Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide
This work demonstrates a group of shear horizontal (SH0) mode resonators and filters using lithium niobate (LiNbO 3 ) thin films on silicon carbide (SiC). The single-crystalline X-cut LiNbO 3 thin films on 4H-SiC substrates have been prepared by ion-slicing and wafer-bonding processes. The fabricate...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 68; no. 9; pp. 3653 - 3666 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work demonstrates a group of shear horizontal (SH0) mode resonators and filters using lithium niobate (LiNbO 3 ) thin films on silicon carbide (SiC). The single-crystalline X-cut LiNbO 3 thin films on 4H-SiC substrates have been prepared by ion-slicing and wafer-bonding processes. The fabricated resonator has demonstrated a large effective electromechanical coupling (<inline-formula> <tex-math notation="LaTeX">{k}^{2} </tex-math></inline-formula>) of 26.9% and a high-quality factor (Bode-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>) of 1228, hence resulting in a high figure of merit (FoM <inline-formula> <tex-math notation="LaTeX">= {k}^{2}\,\,\cdot </tex-math></inline-formula> Bode-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>) of 330 at 2.28 GHz. Additionally, these fabricated resonators show scalable resonances from 1.61 to 3.05 GHz and impedance ratios between 53.2 and 74.7 dB. Filters based on demonstrated resonators have been demonstrated at 2.16 and 2.29 GHz with sharp roll-off and spurious-free responses over a wide frequency range. The filter with a center frequency of 2.29 GHz shows a 3-dB fractional bandwidth of 9.9%, an insertion loss of 1.38 dB, an out-of-band rejection of 41.6 dB, and a footprint of 0.75 mm 2 . Besides, the fabricated filters also show a temperature coefficient of frequency of −48.2 ppm/°C and power handling of 25 dBm. Although the power handling is limited by arc discharge and migration-induced damage of the interdigital electrodes and some ripples in insertion loss and group delay responses are still present due to the transverse spurious modes, the demonstrations still show that acoustic devices on the LiNbO 3 -on-SiC platform have great potential for radio-frequency applications. |
---|---|
AbstractList | This work demonstrates a group of shear horizontal (SH0) mode resonators and filters using lithium niobate (LiNbO 3 ) thin films on silicon carbide (SiC). The single-crystalline X-cut LiNbO 3 thin films on 4H-SiC substrates have been prepared by ion-slicing and wafer-bonding processes. The fabricated resonator has demonstrated a large effective electromechanical coupling (<inline-formula> <tex-math notation="LaTeX">{k}^{2} </tex-math></inline-formula>) of 26.9% and a high-quality factor (Bode-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>) of 1228, hence resulting in a high figure of merit (FoM <inline-formula> <tex-math notation="LaTeX">= {k}^{2}\,\,\cdot </tex-math></inline-formula> Bode-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>) of 330 at 2.28 GHz. Additionally, these fabricated resonators show scalable resonances from 1.61 to 3.05 GHz and impedance ratios between 53.2 and 74.7 dB. Filters based on demonstrated resonators have been demonstrated at 2.16 and 2.29 GHz with sharp roll-off and spurious-free responses over a wide frequency range. The filter with a center frequency of 2.29 GHz shows a 3-dB fractional bandwidth of 9.9%, an insertion loss of 1.38 dB, an out-of-band rejection of 41.6 dB, and a footprint of 0.75 mm 2 . Besides, the fabricated filters also show a temperature coefficient of frequency of −48.2 ppm/°C and power handling of 25 dBm. Although the power handling is limited by arc discharge and migration-induced damage of the interdigital electrodes and some ripples in insertion loss and group delay responses are still present due to the transverse spurious modes, the demonstrations still show that acoustic devices on the LiNbO 3 -on-SiC platform have great potential for radio-frequency applications. This work demonstrates a group of shear horizontal (SH0) mode resonators and filters using lithium niobate (LiNbO3) thin films on silicon carbide (SiC). The single-crystalline X-cut LiNbO3 thin films on 4H-SiC substrates have been prepared by ion-slicing and wafer-bonding processes. The fabricated resonator has demonstrated a large effective electromechanical coupling ([Formula Omitted]) of 26.9% and a high-quality factor (Bode-[Formula Omitted]) of 1228, hence resulting in a high figure of merit (FoM [Formula Omitted] Bode-[Formula Omitted]) of 330 at 2.28 GHz. Additionally, these fabricated resonators show scalable resonances from 1.61 to 3.05 GHz and impedance ratios between 53.2 and 74.7 dB. Filters based on demonstrated resonators have been demonstrated at 2.16 and 2.29 GHz with sharp roll-off and spurious-free responses over a wide frequency range. The filter with a center frequency of 2.29 GHz shows a 3-dB fractional bandwidth of 9.9%, an insertion loss of 1.38 dB, an out-of-band rejection of 41.6 dB, and a footprint of 0.75 mm2. Besides, the fabricated filters also show a temperature coefficient of frequency of −48.2 ppm/°C and power handling of 25 dBm. Although the power handling is limited by arc discharge and migration-induced damage of the interdigital electrodes and some ripples in insertion loss and group delay responses are still present due to the transverse spurious modes, the demonstrations still show that acoustic devices on the LiNbO3-on-SiC platform have great potential for radio-frequency applications. |
Author | Zhang, Shibin Lu, Ruochen Li, Zhongxu Link, Steffen Gong, Songbin Zhou, Hongyan Ou, Xin Yang, Yansong Huang, Kai |
Author_xml | – sequence: 1 givenname: Shibin orcidid: 0000-0001-9928-256X surname: Zhang fullname: Zhang, Shibin email: sbzhang@mail.sim.ac.cn organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai, China – sequence: 2 givenname: Ruochen orcidid: 0000-0003-0025-3924 surname: Lu fullname: Lu, Ruochen email: songbin@illinois.edu organization: Department of Electrical and Computing Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Hongyan surname: Zhou fullname: Zhou, Hongyan organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Steffen surname: Link fullname: Link, Steffen organization: Department of Electrical and Computing Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 5 givenname: Yansong orcidid: 0000-0003-2325-3505 surname: Yang fullname: Yang, Yansong organization: Department of Electrical and Computing Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 6 givenname: Zhongxu surname: Li fullname: Li, Zhongxu organization: Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Kai surname: Huang fullname: Huang, Kai organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China – sequence: 8 givenname: Xin orcidid: 0000-0002-0316-9958 surname: Ou fullname: Ou, Xin email: ouxin@mail.sim.ac.cn organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China – sequence: 9 givenname: Songbin orcidid: 0000-0001-8147-1282 surname: Gong fullname: Gong, Songbin organization: Department of Electrical and Computing Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA |
BookMark | eNp9kE1LAzEQhoNUsK3-APES8Lx18rEfOZZqVah66BaPIZtNNKXdrUm24L93S4sHD55eBt5nZnhGaNC0jUHomsCEEBB35UtZTihQmDCAjAp-hoYkTfNEZDkM0BCAFIngBVygUQjrfuQpFEM0X3beKm3wVLddiE7jd7U3-N7snTYBr4JrPvDCxU_XbfGraysVDW4bvHQbp_ucKV-52lyic6s2wVydcoxW84dy9pQs3h6fZ9NFohnLYlLRulDU8IxZpkzOhc1tUWmbEkJqmrFcQ8pBsxx0VSslFGeCWpuCMkWaQ8XG6Pa4d-fbr86EKNdt55v-pKScEwBBGetb-bGlfRuCN1ZqF1V0bRO9chtJQB6kyYM0eZAmT9J6kvwhd95tlf_-l7k5Ms4Y89sXpH9dMPYDJbJ46Q |
CODEN | IETMAB |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_03_212 crossref_primary_10_1109_LED_2024_3394710 crossref_primary_10_3390_electronics11234032 crossref_primary_10_3390_bios15010006 crossref_primary_10_1088_1361_6668_ad7c8a crossref_primary_10_1109_TMTT_2024_3447004 crossref_primary_10_35848_1347_4065_ad4363 crossref_primary_10_1063_5_0087735 crossref_primary_10_1109_TUFFC_2024_3448217 crossref_primary_10_1109_LMWC_2021_3128785 crossref_primary_10_1007_s11433_020_1710_6 crossref_primary_10_1109_LED_2023_3309672 crossref_primary_10_1364_PRJ_455665 crossref_primary_10_1109_LMWT_2024_3492723 crossref_primary_10_3390_cryst15030270 crossref_primary_10_3390_mi13050656 crossref_primary_10_1109_JMEMS_2024_3430984 crossref_primary_10_1063_5_0092767 crossref_primary_10_1109_TUFFC_2024_3504285 crossref_primary_10_1002_EXP_20220059 crossref_primary_10_1109_JMEMS_2023_3282024 crossref_primary_10_3390_molecules26227044 crossref_primary_10_1088_1742_6596_2822_1_012174 crossref_primary_10_1109_LED_2020_3030797 crossref_primary_10_1142_S2810922823300039 crossref_primary_10_3390_s21072467 crossref_primary_10_1088_1742_6596_2822_1_012173 crossref_primary_10_1109_LED_2021_3051298 crossref_primary_10_1109_LED_2023_3301875 crossref_primary_10_1016_j_chip_2023_100058 crossref_primary_10_3390_mi14020479 crossref_primary_10_1109_TED_2020_3018697 crossref_primary_10_1016_j_ultras_2024_107508 crossref_primary_10_1109_TMTT_2024_3354937 crossref_primary_10_1109_TED_2024_3446741 crossref_primary_10_1109_TUFFC_2022_3179699 crossref_primary_10_1109_TMTT_2024_3383476 crossref_primary_10_1364_AOP_529288 crossref_primary_10_1109_TED_2024_3467223 crossref_primary_10_1109_JMEMS_2021_3137928 crossref_primary_10_1063_5_0055028 crossref_primary_10_1016_j_engstruct_2024_118483 crossref_primary_10_3390_mi14091745 crossref_primary_10_1007_s11664_023_10694_2 crossref_primary_10_1063_5_0142417 crossref_primary_10_3390_mi15121416 crossref_primary_10_1002_jbm_b_35564 crossref_primary_10_1109_TMTT_2023_3267556 crossref_primary_10_1109_TUFFC_2023_3299635 crossref_primary_10_1109_TUFFC_2023_3329733 crossref_primary_10_1109_LED_2022_3185003 crossref_primary_10_1109_ACCESS_2023_3258040 crossref_primary_10_1109_LMWT_2024_3496911 crossref_primary_10_1063_5_0228552 crossref_primary_10_35848_1347_4065_accbc9 crossref_primary_10_1109_TMTT_2021_3077261 crossref_primary_10_1109_MMM_2023_3332286 crossref_primary_10_1109_TMTT_2023_3305078 crossref_primary_10_1016_j_pnsc_2021_08_001 crossref_primary_10_1109_JSEN_2024_3459095 crossref_primary_10_1109_LED_2023_3281836 crossref_primary_10_1186_s40580_023_00369_3 crossref_primary_10_1109_TMTT_2024_3403916 crossref_primary_10_1109_TUFFC_2024_3453432 crossref_primary_10_4274_ArchEpilepsy_2023_23079 crossref_primary_10_35848_1347_4065_aca5d7 crossref_primary_10_1109_LED_2022_3140216 crossref_primary_10_1002_pssa_202300967 crossref_primary_10_3390_s25061740 crossref_primary_10_1109_JMW_2022_3226415 crossref_primary_10_1088_2631_8695_ad4234 crossref_primary_10_1002_pssr_202300443 crossref_primary_10_1088_1361_6439_ad2f49 crossref_primary_10_1109_LED_2024_3381150 crossref_primary_10_1109_TMTT_2022_3222395 crossref_primary_10_1109_TMTT_2022_3194554 crossref_primary_10_1007_s11432_022_3698_7 crossref_primary_10_35848_1347_4065_ad1e04 crossref_primary_10_1103_PhysRevApplied_23_024054 crossref_primary_10_1039_D2NR04100F crossref_primary_10_1088_1361_6439_ac288f crossref_primary_10_1002_aelm_202100986 crossref_primary_10_1088_1361_6439_abf1b5 crossref_primary_10_1109_LED_2023_3258459 crossref_primary_10_1109_TMTT_2022_3208213 crossref_primary_10_1038_s41598_022_24852_9 crossref_primary_10_1109_TUFFC_2023_3337249 crossref_primary_10_1109_TUFFC_2024_3522042 crossref_primary_10_1063_5_0142470 crossref_primary_10_1109_TUFFC_2024_3484181 crossref_primary_10_1038_s41467_024_49321_x |
Cites_doi | 10.1063/1.121801 10.1143/JJAP.46.4760 10.7567/JJAP.57.07LD12 10.1063/1.1657244 10.1063/1.54644 10.1109/TUFFC.2005.1516031 10.1016/0267-3762(88)90060-4 10.1016/0378-4363(78)90123-7 10.1080/14786436408222951 10.1109/TMTT.2012.2228671 10.1063/1.369775 10.1109/TED.2015.2458913 10.1109/TUFFC.2007.353 10.1088/0022-3727/36/15/304 10.1109/22.475636 10.1109/ULTSYM.1990.171403 10.1111/j.1151-2916.1987.tb05673.x 10.1109/ULTSYM.2011.0458 10.1109/ULTSYM.1972.196108 10.1063/1.1573361 10.1109/IRPS.1977.362783 10.1109/ULTSYM.2017.8091644 10.1109/ULTSYM.2018.8580175 10.7567/JJAP.57.04FK05 10.1109/ULTSYM.1995.495603 10.1007/978-1-4615-2209-6 10.1016/0012-821X(69)90186-1 10.1063/1.333965 10.1007/978-0-387-85695-7_2 10.1016/j.wavemoti.2006.08.003 10.1109/MEMSYS.2019.8870796 10.1109/PROC.1976.10200 10.1063/1.1729059 10.1109/TED.2002.807445 10.1109/MWSYM.2016.7540149 10.1109/58.949745 10.1063/1.1660528 10.1103/PhysRevLett.100.055503 10.1109/ULTSYM.2014.0218 10.1016/j.tsf.2014.01.003 10.1063/1.1661636 10.1063/1.366100 10.1109/JMEMS.2020.2967784 10.1109/58.896145 10.1109/LED.2015.2478378 10.1109/ULTSYM.2019.8925589 10.1109/JMEMS.2019.2961976 10.1109/TUFFC.2017.2738119 10.1109/TED.2012.2228867 10.1103/PhysRev.110.1060 10.1007/s00707-006-0333-8 10.1063/1.2135383 10.1109/JMEMS.2019.2892708 10.1063/1.321373 10.1109/TUFFC.2020.2971196 10.7567/JJAP.57.07LD15 10.1109/TUFFC.2019.2898046 10.1109/IRPS.1977.362786 10.7567/JJAP.52.07HD03 10.1063/1.5017091 10.1109/FREQ.1991.145883 10.1016/j.matchar.2010.06.018 10.1103/PhysRev.134.A1058 10.1063/1.1655260 10.1109/TUFFC.2007.321 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TMTT.2020.3006294 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9670 |
EndPage | 3666 |
ExternalDocumentID | 10_1109_TMTT_2020_3006294 9139293 |
Genre | orig-research |
GrantInformation_xml | – fundername: K. C. Wong Education Foundation; K.C.Wong Education Foundation grantid: GJTD-2019-11 funderid: 10.13039/501100012692 – fundername: National Natural Science Foundation of China grantid: 61851406 funderid: 10.13039/501100001809 – fundername: China Scholarship Council (CSC) grantid: 201804910765 funderid: 10.13039/501100004543 – fundername: Frontier Science Key Program of CAS grantid: QYZDY-SSW-JSC032 funderid: 10.13039/501100002367 – fundername: College of Engineering, University of Illinois at Urbana Champaign funderid: 10.13039/100010443 – fundername: Chinese−Austrian Cooperative Research and Development Project grantid: GJHZ201950 |
GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c336t-b2d8a2e463f3ae749f7f8bcf5111d2637c0540c370cbdaa9a4392ff50ae8570b3 |
IEDL.DBID | RIE |
ISSN | 0018-9480 |
IngestDate | Mon Jun 30 10:17:58 EDT 2025 Tue Jul 01 02:00:18 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Aug 27 02:31:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-b2d8a2e463f3ae749f7f8bcf5111d2637c0540c370cbdaa9a4392ff50ae8570b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0316-9958 0000-0001-8147-1282 0000-0001-9928-256X 0000-0003-2325-3505 0000-0003-0025-3924 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9139293 |
PQID | 2441009233 |
PQPubID | 106035 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9139293 crossref_citationtrail_10_1109_TMTT_2020_3006294 crossref_primary_10_1109_TMTT_2020_3006294 proquest_journals_2441009233 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on microwave theory and techniques |
PublicationTitleAbbrev | TMTT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 wong (ref19) 2002 ref54 ref10 kim (ref74) 1999 ref17 hashimoto (ref44) 2009 nikanorov (ref21) 1972; 13 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 kimura (ref7) 2019 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 tolpygo (ref28) 1961; 2 hickernell (ref62) 1972 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref64 ref20 ref63 ref66 ref22 ref65 petousis (ref25) 2017; 4 ref27 ref29 bougrov (ref16) 2001 ref60 ref61 |
References_xml | – ident: ref1 doi: 10.1063/1.121801 – ident: ref50 doi: 10.1143/JJAP.46.4760 – ident: ref11 doi: 10.7567/JJAP.57.07LD12 – ident: ref20 doi: 10.1063/1.1657244 – ident: ref71 doi: 10.1063/1.54644 – ident: ref63 doi: 10.1109/TUFFC.2005.1516031 – ident: ref57 doi: 10.1016/0267-3762(88)90060-4 – ident: ref14 doi: 10.1016/0378-4363(78)90123-7 – ident: ref30 doi: 10.1080/14786436408222951 – ident: ref2 doi: 10.1109/TMTT.2012.2228671 – ident: ref64 doi: 10.1063/1.369775 – ident: ref48 doi: 10.1109/TED.2015.2458913 – ident: ref43 doi: 10.1109/TUFFC.2007.353 – ident: ref37 doi: 10.1088/0022-3727/36/15/304 – ident: ref51 doi: 10.1109/22.475636 – ident: ref18 doi: 10.1109/ULTSYM.1990.171403 – ident: ref29 doi: 10.1111/j.1151-2916.1987.tb05673.x – ident: ref52 doi: 10.1109/ULTSYM.2011.0458 – start-page: 388 year: 1972 ident: ref62 article-title: pulsed dc voltage breakdown between interdigital electrodes publication-title: 1972 Ultrasonics Symposium doi: 10.1109/ULTSYM.1972.196108 – ident: ref58 doi: 10.1063/1.1573361 – ident: ref66 doi: 10.1109/IRPS.1977.362783 – ident: ref54 doi: 10.1109/ULTSYM.2017.8091644 – ident: ref47 doi: 10.1109/ULTSYM.2018.8580175 – ident: ref45 doi: 10.7567/JJAP.57.04FK05 – ident: ref69 doi: 10.1109/ULTSYM.1995.495603 – ident: ref38 doi: 10.1007/978-1-4615-2209-6 – ident: ref35 doi: 10.1016/0012-821X(69)90186-1 – ident: ref23 doi: 10.1063/1.333965 – ident: ref33 doi: 10.1007/978-0-387-85695-7_2 – volume: 13 start-page: 2516 year: 1972 ident: ref21 article-title: Elastic properties of Si publication-title: Sov Phys Solid State – ident: ref40 doi: 10.1016/j.wavemoti.2006.08.003 – ident: ref9 doi: 10.1109/MEMSYS.2019.8870796 – ident: ref55 doi: 10.1109/ULTSYM.2018.8580175 – ident: ref17 doi: 10.1109/PROC.1976.10200 – ident: ref32 doi: 10.1063/1.1729059 – ident: ref27 doi: 10.1109/TED.2002.807445 – year: 2002 ident: ref19 publication-title: Properties of Lithium Niobate – ident: ref53 doi: 10.1109/MWSYM.2016.7540149 – ident: ref73 doi: 10.1109/58.949745 – ident: ref56 doi: 10.1063/1.1660528 – ident: ref24 doi: 10.1103/PhysRevLett.100.055503 – ident: ref67 doi: 10.1109/ULTSYM.2014.0218 – ident: ref70 doi: 10.1016/j.tsf.2014.01.003 – ident: ref13 doi: 10.1063/1.1661636 – ident: ref15 doi: 10.1063/1.366100 – start-page: 39 year: 1999 ident: ref74 article-title: Passivation layer effects on power durability of SAW duplexer publication-title: Proc Int Symp IEEE Ultrason Symp – ident: ref10 doi: 10.1109/JMEMS.2020.2967784 – ident: ref42 doi: 10.1109/58.896145 – ident: ref5 doi: 10.1109/LED.2015.2478378 – start-page: 1239 year: 2019 ident: ref7 article-title: A high velocity and wideband SAW on a thin LiNbO3 plate bonded on a Si substrate in the SHF range publication-title: Proc IEEE Int Ultrason Symp (IUS) – year: 2009 ident: ref44 publication-title: RF Bulk Acoustic Wave Filters for Communications – ident: ref12 doi: 10.1109/ULTSYM.2019.8925589 – ident: ref6 doi: 10.1109/JMEMS.2019.2961976 – ident: ref3 doi: 10.1109/TUFFC.2017.2738119 – ident: ref26 doi: 10.1109/TED.2012.2228867 – ident: ref34 doi: 10.1103/PhysRev.110.1060 – ident: ref39 doi: 10.1007/s00707-006-0333-8 – ident: ref59 doi: 10.1063/1.2135383 – ident: ref46 doi: 10.1109/JMEMS.2019.2892708 – ident: ref31 doi: 10.1063/1.321373 – ident: ref8 doi: 10.1109/TUFFC.2020.2971196 – ident: ref49 doi: 10.7567/JJAP.57.07LD15 – ident: ref60 doi: 10.1109/TUFFC.2019.2898046 – ident: ref61 doi: 10.1109/IRPS.1977.362786 – ident: ref41 doi: 10.7567/JJAP.52.07HD03 – ident: ref72 doi: 10.1063/1.5017091 – ident: ref36 doi: 10.1109/FREQ.1991.145883 – ident: ref68 doi: 10.1016/j.matchar.2010.06.018 – ident: ref22 doi: 10.1103/PhysRev.134.A1058 – start-page: 1 year: 2001 ident: ref16 publication-title: Properties of Advanced Semiconductor Materials GaN AlN InN BN SiC SiGe – ident: ref65 doi: 10.1063/1.1655260 – volume: 2 start-page: 2367 year: 1961 ident: ref28 article-title: Optical, elastic and piezoelectric properties of ionic and valence crystals with the ZnS type lattice publication-title: Sov Phys Solid State – volume: 4 start-page: 1 year: 2017 ident: ref25 article-title: High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials publication-title: Data Science Journal – ident: ref4 doi: 10.1109/TUFFC.2007.321 |
SSID | ssj0014508 |
Score | 2.6388288 |
Snippet | This work demonstrates a group of shear horizontal (SH0) mode resonators and filters using lithium niobate (LiNbO 3 ) thin films on silicon carbide (SiC). The... This work demonstrates a group of shear horizontal (SH0) mode resonators and filters using lithium niobate (LiNbO3) thin films on silicon carbide (SiC). The... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3653 |
SubjectTerms | Chemical bonds Diamond Electric arcs Figure of merit Figure of merit (FoM) Frequency ranges Group delay impedance ratio Insertion loss Lithium niobate Lithium niobates MEMS piezoelectric filters piezoelectric resonators power handling Q factors Resonant frequency Resonators shear horizontal (SH0) modes Silicon Silicon carbide Silicon substrates Single crystals Slicing Substrates Surface acoustic wave devices Surface acoustic waves temperature of frequency (TCF) Thin films |
Title | Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide |
URI | https://ieeexplore.ieee.org/document/9139293 https://www.proquest.com/docview/2441009233 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTjDwKohCQR6YEGmT2HmNVaFCiHZpK7pFtnMWESVBJWHg12M7acVLiC2DHVn3PvvuO4QumEY1Z5JYnvQ8i_qCWyxgutk9CkBwj3Kp7zvGE_92Tu8W3qKBrja9MABgis-gpz_NW36Si1JflfU1hKVyT03UVIlb1au1eTGgnl1bXaXANFy_YDp21J-NZzOVCboqQdUtgxH94oPMUJUflti4l9EuGq8PVlWVPPXKgvfE-zfMxv-efA_t1HEmHlSCsY8akB2g7U_og200mpYryQTggcjNTC_8wN4AX4MxHtgUE-D7tHhMy2c8SZXiF4DzDE_TpRKfDA_ZiqcJHKL56GY2vLXqsQqWIMQvLO4mIXOB-kQSBgGNZCBDLqQKvZzE9UkgdBgnSGALnjAWKXZGrpSezUCj4XNyhFpZnsGxrosSYZiErmBOQj1GQgYicMweVyRu0EH2mtCxqDHH9eiLZWxyDzuKNW9izZu45k0HXW62vFSAG38tbmtabxbWZO6g7pqbca2Sr7GKYxyNMEXIye-7TtGW_ndVQNZFrWJVwpmKOAp-bkTtAzvi0Us |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615dByAPpALC3gA6eq2SZ-5HGsCquF7u6lqdpbZDtjEXWbRUvCgV9f28mu6EOIWw62Ys177JlvAD5Lh2ouDQuEESLgsVaBTKRrds8S1EpwZdx9x3QWj6_49xtxswEn614YRPTFZzh0n_4tv1zo1l2VnToIS-ueNuGF9fuCdt1a6zcDLsLe7loV5unqDTMKs9N8muc2F6Q2RXVNgxl_4IX8WJUnttg7mNFrmK6O1tWV3A7bRg31n0eojf979jfwqo80yVknGruwgfUevPwLf3AfRpft0kiN5Ewv_FQvci1_I_mC3nwQX05AJlXzo2rvyKyyqt8gWdTksppbAarJuVyqqsQDuBp9zc_HQT9YIdCMxU2gaJlKijxmhklMeGYSkyptbPAVlTRmiXaBnGZJqFUpZWYZmlFjRCjR4eEr9ha26kWN71xllE7TMqVaRiUXkqUSdRL5PVSXNBlAuCJ0oXvUcTf8Yl747CPMCsebwvGm6HkzgOP1lp8d5Ma_Fu87Wq8X9mQewNGKm0WvlL8KG8lEDmOKsffP7_oE2-N8Oikm32YXh7Dj_tOVkx3BVrNs8YONPxr10YvdPVYa1JU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Acoustic+Wave+Devices+Using+Lithium+Niobate+on+Silicon+Carbide&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Zhang%2C+Shibin&rft.au=Lu%2C+Ruochen&rft.au=Zhou%2C+Hongyan&rft.au=Link%2C+Steffen&rft.date=2020-09-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=68&rft.issue=9&rft.spage=3653&rft.epage=3666&rft_id=info:doi/10.1109%2FTMTT.2020.3006294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2020_3006294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |