liu (10.1016/j.still.2020.104713_bib0290) 2017; 12
International Biochar Initiative (10.1016/j.still.2020.104713_bib0210) 2015
Jeffery (10.1016/j.still.2020.104713_bib0215) 2011; 144
Kinney (10.1016/j.still.2020.104713_bib0245) 2012; 41
Briggs (10.1016/j.still.2020.104713_bib0060) 2012; 177
Ibrahim (10.1016/j.still.2020.104713_bib0200) 2013; 178
Fredlund (10.1016/j.still.2020.104713_bib0150) 1993
Durner (10.1016/j.still.2020.104713_bib0140) 1994; 30
References_xml – volume: 158
  start-page: 11
  year: 2015
  end-page: 23
  ident: bib0390
  article-title: Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars
  publication-title: J. Environ. Manage.
– volume: 177
  start-page: 26
  year: 2014
  end-page: 33
  ident: bib0450
  article-title: Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: bib0235
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
– volume: 38
  start-page: 691
  year: 2010
  end-page: 699
  ident: bib0305
  article-title: A study on the influence of measurement procedures on suction-water content relationship of a sandy soil
  publication-title: J. Test. Eval.
– year: 2010
  ident: bib0495
  article-title: Biochar application to soils
  publication-title: A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions
– volume: 6
  start-page: 887
  year: 2014
  end-page: 917
  ident: bib0110
  article-title: Biochar increases plant available water in a sandy soil under an aerobic rice cropping system
  publication-title: Solid Earth
– volume: 41
  start-page: 1076
  year: 2012
  end-page: 1086
  ident: bib0300
  article-title: Nutrient leaching in a Colombian savanna Oxisol amended with biochar
  publication-title: J. Environ. Qual.
– volume: 163
  start-page: 190
  year: 2016
  end-page: 196
  ident: bib0025
  article-title: Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil
  publication-title: Agric. Water Manage.
– volume: 23
  start-page: 7111
  year: 2016
  end-page: 7125
  ident: bib0090
  article-title: Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability
  publication-title: Environ. Sci. Pollut. R.
– volume: 563
  start-page: 237
  year: 2016
  end-page: 246
  ident: bib0425
  article-title: Biochar physico-chemical properties as affected by environmental exposure
  publication-title: Sci. Total Environ.
– volume: 57
  start-page: 642
  year: 1993
  end-page: 651
  ident: bib0455
  article-title: A simple method for determining soil hydraulic properties in the laboratory
  publication-title: Soil Sci. Soc. Am. J.
– volume: 60
  start-page: 457
  year: 2014
  end-page: 470
  ident: bib0180
  article-title: Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam
  publication-title: Arch. Agron. Soil Sci.
– volume: 16
  start-page: 2050
  year: 2016
  end-page: 2058
  ident: bib0135
  article-title: The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: a field study of four consecutive wheat–maize rotations
  publication-title: Int. J. Soil Sediment
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: bib0485
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 236
  start-page: 667
  year: 2019
  end-page: 673
  ident: bib0530
  article-title: Effects of biochar on bacterial communities in a newly established landfill cover topsoil
  publication-title: J. Environ. Manage.
– volume: 159
  start-page: 136
  year: 2017
  end-page: 143
  ident: bib0125
  article-title: Quantity and quality changes of biochar aged for 5 years in soil under field conditions
  publication-title: Catena
– volume: 155
  start-page: 166
  year: 2016
  end-page: 175
  ident: bib0020
  article-title: Changes in microstructural behaviour and hydraulic functions of biochar-amended soils
  publication-title: Soil Tillage Res.
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bib0275
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 22
  start-page: 12114
  year: 2015
  end-page: 12123
  ident: bib0510
  article-title: Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato
  publication-title: Environ. Sci. Pollut. R.
– volume: 3
  start-page: 313
  year: 2013
  end-page: 339
  ident: bib0315
  article-title: Biochar impacts on soil physical properties and greenhouse gas emissions
  publication-title: Agronomy
– volume: 61
  start-page: 313
  year: 2011
  ident: bib0385
  article-title: An insight into the water retention properties of compacted clayey soils
  publication-title: Gotechnique
– volume: 164
  start-page: 34
  year: 2016
  end-page: 44
  ident: bib0015
  article-title: Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar
  publication-title: Soil Tillage Res.
– year: 1993
  ident: bib0150
  article-title: Soil Mechanics for Unsaturated Soils
– volume: 234
  start-page: 468
  year: 2018
  end-page: 472
  ident: bib0525
  article-title: Effects of biochar on hydraulic conductivity of compacted kaolin clay
  publication-title: Environ. Pollut.
– volume: 338
  start-page: 1034
  year: 2012
  end-page: 1035
  ident: bib0420
  article-title: Carbon storage with benefits
  publication-title: Science
– volume: 177
  start-page: 263
  year: 2012
  end-page: 268
  ident: bib0060
  article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification
  publication-title: Soil Sci.
– volume: 30
  start-page: 211
  year: 1994
  end-page: 223
  ident: bib0140
  article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure
  publication-title: Water Resour. Res.
– year: 2012
  ident: bib0155
  article-title: Unsaturated Soil Mechanics in Engineering Practice
– volume: 16
  start-page: 19
  year: 1979
  end-page: 33
  ident: bib0535
  article-title: Strength of tree roots and landslides on Prince of Wales Island, Alaska
  publication-title: Can. Geotech. J.
– volume: 8
  start-page: 6852
  year: 2018
  ident: bib0360
  article-title: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions
  publication-title: Sci. Rep-UK
– volume: 574
  start-page: 139
  year: 2017
  end-page: 147
  ident: bib0445
  article-title: The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 44
  year: 2013
  ident: bib0545
  article-title: Impact of biochar on the water holding capacity of loamy sand soil
  publication-title: Int. J. Energy Environ. Eng.
– volume: 101
  start-page: 7269
  year: 1996
  end-page: 7277
  ident: bib0105
  article-title: Impact of soil water property parameterization on atmospheric boundary layer simulation
  publication-title: J. Geophys. Res.-Atmos.
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  ident: bib0245
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
– volume: 39
  start-page: 233
  year: 2002
  end-page: 241
  ident: bib0395
  article-title: Specific surface: determination and relevance
  publication-title: Can. Geotech. J.
– volume: 5
  start-page: 132
  year: 2013
  end-page: 143
  ident: bib0045
  article-title: Assessing potential of biochar for increasing water‐holding capacity of sandy soils
  publication-title: GCB Bioenergy
– volume: 53
  start-page: 38
  year: 2014
  end-page: 44
  ident: bib0040
  article-title: Impact of biochar application on plant water relations in Vitis vinifera (L.)
  publication-title: Eur. J. Agron.
– volume: 70
  start-page: 1569
  year: 2006
  end-page: 1578
  ident: bib0400
  article-title: Soil water characteristic estimates by texture and organic matter for hydrologic solutions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 45
  start-page: 629
  year: 2008
  end-page: 634
  ident: bib0075
  article-title: Agronomic values of greenwaste biochar as a soil amendment
  publication-title: Soil Res.
– volume: 23
  start-page: 7126
  year: 2016
  end-page: 7131
  ident: bib0515
  article-title: Gas permeability of biochar-amended clay: potential alternative landfill final cover material
  publication-title: Environ. Sci. Pollut. R.
– volume: 18
  start-page: 173
  year: 1990
  end-page: 183
  ident: bib0115
  article-title: Water repellency in the dunes with special reference to the Netherlands. Catena
  publication-title: Supplement
– volume: 125
  start-page: 70
  year: 2015
  end-page: 85
  ident: bib0460
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
– volume: 61
  start-page: 196
  year: 2014
  end-page: 205
  ident: bib0185
  article-title: Water uptake in biochars: the roles of porosity and hydrophobicity
  publication-title: Biomass Bioenerg.
– volume: 13
  start-page: 991
  year: 2013
  end-page: 1002
  ident: bib0355
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 121
  start-page: 214
  year: 1995
  end-page: 224
  ident: bib0500
  article-title: Municipal landfill biodegradation and settlement
  publication-title: J. Environ. Eng.
– volume: 206
  start-page: 33
  year: 2016
  end-page: 41
  ident: bib0270
  article-title: Cracking and vertical preferential flow through landfill clay liners
  publication-title: Eng. Geol.
– volume: 178
  start-page: 165
  year: 2013
  end-page: 173
  ident: bib0200
  article-title: Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil
  publication-title: Soil Sci.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 15
  ident: bib0280
  article-title: Influence of biochar particle size and shape on soil hydraulic properties
  publication-title: J. Environ. Sci. Eng.
– volume: 344
  start-page: 958
  year: 2018
  end-page: 967
  ident: bib0365
  article-title: Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar
  publication-title: J. Hazard. Mater.
– volume: 140
  year: 2014
  ident: bib0375
  article-title: Enhanced microbial methane oxidation in landfill cover soil amended with biochar
  publication-title: J. Geotech. Geoenviron.
– start-page: 1
  year: 2009
  end-page: 12
  ident: bib0255
  article-title: Biochar for Environmental Management
– volume: 61
  start-page: 712
  year: 1997
  end-page: 719
  ident: bib0335
  article-title: Modeling structural influences on soil water retention
  publication-title: Soil Sci. Soc. Am. J.
– year: 2015
  ident: bib0210
  article-title: Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil. IBI Biochar Standards
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib0170
  article-title: Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling
  publication-title: Acta Geophys
– volume: 376
  start-page: 347
  year: 2014
  end-page: 361
  ident: bib0190
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
– volume: 20
  start-page: 1036
  year: 2018
  end-page: 1049
  ident: bib0465
  article-title: Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres
  publication-title: J. Mater. Cycl. Waste
– volume: 37
  start-page: 1252
  year: 2000
  end-page: 1264
  ident: bib0325
  article-title: Experimental investigations of the soil-water characteristics of a volcanic soil
  publication-title: Can. Geotech. J.
– start-page: 13
  year: 2009
  end-page: 32
  ident: bib0130
  article-title: Physical properties of biochar
  publication-title: Biochar for Environmental Management
– start-page: 1
  year: 2020
  end-page: 21
  ident: bib0195
  article-title: Soil-biochar-plant interaction: differences from the perspective of engineered and agricultural soils
  publication-title: Bull. Eng. Geol. Environ.
– volume: 49
  start-page: 119
  year: 2013
  end-page: 128
  ident: bib0550
  article-title: Effects of biochar application on soil methane emission at different soil moisture levels
  publication-title: Biol. Fert. Soils
– volume: 251
  start-page: 47
  year: 2015
  end-page: 54
  ident: bib0220
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
– volume: 13
  start-page: 1561
  year: 2013
  end-page: 1572
  ident: bib0265
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: Int. J. Soil Sediment
– year: 2017
  ident: bib0160
  article-title: 12 Analysis of biochar porosity by pycnometry
  publication-title: Biochar: A Guide to Analytical Methods
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib0010
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 202
  start-page: 183
  year: 2013
  end-page: 191
  ident: bib0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
– volume: 9
  start-page: 1137
  year: 2011
  end-page: 1143
  ident: bib0480
  article-title: Influence of biochar application on sandy soil hydraulic properties and nutrient retention
  publication-title: J. Food Agric. Environ.
– volume: 26
  start-page: 289
  year: 1986
  end-page: 292
  ident: bib0095
  article-title: Heritability and relationship to yield of excised-leaf water retention in durum wheat 1
  publication-title: Crop Sci.
– year: 2012
  ident: bib0205
  article-title: Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil. IBI Biochar Standards
– volume: 48
  start-page: 199
  year: 1968
  end-page: 204
  ident: bib0410
  article-title: Relationships between soil physical constants and soil physical components of some Manitoba soils
  publication-title: Can. J. Soil Sci.
– volume: 37
  start-page: 11
  year: 2017
  ident: bib0145
  article-title: Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review
  publication-title: Agron. Sustain. Dev.
– volume: 1
  start-page: 326
  year: 2014
  end-page: 332
  ident: bib0435
  article-title: Physical disintegration of biochar: an overlooked process
  publication-title: Environ. Sci. Tech. Let.
– volume: 44
  start-page: 18
  year: 2013
  end-page: 24
  ident: bib0175
  article-title: Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization
  publication-title: Ind. Crop. Prod.
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib0250
  article-title: Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars
  publication-title: Int. J. Soil Sediment
– volume: 154
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib0070
  article-title: Impact of biochar addition on the physical and hydraulic properties of a clay soil
  publication-title: Soil Tillage Res.
– volume: 8
  start-page: 914
  year: 2017
  ident: bib0100
  article-title: Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars
  publication-title: Agric. Sci.
– volume: 228
  start-page: 216
  year: 2017
  ident: bib0555
  article-title: Effect of biochar amendment and ageing on adsorption and degradation of two herbicides
  publication-title: Water Air Soil Pollut.
– volume: 48
  start-page: 516
  year: 2010
  end-page: 525
  ident: bib0415
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Soil Res.
– start-page: 1
  year: 2020
  end-page: 25
  ident: bib0470
  article-title: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 123
  start-page: 45
  year: 2014
  end-page: 51
  ident: bib0285
  article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil
  publication-title: Catena
– volume: 5
  start-page: 693
  year: 2014
  ident: bib0320
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid Earth
– volume: 62
  start-page: 10855
  year: 2014
  end-page: 10860
  ident: bib0475
  article-title: Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine
  publication-title: J. Agric. Food Chem.
– volume: 175
  start-page: 10
  year: 2010
  end-page: 14
  ident: bib0065
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand
  publication-title: Soil Sci.
– year: 2020
  ident: bib0505
  article-title: Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: simultaneous investigation of hydraulic and mechanical properties
  publication-title: Acta Geophys.
– year: 2007
  ident: bib0370
  article-title: Basic and Applied Soil Mechanics
– volume: 138
  start-page: 266
  year: 2013
  end-page: 270
  ident: bib0240
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures
  publication-title: Bioresour. Technol.
– volume: 249
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0350
  article-title: Are soil–water functions affected by biochar application?
  publication-title: Geoderma
– volume: 305
  start-page: 144
  year: 2017
  end-page: 152
  ident: bib0310
  article-title: Effects of biochar and wood ash on soil hydraulic properties: a field experiment involving contrasting temperate soils
  publication-title: Geoderma
– volume: 36
  start-page: 256
  year: 2015
  end-page: 268
  ident: bib0540
  article-title: Physical and chemical characterization of waste wood derived biochars
  publication-title: Waste Manage.
– volume: 41
  start-page: 1131
  year: 2012
  end-page: 1137
  ident: bib0230
  article-title: Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil
  publication-title: J. Environ. Qual.
– volume: 47
  start-page: 452
  year: 2018
  end-page: 461
  ident: bib0030
  article-title: Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars
  publication-title: J. Environ. Qual.
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  ident: bib0490
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 144
  start-page: 175
  year: 2011
  end-page: 187
  ident: bib0215
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
– volume: 48
  start-page: 526
  year: 2010
  end-page: 530
  ident: bib0080
  article-title: Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality
  publication-title: Soil Res.
– volume: 5
  start-page: 165
  year: 2013
  end-page: 176
  ident: bib0430
  article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials
  publication-title: Gcb Bioenergy
– volume: 17
  start-page: 590
  year: 2017
  end-page: 598
  ident: bib0520
  article-title: Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
  publication-title: Int. J. Soil Sediment
– start-page: 1
  year: 2018
  end-page: 23
  ident: bib0330
  article-title: Effects of biochar on water retention and matric suction of vegetated soil
  publication-title: Géotech. Lett.
– volume: 12
  start-page: 1350
  year: 2012
  end-page: 1359
  ident: bib0085
  article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers
  publication-title: J. Soil Sediment.
– volume: 40
  start-page: 1631
  year: 2015
  end-page: 1643
  ident: bib0165
  article-title: Field study on influence of root characteristics on soil suction distribution in slopes vegetated with Cynodon dactylon and Schefflera heptaphylla
  publication-title: Earth Surf. Proc. Land.
– volume: 11
  start-page: 6613
  year: 2014
  end-page: 6621
  ident: bib0225
  article-title: Physical and chemical characterization of biochars derived from different agricultural residues
  publication-title: Biogeosciences
– year: 2004
  ident: bib0295
  article-title: Unsaturated Soil Mechanics
– volume: 12
  year: 2017
  ident: bib0290
  article-title: Biochar particle size, shape, and porosity act together to influence soil water properties
  publication-title: PLoS One
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  ident: bib0440
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
– volume: 263
  start-page: 665
  year: 2018
  end-page: 677
  ident: bib0055
  article-title: Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 295
  year: 2004
  end-page: 303
  ident: bib0340
  article-title: Porosity and pore size distribution
  publication-title: Encycl. Soils Environ.
– volume: 103
  start-page: 13
  year: 2012
  end-page: 18
  ident: bib0120
  article-title: The effects of biochar on soil physical properties and winter wheat growth
  publication-title: Earth Environ. Sci. Trans. R. Soc.
– volume: 155
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib0345
  article-title: In situ effects of biochar on aggregation, water retention and `porosity in light-textured tropical soils
  publication-title: Soil Tillage Res.
– volume: 64
  start-page: 519
  year: 1960
  end-page: 524
  ident: bib0405
  article-title: Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers1
  publication-title: J. Phys. Chem.
– volume: 3
  start-page: 191
  year: 2008
  ident: bib0050
  article-title: Influence of the initial water content and dry density on the soil–water retention curve and the shrinkage behavior of a compacted clay
  publication-title: Acta Geotech.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bib0260
  article-title: Biochar effects on soil biota–a review
  publication-title: Soil Biol. Biochem.
– volume: 230
  start-page: 340
  year: 2014
  end-page: 347
  ident: bib0380
  article-title: Biochar impact on Midwestern Mollisols and maize nutrient availability
  publication-title: Geoderma
– volume: 9
  year: 2014
  ident: bib0035
  article-title: Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments
  publication-title: PLoS One
– volume: 3
  start-page: 295
  year: 2004
  ident: 10.1016/j.still.2020.104713_bib0340
  article-title: Porosity and pore size distribution
  publication-title: Encycl. Soils Environ.
– year: 2020
  ident: 10.1016/j.still.2020.104713_bib0505
  article-title: Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: simultaneous investigation of hydraulic and mechanical properties
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-020-00423-2
– volume: 49
  start-page: 119
  issue: 2
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0550
  article-title: Effects of biochar application on soil methane emission at different soil moisture levels
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-012-0703-4
– year: 2012
  ident: 10.1016/j.still.2020.104713_bib0155
– volume: 13
  start-page: 991
  issue: 4
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0355
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 121
  start-page: 214
  issue: 3
  year: 1995
  ident: 10.1016/j.still.2020.104713_bib0500
  article-title: Municipal landfill biodegradation and settlement
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1995)121:3(214)
– volume: 5
  start-page: 693
  issue: 2
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0320
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid Earth
  doi: 10.5194/se-5-693-2014
– volume: 8
  start-page: 914
  issue: 9
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0100
  article-title: Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars
  publication-title: Agric. Sci.
– volume: 70
  start-page: 1719
  issue: 5
  year: 2006
  ident: 10.1016/j.still.2020.104713_bib0275
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– volume: 41
  start-page: 1301
  issue: 6
  year: 2009
  ident: 10.1016/j.still.2020.104713_bib0440
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.016
– volume: 61
  start-page: 313
  issue: 4
  year: 2011
  ident: 10.1016/j.still.2020.104713_bib0385
  article-title: An insight into the water retention properties of compacted clayey soils
  publication-title: Gotechnique
  doi: 10.1680/geot.2011.61.4.313
– volume: 44
  start-page: 18
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0175
  article-title: Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2012.10.017
– start-page: 1
  year: 2009
  ident: 10.1016/j.still.2020.104713_bib0255
– volume: 18
  start-page: 173
  year: 1990
  ident: 10.1016/j.still.2020.104713_bib0115
  article-title: Water repellency in the dunes with special reference to the Netherlands. Catena
  publication-title: Supplement
– volume: 9
  start-page: 1137
  issue: 3-4
  year: 2011
  ident: 10.1016/j.still.2020.104713_bib0480
  article-title: Influence of biochar application on sandy soil hydraulic properties and nutrient retention
  publication-title: J. Food Agric. Environ.
– volume: 175
  start-page: 10
  issue: 1
  year: 2010
  ident: 10.1016/j.still.2020.104713_bib0065
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181cb7f46
– volume: 177
  start-page: 26
  issue: 1
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0450
  article-title: Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200639
– volume: 159
  start-page: 136
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0125
  article-title: Quantity and quality changes of biochar aged for 5 years in soil under field conditions
  publication-title: Catena
  doi: 10.1016/j.catena.2017.08.008
– volume: 3
  start-page: 313
  issue: 2
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0315
  article-title: Biochar impacts on soil physical properties and greenhouse gas emissions
  publication-title: Agronomy
  doi: 10.3390/agronomy3020313
– volume: 53
  start-page: 38
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0040
  article-title: Impact of biochar application on plant water relations in Vitis vinifera (L.)
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2013.11.003
– volume: 101
  start-page: 7269
  issue: D3
  year: 1996
  ident: 10.1016/j.still.2020.104713_bib0105
  article-title: Impact of soil water property parameterization on atmospheric boundary layer simulation
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/95JD02413
– volume: 234
  start-page: 468
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0525
  article-title: Effects of biochar on hydraulic conductivity of compacted kaolin clay
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.079
– volume: 16
  start-page: 19
  issue: 1
  year: 1979
  ident: 10.1016/j.still.2020.104713_bib0535
  article-title: Strength of tree roots and landslides on Prince of Wales Island, Alaska
  publication-title: Can. Geotech. J.
  doi: 10.1139/t79-003
– volume: 5
  start-page: 8
  issue: 1
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0280
  article-title: Influence of biochar particle size and shape on soil hydraulic properties
  publication-title: J. Environ. Sci. Eng.
– volume: 9
  issue: 9
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0035
  article-title: Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0108340
– year: 2010
  ident: 10.1016/j.still.2020.104713_bib0495
  article-title: Biochar application to soils
– volume: 40
  start-page: 1631
  issue: 12
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0165
  article-title: Field study on influence of root characteristics on soil suction distribution in slopes vegetated with Cynodon dactylon and Schefflera heptaphylla
  publication-title: Earth Surf. Proc. Land.
  doi: 10.1002/esp.3743
– year: 2004
  ident: 10.1016/j.still.2020.104713_bib0295
– volume: 17
  start-page: 590
  issue: 3
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0520
  article-title: Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material
  publication-title: Int. J. Soil Sediment
  doi: 10.1007/s11368-016-1401-x
– volume: 177
  start-page: 263
  issue: 4
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0060
  article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3182482784
– volume: 36
  start-page: 256
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0540
  article-title: Physical and chemical characterization of waste wood derived biochars
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.10.029
– start-page: 1
  year: 2020
  ident: 10.1016/j.still.2020.104713_bib0195
  article-title: Soil-biochar-plant interaction: differences from the perspective of engineered and agricultural soils
  publication-title: Bull. Eng. Geol. Environ.
– volume: 70
  start-page: 1569
  issue: 5
  year: 2006
  ident: 10.1016/j.still.2020.104713_bib0400
  article-title: Soil water characteristic estimates by texture and organic matter for hydrologic solutions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0117
– volume: 251
  start-page: 47
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0220
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.03.022
– volume: 43
  start-page: 1812
  issue: 9
  year: 2011
  ident: 10.1016/j.still.2020.104713_bib0260
  article-title: Biochar effects on soil biota–a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0460
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
– volume: 38
  start-page: 691
  issue: 6
  year: 2010
  ident: 10.1016/j.still.2020.104713_bib0305
  article-title: A study on the influence of measurement procedures on suction-water content relationship of a sandy soil
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE102736
– year: 1993
  ident: 10.1016/j.still.2020.104713_bib0150
– volume: 178
  start-page: 165
  issue: 4
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0200
  article-title: Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3182979eac
– volume: 37
  start-page: 11
  issue: 2
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0145
  article-title: Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-017-0419-9
– volume: 263
  start-page: 665
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0055
  article-title: Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.05.011
– volume: 41
  start-page: 34
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0245
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.033
– volume: 22
  start-page: 12114
  issue: 16
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0510
  article-title: Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-015-4432-8
– volume: 4
  start-page: 44
  issue: 1
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0545
  article-title: Impact of biochar on the water holding capacity of loamy sand soil
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1186/2251-6832-4-44
– volume: 140
  start-page: 309
  issue: 1–2
  year: 2011
  ident: 10.1016/j.still.2020.104713_bib0235
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 61
  start-page: 712
  year: 1997
  ident: 10.1016/j.still.2020.104713_bib0335
  article-title: Modeling structural influences on soil water retention
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1997.03615995006100030002x
– volume: 155
  start-page: 35
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0345
  article-title: In situ effects of biochar on aggregation, water retention and `porosity in light-textured tropical soils
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.08.002
– year: 2015
  ident: 10.1016/j.still.2020.104713_bib0210
– volume: 37
  start-page: 1252
  issue: 6
  year: 2000
  ident: 10.1016/j.still.2020.104713_bib0325
  article-title: Experimental investigations of the soil-water characteristics of a volcanic soil
  publication-title: Can. Geotech. J.
  doi: 10.1139/t00-056
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0010
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– year: 2007
  ident: 10.1016/j.still.2020.104713_bib0370
– volume: 48
  start-page: 516
  issue: 7
  year: 2010
  ident: 10.1016/j.still.2020.104713_bib0415
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Soil Res.
  doi: 10.1071/SR10058
– volume: 5
  start-page: 165
  issue: 2
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0430
  article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials
  publication-title: Gcb Bioenergy
  doi: 10.1111/gcbb.12005
– volume: 138
  start-page: 266
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0240
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.186
– volume: 11
  start-page: 6613
  issue: 23
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0225
  article-title: Physical and chemical characterization of biochars derived from different agricultural residues
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-6613-2014
– volume: 344
  start-page: 958
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0365
  article-title: Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.11.025
– volume: 23
  start-page: 7111
  issue: 8
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0090
  article-title: Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-015-5520-5
– volume: 8
  start-page: 6852
  issue: 1
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0360
  article-title: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions
  publication-title: Sci. Rep-UK
  doi: 10.1038/s41598-018-25039-x
– volume: 563
  start-page: 237
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0425
  article-title: Biochar physico-chemical properties as affected by environmental exposure
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.245
– volume: 574
  start-page: 139
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0445
  article-title: The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.09.025
– start-page: 1
  year: 2019
  ident: 10.1016/j.still.2020.104713_bib0170
  article-title: Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling
  publication-title: Acta Geophys
– volume: 12
  issue: 6
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0290
  article-title: Biochar particle size, shape, and porosity act together to influence soil water properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179079
– volume: 305
  start-page: 144
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0310
  article-title: Effects of biochar and wood ash on soil hydraulic properties: a field experiment involving contrasting temperate soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.041
– volume: 6
  start-page: 887
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0110
  article-title: Biochar increases plant available water in a sandy soil under an aerobic rice cropping system
  publication-title: Solid Earth
  doi: 10.5194/sed-6-887-2014
– start-page: 13
  year: 2009
  ident: 10.1016/j.still.2020.104713_bib0130
  article-title: Physical properties of biochar
– volume: 376
  start-page: 347
  issue: 1-2
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0190
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1980-x
– year: 2017
  ident: 10.1016/j.still.2020.104713_bib0160
  article-title: 12 Analysis of biochar porosity by pycnometry
– volume: 103
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0120
  article-title: The effects of biochar on soil physical properties and winter wheat growth
  publication-title: Earth Environ. Sci. Trans. R. Soc.
– start-page: 1
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0330
  article-title: Effects of biochar on water retention and matric suction of vegetated soil
  publication-title: Géotech. Lett.
– start-page: 1
  year: 2020
  ident: 10.1016/j.still.2020.104713_bib0470
  article-title: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects
  publication-title: Rev. Environ. Sci. Biotechnol.
– start-page: 1
  year: 2020
  ident: 10.1016/j.still.2020.104713_bib0250
  article-title: Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars
  publication-title: Int. J. Soil Sediment
– volume: 163
  start-page: 190
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0025
  article-title: Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2015.09.017
– volume: 61
  start-page: 196
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0185
  article-title: Water uptake in biochars: the roles of porosity and hydrophobicity
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2013.12.010
– volume: 64
  start-page: 519
  issue: 5
  year: 1960
  ident: 10.1016/j.still.2020.104713_bib0405
  article-title: Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100834a002
– volume: 158
  start-page: 11
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0390
  article-title: Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2015.04.032
– volume: 3
  start-page: 191
  issue: 3
  year: 2008
  ident: 10.1016/j.still.2020.104713_bib0050
  article-title: Influence of the initial water content and dry density on the soil–water retention curve and the shrinkage behavior of a compacted clay
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-008-0059-y
– volume: 1
  start-page: 326
  issue: 8
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0435
  article-title: Physical disintegration of biochar: an overlooked process
  publication-title: Environ. Sci. Tech. Let.
  doi: 10.1021/ez500199t
– volume: 154
  start-page: 1
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0070
  article-title: Impact of biochar addition on the physical and hydraulic properties of a clay soil
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.06.016
– volume: 45
  start-page: 629
  issue: 8
  year: 2008
  ident: 10.1016/j.still.2020.104713_bib0075
  article-title: Agronomic values of greenwaste biochar as a soil amendment
  publication-title: Soil Res.
  doi: 10.1071/SR07109
– volume: 5
  start-page: 132
  issue: 2
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0045
  article-title: Assessing potential of biochar for increasing water‐holding capacity of sandy soils
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12026
– volume: 202
  start-page: 183
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– volume: 12
  start-page: 1350
  issue: 9
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0085
  article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers
  publication-title: J. Soil Sediment.
  doi: 10.1007/s11368-012-0554-5
– volume: 20
  start-page: 1036
  issue: 2
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0465
  article-title: Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres
  publication-title: J. Mater. Cycl. Waste
  doi: 10.1007/s10163-017-0666-5
– volume: 39
  start-page: 233
  issue: 1
  year: 2002
  ident: 10.1016/j.still.2020.104713_bib0395
  article-title: Specific surface: determination and relevance
  publication-title: Can. Geotech. J.
  doi: 10.1139/t01-077
– volume: 13
  start-page: 1561
  issue: 9
  year: 2013
  ident: 10.1016/j.still.2020.104713_bib0265
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: Int. J. Soil Sediment
  doi: 10.1007/s11368-013-0738-7
– volume: 236
  start-page: 667
  year: 2019
  ident: 10.1016/j.still.2020.104713_bib0530
  article-title: Effects of biochar on bacterial communities in a newly established landfill cover topsoil
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.02.010
– volume: 228
  start-page: 216
  issue: 6
  year: 2017
  ident: 10.1016/j.still.2020.104713_bib0555
  article-title: Effect of biochar amendment and ageing on adsorption and degradation of two herbicides
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-017-3392-7
– volume: 338
  start-page: 1034
  issue: 6110
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0420
  article-title: Carbon storage with benefits
  publication-title: Science
  doi: 10.1126/science.1225987
– volume: 48
  start-page: 526
  issue: 7
  year: 2010
  ident: 10.1016/j.still.2020.104713_bib0080
  article-title: Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality
  publication-title: Soil Res.
  doi: 10.1071/SR10011
– volume: 23
  start-page: 7126
  issue: 8
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0515
  article-title: Gas permeability of biochar-amended clay: potential alternative landfill final cover material
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-015-4871-2
– volume: 123
  start-page: 45
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0285
  article-title: Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil
  publication-title: Catena
  doi: 10.1016/j.catena.2014.07.005
– volume: 230
  start-page: 340
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0380
  article-title: Biochar impact on Midwestern Mollisols and maize nutrient availability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.009
– volume: 206
  start-page: 33
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0270
  article-title: Cracking and vertical preferential flow through landfill clay liners
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.03.006
– year: 2012
  ident: 10.1016/j.still.2020.104713_bib0205
– volume: 327
  start-page: 235
  issue: 1–2
  year: 2010
  ident: 10.1016/j.still.2020.104713_bib0490
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0050-x
– volume: 164
  start-page: 34
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0015
  article-title: Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2016.01.011
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.still.2020.104713_bib0485
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 41
  start-page: 1131
  issue: 4
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0230
  article-title: Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0453
– volume: 249
  start-page: 1
  year: 2015
  ident: 10.1016/j.still.2020.104713_bib0350
  article-title: Are soil–water functions affected by biochar application?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.02.014
– volume: 41
  start-page: 1076
  issue: 4
  year: 2012
  ident: 10.1016/j.still.2020.104713_bib0300
  article-title: Nutrient leaching in a Colombian savanna Oxisol amended with biochar
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0128
– volume: 57
  start-page: 642
  issue: 3
  year: 1993
  ident: 10.1016/j.still.2020.104713_bib0455
  article-title: A simple method for determining soil hydraulic properties in the laboratory
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700030003x
– volume: 144
  start-page: 175
  issue: 1
  year: 2011
  ident: 10.1016/j.still.2020.104713_bib0215
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.08.015
– volume: 155
  start-page: 166
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0020
  article-title: Changes in microstructural behaviour and hydraulic functions of biochar-amended soils
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.08.007
– volume: 26
  start-page: 289
  issue: 2
  year: 1986
  ident: 10.1016/j.still.2020.104713_bib0095
  article-title: Heritability and relationship to yield of excised-leaf water retention in durum wheat 1
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1986.0011183X002600020016x
– volume: 62
  start-page: 10855
  issue: 45
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0475
  article-title: Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf5034398
– volume: 47
  start-page: 452
  issue: 3
  year: 2018
  ident: 10.1016/j.still.2020.104713_bib0030
  article-title: Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.11.0432
– volume: 16
  start-page: 2050
  issue: 8
  year: 2016
  ident: 10.1016/j.still.2020.104713_bib0135
  article-title: The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: a field study of four consecutive wheat–maize rotations
  publication-title: Int. J. Soil Sediment
  doi: 10.1007/s11368-016-1402-9
– volume: 30
  start-page: 211
  issue: 2
  year: 1994
  ident: 10.1016/j.still.2020.104713_bib0140
  article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR02676
– volume: 48
  start-page: 199
  issue: 2
  year: 1968
  ident: 10.1016/j.still.2020.104713_bib0410
  article-title: Relationships between soil physical constants and soil physical components of some Manitoba soils
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss68-024
– volume: 140
  issue: 9
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0375
  article-title: Enhanced microbial methane oxidation in landfill cover soil amended with biochar
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0001148
– volume: 60
  start-page: 457
  issue: 4
  year: 2014
  ident: 10.1016/j.still.2020.104713_bib0180
  article-title: Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2013.821698
SSID ssj0004328
Score 2.556753
SecondaryResourceType review_article
Snippet •A detailed review of soil water retention characteristics (SWRC) of biochar-amended soil is presented.•Biochar feedstock type, pyrolysis temperature, particle...
Biochar is a stable carbon-rich product obtained through pyrolysis of plant and animal-based biomass. Soil is often amended with biochar due to the beneficial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104713
SubjectTerms agricultural soils
Amendment
Biochar
biomass
carbon sequestration
feedstocks
green roofs
Inter-particle pores
Intra-particle pores
landfills
particle size
pollutants
Pyrolysis
soil fertility
soil water retention
surface area
SWRC
temperature
tillage
vegetation
Title Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures
URI https://dx.doi.org/10.1016/j.still.2020.104713
https://www.proquest.com/docview/2551991800
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwYOCdbdtmrbelsVlVVzEddFbaNLZpbK0sqt48-b_diZtfYEePLYkbciXzHxhJt8wdhCEqdGpLZMaGUeYJHQ0BRyHqat1MExNZBX4rnqyOxAX98H9DGvXd2EorbKy_aVNt9a6etOoZrPxmGWNPiXQ05HZo-heHNBFcyFCWuUnr59pHsK39VWtvje1rpWHbI4X7qIxxR88G-sMXf837_TDTlvn01liixVr5K1yYMtsBvIVttAaTSrlDFhlb-d1uRFeDLnOCrpPxYucI8Pj0yIb8xeklRM-IZZMaHDzXauZH_bvbtpHp_y6sC3wf1-i2zzL-QiKUvIVceXwKWTISxFaHMZ0jQ06Z7ftrlPVWHCM78snR4MrINKx56aujAVIsgDSAJ2LQqQjCU5s03ghoKdvau0mgdQGOVyiUy085D7rbDYvcthgXEca9NCAlE0jfBNHKZ7mIPBBxEKA8DaZV8-tMpUAOdXBGKs60-xBWUAUAaJKQDbZ8Uenx1J_4-_msgZNfVtGCj3E3x33a4gVbjCKmiQ5FM9ThWcuSg9DYr31349vs3l6KnMAd9gsggK7yGWe9J5drHtsrnV-2e29A-IV9dU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcoAeEOVDfLU1Ug8gEe0mcZykt9WqaLfAqioguFmxM4tSrRK0C-IX8L-ZcRIolcqh18ROLD975lkzfgPwNYpza3JXJjWxnrRZ7BkOOE5y35hoktvEKfCdj9XwSv64iW4WYNDeheG0ysb21zbdWevmSbeZze5dUXQvOIGej8wBR_fSKFqEJVanijqw1B-dDsev1yNDV2LVSXxzh1Z8yKV50UaacggicOHO2A__5aD-MtXO_5yswWpDHEW_HttHWMByHT70b2eNeAZuwNOorTgiqokwRcVXqkRVCiJ5Yl4VU_FIzHImZkyUGRBh38o1i8OL61-Do2_iZ-Va0P_-CHCLohS3WNWqrwStwFctQ1Hr0NIw5ptwdfL9cjD0mjILng1Dde8Z9CUmJg383FepRMVGQFnko1FMjCSjue3ZIEZy9j1j_CxSxhKNy0xuZED0Zws6ZVXiNgiTGDQTi0r1rAxtmuR0oMMoRJlKiTLYgaCdW20bDXIuhTHVbbLZb-0A0QyIrgHZgeOXTne1BMf7zVULmn6zkjQ5ifc7HrQQa9pjHDjJSqwe5pqOXZwhRtx6938__gWWh5fnZ_psND7dgxV-U6cE7kOHAMJPRG3uzedm6T4DSwj4hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+biochar+on+the+soil+water+retention+characteristics+%28SWRC%29%3A+Potential+application+in+geotechnical+engineering+structures&rft.jtitle=Soil+%26+tillage+research&rft.au=Hussain%2C+Rojimul&rft.au=Ravi%2C+K.&rft.au=Garg%2C+Ankit&rft.date=2020-10-01&rft.issn=0167-1987&rft.volume=204&rft.spage=104713&rft_id=info:doi/10.1016%2Fj.still.2020.104713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2020_104713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon