A Comparison of Numerical Approaches for the Design of Mooring Systems for Wave Energy Converters
This paper analyses the numerical outcome of applying three different well-known mooring design approaches to a floating wave energy converter, moored by means of four catenary lines. The approaches include: a linearized frequency domain based on a quasistatic model of the mooring lines, a time doma...
Saved in:
Published in | Journal of marine science and engineering Vol. 8; no. 7; p. 523 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2077-1312 2077-1312 |
DOI | 10.3390/jmse8070523 |
Cover
Abstract | This paper analyses the numerical outcome of applying three different well-known mooring design approaches to a floating wave energy converter, moored by means of four catenary lines. The approaches include: a linearized frequency domain based on a quasistatic model of the mooring lines, a time domain approach coupled with an analytic catenary model of the mooring system, and a fully coupled non-linear time domain approach, considering lines’ drag and inertia forces. Simulations have been carried out based on a set of realistic combinations of lines pretension and linear mass, subject to extreme environmental conditions. Obtained results provide realistic cost and performance indicators, presenting a comparison in terms of total mooring mass and required footprint, as well as the design line tension and structure offset. It has been found that lines’ viscous forces influence significantly the performance of the structure with high pretensions, i.e., >1.2, while there is acceptable agreement between the modelling approaches with lower pretensions. Line tensions are significantly influenced by drag and inertia forces because of the occurrence of snap loads due to the heaving of the floater. However, the frequency domain approach provides an insight towards the optimal design of the mooring system for preliminary designs. |
---|---|
AbstractList | This paper analyses the numerical outcome of applying three different well-known mooring design approaches to a floating wave energy converter, moored by means of four catenary lines. The approaches include: a linearized frequency domain based on a quasistatic model of the mooring lines, a time domain approach coupled with an analytic catenary model of the mooring system, and a fully coupled non-linear time domain approach, considering lines’ drag and inertia forces. Simulations have been carried out based on a set of realistic combinations of lines pretension and linear mass, subject to extreme environmental conditions. Obtained results provide realistic cost and performance indicators, presenting a comparison in terms of total mooring mass and required footprint, as well as the design line tension and structure offset. It has been found that lines’ viscous forces influence significantly the performance of the structure with high pretensions, i.e., >1.2, while there is acceptable agreement between the modelling approaches with lower pretensions. Line tensions are significantly influenced by drag and inertia forces because of the occurrence of snap loads due to the heaving of the floater. However, the frequency domain approach provides an insight towards the optimal design of the mooring system for preliminary designs. |
Author | de Miguel, Borja Nava, Vincenzo Petuya, Victor Touzon, Imanol |
Author_xml | – sequence: 1 givenname: Imanol orcidid: 0000-0002-1719-3430 surname: Touzon fullname: Touzon, Imanol – sequence: 2 givenname: Vincenzo orcidid: 0000-0002-3207-3517 surname: Nava fullname: Nava, Vincenzo – sequence: 3 givenname: Borja surname: de Miguel fullname: de Miguel, Borja – sequence: 4 givenname: Victor orcidid: 0000-0002-4120-3838 surname: Petuya fullname: Petuya, Victor |
BookMark | eNptkE1LAzEQhoNUsFZP_oHcpZqPbbI9llq14MdBweMymU7alO6mJGuh_97Viog4l3kZnnkO7ynrNbEhxi6kuNJ6LK7XdaZSWDFS-oj1lbB2KLVUvV_5hJ3nvBbdlMpIYfoMJnwa6y2kkGPDo-dP7zWlgLDhk-02RcAVZe5j4u2K-A3lsPzCHmNMoVnyl31uqT4Qb7AjPmsoLfedtNlRainlM3bsYZPp_HsP2Ovt7HV6P3x4vptPJw9D1Nq0Q1dY5bqkwTtFC6dwYaRxSoD0rhijQy8IrUZVlFQCglTSKSkkWRyrQg_Y_KBdRFhX2xRqSPsqQqi-DjEtK0htwA1VZmQBEawv0BRuBK5UpTHWjlEX5Ee6c10eXJhizon8j0-K6rPr6lfXHS3_0BhaaENs2gRh8-_PB4D_hSE |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_111099 crossref_primary_10_3390_jmse9090977 crossref_primary_10_3390_jmse8090672 crossref_primary_10_3390_jmse10040538 crossref_primary_10_3390_en15062228 crossref_primary_10_3390_jmse9121425 crossref_primary_10_1007_s40868_024_00148_7 crossref_primary_10_1016_j_joes_2023_07_007 crossref_primary_10_1016_j_renene_2024_120506 crossref_primary_10_3389_fmars_2024_1338330 crossref_primary_10_1016_j_oceaneng_2020_108498 crossref_primary_10_3390_jmse11030518 crossref_primary_10_1016_j_renene_2024_119973 crossref_primary_10_1155_2023_7665880 crossref_primary_10_3390_jmse11122347 |
Cites_doi | 10.1016/j.apor.2020.102104 10.1016/j.apor.2007.05.002 10.1016/j.oceaneng.2015.05.035 10.3390/jmse7110379 10.1007/s40722-017-0082-x 10.1016/j.marstruc.2007.09.004 10.1016/j.oceaneng.2016.10.051 10.1016/j.renene.2012.01.105 10.1016/j.oceaneng.2020.107036 10.1016/j.oceaneng.2017.02.035 10.1016/j.energy.2016.07.007 10.1016/j.rser.2009.11.003 10.1016/j.rser.2019.02.021 10.1017/CBO9781139021364 10.1016/j.oceaneng.2018.11.010 10.1115/OMAE2018-77634 10.1016/0029-8018(79)90010-6 10.3390/s20051329 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/jmse8070523 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2077-1312 |
ExternalDocumentID | oai_doaj_org_article_657acca7f4c64b5ab82866779c34ef53 10_3390_jmse8070523 |
GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY PQGLB PUEGO |
ID | FETCH-LOGICAL-c336t-b472b3363afb2edb2cd616b20a1fb49cbcf0ec73c248e8aca121b2101e7c9243 |
IEDL.DBID | DOA |
ISSN | 2077-1312 |
IngestDate | Wed Aug 27 01:31:16 EDT 2025 Thu Apr 24 23:09:14 EDT 2025 Tue Jul 01 02:55:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-b472b3363afb2edb2cd616b20a1fb49cbcf0ec73c248e8aca121b2101e7c9243 |
ORCID | 0000-0002-4120-3838 0000-0002-1719-3430 0000-0002-3207-3517 |
OpenAccessLink | https://doaj.org/article/657acca7f4c64b5ab82866779c34ef53 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_657acca7f4c64b5ab82866779c34ef53 crossref_primary_10_3390_jmse8070523 crossref_citationtrail_10_3390_jmse8070523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of marine science and engineering |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_31 ref_30 Penalba (ref_19) 2017; 3 ref_18 ref_17 ref_16 Sarmento (ref_14) 2020; 98 ref_15 Azcona (ref_4) 2017; 129 Vu (ref_7) 2017; 135 Gomes (ref_11) 2012; 44 Antonio (ref_10) 2010; 14 Fitzgerald (ref_22) 2008; 21 ref_25 ref_23 ref_21 Doyle (ref_12) 2019; 107 Hall (ref_5) 2015; 104 ref_1 Pinkster (ref_20) 1979; 6 ref_3 ref_2 ref_29 ref_28 ref_27 Touzon (ref_6) 2020; 200 ref_26 Gomes (ref_13) 2016; 112 ref_8 Amaechi (ref_9) 2019; 171 Low (ref_24) 2006; 28 |
References_xml | – volume: 98 start-page: 102104 year: 2020 ident: ref_14 article-title: The Pico OWC wave power plant: Its lifetime from conception to closure 1986–2018 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102104 – ident: ref_30 – ident: ref_3 – ident: ref_26 – volume: 28 start-page: 371 year: 2006 ident: ref_24 article-title: Time and frequency domain coupled analysis of deepwater floating production systems publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2007.05.002 – volume: 104 start-page: 590 year: 2015 ident: ref_5 article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.05.035 – ident: ref_16 – ident: ref_18 doi: 10.3390/jmse7110379 – volume: 3 start-page: 209 year: 2017 ident: ref_19 article-title: Influence of nonlinear Froude–Krylov forces on the performance of two wave energy points absorbers publication-title: J. Ocean Eng. Mar. Energy doi: 10.1007/s40722-017-0082-x – ident: ref_1 – volume: 21 start-page: 23 year: 2008 ident: ref_22 article-title: Including moorings in the assessment of a generic offshore wave energy converter: A frequency domain approach publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2007.09.004 – ident: ref_23 – volume: 129 start-page: 415 year: 2017 ident: ref_4 article-title: Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.10.051 – volume: 44 start-page: 328 year: 2012 ident: ref_11 article-title: Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion publication-title: Renew. Energy doi: 10.1016/j.renene.2012.01.105 – ident: ref_25 – ident: ref_31 – volume: 200 start-page: 107036 year: 2020 ident: ref_6 article-title: Small scale experimental validation of a numerical model of the HarshLab2.0 floating platform coupled with a non-linear lumped mass catenary mooring system publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107036 – volume: 135 start-page: 137 year: 2017 ident: ref_7 article-title: A study on hovering motion of the underwater vehicle with umbilical cable publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.02.035 – ident: ref_29 – ident: ref_27 – ident: ref_2 – volume: 112 start-page: 1207 year: 2016 ident: ref_13 article-title: Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces publication-title: Energy doi: 10.1016/j.energy.2016.07.007 – volume: 14 start-page: 899 year: 2010 ident: ref_10 article-title: Wave energy utilization: A review of the technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.11.003 – ident: ref_15 – volume: 107 start-page: 75 year: 2019 ident: ref_12 article-title: Development of multi-oscillating water columns as wave energy converters publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.02.021 – ident: ref_28 doi: 10.1017/CBO9781139021364 – ident: ref_17 – volume: 171 start-page: 429 year: 2019 ident: ref_9 article-title: Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.11.010 – ident: ref_21 doi: 10.1115/OMAE2018-77634 – volume: 6 start-page: 593 year: 1979 ident: ref_20 article-title: Mean and low frequency wave drifting forces on floating structures publication-title: Ocean Eng. doi: 10.1016/0029-8018(79)90010-6 – ident: ref_8 doi: 10.3390/s20051329 |
SSID | ssj0000826106 |
Score | 2.2151551 |
Snippet | This paper analyses the numerical outcome of applying three different well-known mooring design approaches to a floating wave energy converter, moored by means... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 523 |
SubjectTerms | catenary mooring system dynamic mooring lines linear hydrodynamics wave energy conversion |
Title | A Comparison of Numerical Approaches for the Design of Mooring Systems for Wave Energy Converters |
URI | https://doaj.org/article/657acca7f4c64b5ab82866779c34ef53 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXkQQn1gfZQ89CaHZR7LZY1tbitAqUrG3sLvZPYimYlt_v7ObWCIIXryFMLsJM0vm-8jMNwh149iZQkkSJTy1EYccEmmWmcgpyQB-F9wp3zs8naWTJ363SBaNUV--JqySB64c10sToeApwnGTcp0o7fueUyGkYdy6JOh8xjJukKnwDQbUDGSnashjwOt7L28rm8H5Tij7kYIaSv0hpYwP0UGNBXG_eocjtGPLY7R_b6wqayHpE6T6eLgdFYiXDs821T8WWFfLgdsVBuSJAcnh21CP4c2my1BZh2tF8mDxrD4tHoVmP9i09JOYAfydovl4NB9OonosQmQYS9eR5oJquGLKaWoLTU2RklTTWBGnuTTauNgawQzlmc2UUYQSDcyOWGGAbbEz1CqXpT1HWAK5KxIhMw1JXhAF3MKBiSbSSJYI2kY3347KTS0Z7idXvOZAHbxX84ZX26i7NX6vlDJ-Nxt4j29NvLx1uAFBz-ug538F_eI_NrlEe9ST51B7e4Va64-NvQaEsdYdtDsYzR4eO-FQfQHz8dFx |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Numerical+Approaches+for+the+Design+of+Mooring+Systems+for+Wave+Energy+Converters&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Imanol+Touzon&rft.au=Vincenzo+Nava&rft.au=Borja+de+Miguel&rft.au=Victor+Petuya&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=8&rft.issue=7&rft.spage=523&rft_id=info:doi/10.3390%2Fjmse8070523&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_657acca7f4c64b5ab82866779c34ef53 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |