Deep transfer learning for star cluster classification: I. application to the PHANGS–HST survey
ABSTRACT We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($D\lesssim 20\, \...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 493; no. 3; pp. 3178 - 3193 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
Oxford University Press
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($D\lesssim 20\, \textrm{Mpc}$) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)–HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS–HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70 per cent, 40 per cent, 40–50 per cent, and 50–70 per cent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70–80 per cent, 40–50 per cent, 40–50 per cent, and 60–70 per cent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study. |
---|---|
AbstractList | ABSTRACT
We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($D\lesssim 20\, \textrm{Mpc}$) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)–HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS–HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70 per cent, 40 per cent, 40–50 per cent, and 50–70 per cent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70–80 per cent, 40–50 per cent, 40–50 per cent, and 60–70 per cent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study. |
Author | Hannon, Stephen Congiu, Enrico Wei, Wei Larson, Kirsten L Chevance, Mélanie Dale, Daniel A Boquien, Médéric Thilker, David A Whitmore, Bradley C Lee, Janice C Huerta, E A Chandar, Rupali Kruijssen, J M Diederik Ubeda, Leonardo Schruba, Andreas Blanc, Guillermo A |
Author_xml | – sequence: 1 givenname: Wei surname: Wei fullname: Wei, Wei email: weiw2@illinois.edu organization: NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 2 givenname: E A surname: Huerta fullname: Huerta, E A email: elihu@illinois.edu organization: NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 3 givenname: Bradley C surname: Whitmore fullname: Whitmore, Bradley C email: whitmore@stsci.edu organization: Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA – sequence: 4 givenname: Janice C surname: Lee fullname: Lee, Janice C organization: Caltech/IPAC, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 5 givenname: Stephen orcidid: 0000-0001-9628-8958 surname: Hannon fullname: Hannon, Stephen organization: Department of Physics and Astronomy, University of California, Riverside, CA 92507, USA – sequence: 6 givenname: Rupali surname: Chandar fullname: Chandar, Rupali organization: Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA – sequence: 7 givenname: Daniel A surname: Dale fullname: Dale, Daniel A organization: Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA – sequence: 8 givenname: Kirsten L surname: Larson fullname: Larson, Kirsten L organization: Caltech/IPAC, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 9 givenname: David A orcidid: 0000-0002-8528-7340 surname: Thilker fullname: Thilker, David A organization: Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 10 givenname: Leonardo surname: Ubeda fullname: Ubeda, Leonardo organization: Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA – sequence: 11 givenname: Médéric surname: Boquien fullname: Boquien, Médéric organization: Centro de Astronomía, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300, Chile – sequence: 12 givenname: Mélanie surname: Chevance fullname: Chevance, Mélanie organization: Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Grabengasse 1, D-69117 Heidelberg, Germany – sequence: 13 givenname: J M Diederik orcidid: 0000-0002-8804-0212 surname: Kruijssen fullname: Kruijssen, J M Diederik organization: Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Grabengasse 1, D-69117 Heidelberg, Germany – sequence: 14 givenname: Andreas surname: Schruba fullname: Schruba, Andreas organization: Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany – sequence: 15 givenname: Guillermo A surname: Blanc fullname: Blanc, Guillermo A organization: Observatories of the Carnegie Institution for Science, Pasadena, CA 91101, USA – sequence: 16 givenname: Enrico orcidid: 0000-0002-8549-4083 surname: Congiu fullname: Congiu, Enrico organization: Observatories of the Carnegie Institution for Science, Pasadena, CA 91101, USA |
BackLink | https://www.osti.gov/biblio/1604098$$D View this record in Osti.gov |
BookMark | eNqFkEFPwjAYhhuDiYAevTeevAy-tmu3eSOoQELUBDwv37pOZqBb2mLCzf_gP_SXCLq7pzdv8uQ5PAPSs401hFwzGDHIxHhnHfqxD4iCyzPSZ0LJiGdK9UgfQMgoTRi7IAPv3wEgFlz1Cd4b09Lg0PrKOLo16Gxt32jVOHo0Oaq3ex_MadH7uqo1hrqxd3Qxoti22-7T0NCwMfRlPnmarb4_v-arNfV792EOl-S8wq03V90Oyevjw3o6j5bPs8V0soy0ECpEBS9YKstEIU_jNIuVAtSyVEwqLXSGcSENK0yVgCyhkAXHhENZsDhhPEHgYkhu_ryND3XudR2M3ujGWqNDzhTEkKVHKPqDtGu8d6bKW1fv0B1yBvkpYv4bMe8iHvnbTrpv_0F_AGBPd4k |
CitedBy_id | crossref_primary_10_1093_mnras_stac222 crossref_primary_10_1093_mnras_stac2559 crossref_primary_10_1155_2022_2899674 crossref_primary_10_1093_mnras_stae001 crossref_primary_10_1093_mnras_stad098 crossref_primary_10_1093_mnras_stab055 crossref_primary_10_1109_ACCESS_2020_3008000 crossref_primary_10_3847_1538_4365_ac1fe5 crossref_primary_10_1016_j_ascom_2021_100469 crossref_primary_10_1093_mnras_stab3183 crossref_primary_10_1109_ACCESS_2020_3021115 crossref_primary_10_1093_mnras_stad878 crossref_primary_10_3389_fspas_2023_1197358 crossref_primary_10_1051_0004_6361_202038084 crossref_primary_10_1051_0004_6361_202141166 crossref_primary_10_1088_1755_1315_692_3_032071 crossref_primary_10_1093_mnras_staa2380 crossref_primary_10_1093_mnras_stad3815 crossref_primary_10_1051_0004_6361_202243934 crossref_primary_10_1155_2021_9921095 crossref_primary_10_1093_mnras_stae411 crossref_primary_10_1093_mnras_stab2087 crossref_primary_10_3847_1538_3881_ad1889 crossref_primary_10_1038_s41597_021_01109_0 crossref_primary_10_1051_0004_6361_202243354 crossref_primary_10_1093_mnras_stab3213 crossref_primary_10_1093_mnras_stac1996 crossref_primary_10_1093_mnras_stad1780 crossref_primary_10_1093_mnras_stad2238 crossref_primary_10_3847_1538_4357_abceba crossref_primary_10_1038_s41597_023_02298_6 crossref_primary_10_1093_mnras_stad1600 crossref_primary_10_1088_2632_2153_ac3843 crossref_primary_10_1051_epjconf_202226500009 |
Cites_doi | 10.1086/497363 10.1038/nature14539 10.1093/mnras/stx2403 10.1063/1.3630139 10.1088/0004-637X/787/1/17 10.1086/507440 10.1088/0004-637X/795/2/156 10.1111/j.1365-2966.2010.16713.x 10.1088/0004-6256/149/2/51 10.1016/j.ascom.2015.03.010 10.1007/s11263-014-0733-5 10.1093/mnras/sty1398 10.1088/0004-637X/811/2/75 10.3847/0004-6256/151/6/134 10.1093/mnras/stz331 10.1093/mnras/stv632 10.1088/0004-637X/760/1/15 10.1088/0004-6256/141/6/189 10.1086/589646 10.1002/j.1538-7305.1948.tb01338.x 10.1086/143018 10.1086/117459 10.1086/116094 10.1146/annurev-astro-081309-130834 10.1086/118146 10.1016/j.physletb.2019.06.009 10.1093/mnras/stw2672 10.1051/aas:1999509 10.1088/1538-3873/aac1fd 10.1051/0004-6361/201321447 10.1051/aas:1996164 10.1093/mnras/stv2310 10.1093/mnras/stt1458 10.1086/190084 10.1111/j.1365-2966.2011.19909.x 10.1088/0004-6256/148/2/33 10.1007/s11263-015-0816-y 10.1093/mnras/sty3424 10.1051/0004-6361/201730968 10.3847/1538-4357/aa719e 10.1086/309788 10.3847/1538-4357/aa7132 10.1086/342381 10.3847/0004-637X/824/2/71 10.1080/00107514.2016.1246478 10.1088/0004-637X/719/1/966 10.1093/mnras/stw641 10.1093/mnras/stt574 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020 |
Copyright_xml | – notice: 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020 |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1093/mnras/staa325 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 3193 |
ExternalDocumentID | 1604098 10_1093_mnras_staa325 10.1093/mnras/staa325 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION 69O AABJS AABMN AAESY AAIYJ AAPBV ABPTK ADEIU ADIPN ADORX ADQLU AFUVZ AIKOY ARQIP AUCZF AZQFJ BYORX CASEJ DPORF DPPUQ OTOTI OWPYF PQEST UMP |
ID | FETCH-LOGICAL-c336t-b2b185d76a284894660ac5d6156c3c9a4b5e1bef705d0b5b2a720db147127a023 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Thu May 18 22:31:02 EDT 2023 Thu Sep 12 17:55:08 EDT 2024 Wed Aug 28 03:17:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | galaxies: star clusters: general |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-b2b185d76a284894660ac5d6156c3c9a4b5e1bef705d0b5b2a720db147127a023 |
Notes | AC02-06CH11357 USDOE |
ORCID | 0000-0002-8804-0212 0000-0001-9628-8958 0000-0002-8528-7340 0000-0002-8549-4083 0000000196288958 0000000285287340 0000000285494083 0000000288040212 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/493/3/3178/33024241/staa325.pdf |
PageCount | 16 |
ParticipantIDs | osti_scitechconnect_1604098 crossref_primary_10_1093_mnras_staa325 oup_primary_10_1093_mnras_staa325 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Whitmore (2021020401053298400_bib66) 1995; 454 Banerji (2021020401053298400_bib6) 2010; 406 Sevilla-Noarbe (2021020401053298400_bib55) 2015; 11 Abbott (2021020401053298400_bib1) 2016; 460 Ryon (2021020401053298400_bib53) 2017; 841 Portegies Zwart (2021020401053298400_bib50) 2010; 48 Carrasco Kind (2021020401053298400_bib16) 2013; 432 Larsen (2021020401053298400_bib44) 2002; 124 Simonyan (2021020401053298400_bib57) 2014 Bastian (2021020401053298400_bib8) 2012; 419 Goodfellow (2021020401053298400_bib29) 2016 He (2021020401053298400_bib33) 2016 Małek (2021020401053298400_bib47) 2013; 557 Weir (2021020401053298400_bib63) 1995; 109 Whitmore (2021020401053298400_bib64) 2014; 795 George (2021020401053298400_bib28) 2018; 97 Dieleman (2021020401053298400_bib23) 2015; 450 Ishak (2021020401053298400_bib37) 2017; 58 Ryon (2021020401053298400_bib52) 2014; 148 Chandar (2021020401053298400_bib18) 2014; 787 Messa (2021020401053298400_bib48) 2018; 473 Russakovsky (2021020401053298400_bib51) 2015; 115 Bengio (2021020401053298400_bib9) 2011 Domínguez Sánchez (2021020401053298400_bib24) 2018 Whitmore (2021020401053298400_bib65) 2016; 151 Deng (2021020401053298400_bib22) 2009 LSST Science Collaboration (2021020401053298400_bib46) 2009 Solarz (2021020401053298400_bib59) 2017; 606 Krumholz (2021020401053298400_bib43) 2018 Paszke (2021020401053298400_bib49) 2019 Barchi (2021020401053298400_bib7) 2019 Cannon (2021020401053298400_bib15) 1918; 91 Hubble (2021020401053298400_bib35) 1926; 64 Krizhevsky (2021020401053298400_bib42) 2012 Gouliermis (2021020401053298400_bib30) 2018; 130 Calzetti (2021020401053298400_bib13) 2015; 811 Bertin (2021020401053298400_bib10) 1996; 117 Hubble (2021020401053298400_bib36) 1936 Chandar (2021020401053298400_bib17) 2010; 719 Khan (2021020401053298400_bib39) 2019; B795 Grasha (2021020401053298400_bib31) 2019; 483 Everingham (2021020401053298400_bib25) 2015; 111 Calzetti (2021020401053298400_bib12) 2015; 149 Cannon (2021020401053298400_bib14) 1912; 56 Ball (2021020401053298400_bib5) 2008; 683 Ackermann (2021020401053298400_bib2) 2018; 479 Adamo (2021020401053298400_bib3) 2017; 841 Szegedy (2021020401053298400_bib61) 2015 Chandar (2021020401053298400_bib19) 2016; 824 George (2021020401053298400_bib27) 2017 Schweizer (2021020401053298400_bib54) 1996; 112 de Vaucouleurs (2021020401053298400_bib21) 1963; 8 Kamdar (2021020401053298400_bib38) 2016; 455 Fadely (2021020401053298400_bib26) 2012; 760 Holtzman (2021020401053298400_bib34) 1992; 103 Vasconcellos (2021020401053298400_bib62) 2011; 141 Kingma (2021020401053298400_bib41) 2014 Shannon (2021020401053298400_bib56) 1948; 27 Larsen (2021020401053298400_bib1_722_1582736932942) 1999; 139 Kim (2021020401053298400_bib40) 2017; 464 Willett (2021020401053298400_bib67) 2013; 435 Ball (2021020401053298400_bib4) 2006; 650 Cook (2021020401053298400_bib20) 2019; 484 Suchkov (2021020401053298400_bib60) 2005; 130 Lecun (2021020401053298400_bib45) 2015; 521 |
References_xml | – volume: 130 start-page: 2439 year: 2005 ident: 2021020401053298400_bib60 publication-title: AJ doi: 10.1086/497363 contributor: fullname: Suchkov – volume: 521 start-page: 436 year: 2015 ident: 2021020401053298400_bib45 publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: Lecun – volume: 473 start-page: 996 year: 2018 ident: 2021020401053298400_bib48 publication-title: MNRAS doi: 10.1093/mnras/stx2403 contributor: fullname: Messa – start-page: 227 volume-title: ARA&A year: 2018 ident: 2021020401053298400_bib43 contributor: fullname: Krumholz – start-page: 100334 volume-title: Astron. Comput. year: 2019 ident: 2021020401053298400_bib7 contributor: fullname: Barchi – start-page: 17 volume-title: AIP Conf. Proc. Vol. 27, Quantum Communication, Measurement and Computing (QCMC): The Tenth International Conference year: 2011 ident: 2021020401053298400_bib9 doi: 10.1063/1.3630139 contributor: fullname: Bengio – volume: 787 start-page: 17 year: 2014 ident: 2021020401053298400_bib18 publication-title: ApJ doi: 10.1088/0004-637X/787/1/17 contributor: fullname: Chandar – start-page: 101501(R) volume-title: Phys. Rev. D year: 2017 ident: 2021020401053298400_bib27 contributor: fullname: George – volume: 650 start-page: 497 year: 2006 ident: 2021020401053298400_bib4 publication-title: ApJ doi: 10.1086/507440 contributor: fullname: Ball – volume: 795 start-page: 156 year: 2014 ident: 2021020401053298400_bib64 publication-title: ApJ doi: 10.1088/0004-637X/795/2/156 contributor: fullname: Whitmore – volume: 406 start-page: 342 year: 2010 ident: 2021020401053298400_bib6 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16713.x contributor: fullname: Banerji – volume: 149 start-page: 51 year: 2015 ident: 2021020401053298400_bib12 publication-title: AJ doi: 10.1088/0004-6256/149/2/51 contributor: fullname: Calzetti – volume: 11 start-page: 64 year: 2015 ident: 2021020401053298400_bib55 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2015.03.010 contributor: fullname: Sevilla-Noarbe – volume: 111 start-page: 98 year: 2015 ident: 2021020401053298400_bib25 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 contributor: fullname: Everingham – volume: 479 start-page: 415 year: 2018 ident: 2021020401053298400_bib2 publication-title: MNRAS doi: 10.1093/mnras/sty1398 contributor: fullname: Ackermann – volume: 811 start-page: 75 year: 2015 ident: 2021020401053298400_bib13 publication-title: ApJ doi: 10.1088/0004-637X/811/2/75 contributor: fullname: Calzetti – volume: 151 start-page: 134 year: 2016 ident: 2021020401053298400_bib65 publication-title: AJ doi: 10.3847/0004-6256/151/6/134 contributor: fullname: Whitmore – volume: 484 start-page: 4897 year: 2019 ident: 2021020401053298400_bib20 publication-title: MNRAS doi: 10.1093/mnras/stz331 contributor: fullname: Cook – volume: 450 start-page: 1441 year: 2015 ident: 2021020401053298400_bib23 publication-title: MNRAS doi: 10.1093/mnras/stv632 contributor: fullname: Dieleman – start-page: 770 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2016 ident: 2021020401053298400_bib33 contributor: fullname: He – start-page: 8024 volume-title: Advances in Neural Information Processing Systems 32 year: 2019 ident: 2021020401053298400_bib49 contributor: fullname: Paszke – volume: 760 start-page: 15 year: 2012 ident: 2021020401053298400_bib26 publication-title: ApJ doi: 10.1088/0004-637X/760/1/15 contributor: fullname: Fadely – start-page: 93 volume-title: MNRAS year: 2018 ident: 2021020401053298400_bib24 contributor: fullname: Domínguez Sánchez – volume: 141 start-page: 189 year: 2011 ident: 2021020401053298400_bib62 publication-title: AJ doi: 10.1088/0004-6256/141/6/189 contributor: fullname: Vasconcellos – volume: 683 start-page: 12 year: 2008 ident: 2021020401053298400_bib5 publication-title: ApJ doi: 10.1086/589646 contributor: fullname: Ball – volume: 27 start-page: 379 year: 1948 ident: 2021020401053298400_bib56 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x contributor: fullname: Shannon – volume: 64 start-page: 321 year: 1926 ident: 2021020401053298400_bib35 publication-title: ApJ doi: 10.1086/143018 contributor: fullname: Hubble – volume: 109 start-page: 2401 year: 1995 ident: 2021020401053298400_bib63 publication-title: AJ doi: 10.1086/117459 contributor: fullname: Weir – volume: 103 start-page: 691 year: 1992 ident: 2021020401053298400_bib34 publication-title: AJ doi: 10.1086/116094 contributor: fullname: Holtzman – year: 2009 ident: 2021020401053298400_bib46 contributor: fullname: LSST Science Collaboration – volume: 48 start-page: 431 year: 2010 ident: 2021020401053298400_bib50 publication-title: ARA&A doi: 10.1146/annurev-astro-081309-130834 contributor: fullname: Portegies Zwart – volume-title: CVPR09 year: 2009 ident: 2021020401053298400_bib22 contributor: fullname: Deng – year: 1936 ident: 2021020401053298400_bib36 publication-title: Realm of the Nebulae contributor: fullname: Hubble – start-page: 1097 volume-title: Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol. 1 year: 2012 ident: 2021020401053298400_bib42 contributor: fullname: Krizhevsky – volume: 112 start-page: 1839 year: 1996 ident: 2021020401053298400_bib54 publication-title: AJ doi: 10.1086/118146 contributor: fullname: Schweizer – volume: B795 start-page: 248 year: 2019 ident: 2021020401053298400_bib39 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2019.06.009 contributor: fullname: Khan – volume: 464 start-page: 4463 year: 2017 ident: 2021020401053298400_bib40 publication-title: MNRAS doi: 10.1093/mnras/stw2672 contributor: fullname: Kim – volume-title: Deep Learning year: 2016 ident: 2021020401053298400_bib29 contributor: fullname: Goodfellow – volume: 56 start-page: 65 year: 1912 ident: 2021020401053298400_bib14 publication-title: Ann. Harv. Coll. Obs. contributor: fullname: Cannon – volume: 139 start-page: 393 year: 1999 ident: 2021020401053298400_bib1_722_1582736932942 publication-title: Astronomy and Astrophysics Supplement doi: 10.1051/aas:1999509 contributor: fullname: Larsen – volume: 130 start-page: 072001 year: 2018 ident: 2021020401053298400_bib30 publication-title: PASP doi: 10.1088/1538-3873/aac1fd contributor: fullname: Gouliermis – year: 2014 ident: 2021020401053298400_bib41 contributor: fullname: Kingma – volume: 557 start-page: A16 year: 2013 ident: 2021020401053298400_bib47 publication-title: A&A doi: 10.1051/0004-6361/201321447 contributor: fullname: Małek – volume: 117 start-page: 393 year: 1996 ident: 2021020401053298400_bib10 publication-title: A&AS doi: 10.1051/aas:1996164 contributor: fullname: Bertin – volume: 455 start-page: 642 year: 2016 ident: 2021020401053298400_bib38 publication-title: MNRAS doi: 10.1093/mnras/stv2310 contributor: fullname: Kamdar – volume: 435 start-page: 2835 year: 2013 ident: 2021020401053298400_bib67 publication-title: MNRAS doi: 10.1093/mnras/stt1458 contributor: fullname: Willett – volume: 8 start-page: 31 year: 1963 ident: 2021020401053298400_bib21 publication-title: ApJS doi: 10.1086/190084 contributor: fullname: de Vaucouleurs – volume: 419 start-page: 2606 year: 2012 ident: 2021020401053298400_bib8 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19909.x contributor: fullname: Bastian – volume: 148 start-page: 33 year: 2014 ident: 2021020401053298400_bib52 publication-title: AJ doi: 10.1088/0004-6256/148/2/33 contributor: fullname: Ryon – volume: 115 start-page: 211 year: 2015 ident: 2021020401053298400_bib51 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y contributor: fullname: Russakovsky – volume: 91 start-page: 1 year: 1918 ident: 2021020401053298400_bib15 publication-title: Ann. Harv. Coll. Obs. contributor: fullname: Cannon – volume: 97 start-page: 101501 year: 2018 ident: 2021020401053298400_bib28 publication-title: Phys. Rev. D contributor: fullname: George – volume-title: CoRR year: 2014 ident: 2021020401053298400_bib57 contributor: fullname: Simonyan – volume: 483 start-page: 4707 year: 2019 ident: 2021020401053298400_bib31 publication-title: MNRAS doi: 10.1093/mnras/sty3424 contributor: fullname: Grasha – volume: 606 start-page: A39 year: 2017 ident: 2021020401053298400_bib59 publication-title: A&A doi: 10.1051/0004-6361/201730968 contributor: fullname: Solarz – start-page: 1 volume-title: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition year: 2015 ident: 2021020401053298400_bib61 contributor: fullname: Szegedy – volume: 841 start-page: 92 year: 2017 ident: 2021020401053298400_bib53 publication-title: ApJ doi: 10.3847/1538-4357/aa719e contributor: fullname: Ryon – volume: 454 start-page: L73 year: 1995 ident: 2021020401053298400_bib66 publication-title: ApJ doi: 10.1086/309788 contributor: fullname: Whitmore – volume: 841 start-page: 131 year: 2017 ident: 2021020401053298400_bib3 publication-title: ApJ doi: 10.3847/1538-4357/aa7132 contributor: fullname: Adamo – volume: 124 start-page: 1393 year: 2002 ident: 2021020401053298400_bib44 publication-title: AJ doi: 10.1086/342381 contributor: fullname: Larsen – volume: 824 start-page: 71 year: 2016 ident: 2021020401053298400_bib19 publication-title: ApJ doi: 10.3847/0004-637X/824/2/71 contributor: fullname: Chandar – volume: 58 start-page: 99 year: 2017 ident: 2021020401053298400_bib37 publication-title: Contemp. Phys. doi: 10.1080/00107514.2016.1246478 contributor: fullname: Ishak – volume: 719 start-page: 966 year: 2010 ident: 2021020401053298400_bib17 publication-title: ApJ doi: 10.1088/0004-637X/719/1/966 contributor: fullname: Chandar – volume: 460 start-page: 1270 year: 2016 ident: 2021020401053298400_bib1 publication-title: MNRAS doi: 10.1093/mnras/stw641 contributor: fullname: Abbott – volume: 432 start-page: 1483 year: 2013 ident: 2021020401053298400_bib16 publication-title: MNRAS doi: 10.1093/mnras/stt574 contributor: fullname: Carrasco Kind |
SSID | ssj0004326 |
Score | 2.5905516 |
Snippet | ABSTRACT
We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale... |
SourceID | osti crossref oup |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 3178 |
Title | Deep transfer learning for star cluster classification: I. application to the PHANGS–HST survey |
URI | https://www.osti.gov/biblio/1604098 |
Volume | 493 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA2yJ1_EK9bLiCC-1bVJkzjfxnROwQtuwt5KkqYibOtoO2Fv_gf_ob_EL2lFRRFfeqEXSk7KOd-XfCcIHZJUcxLwxE9ZqP1ICO6rJGSwYRIoQQdpZIuTr294_yG6GrFRne8ofhnCb9PWZJrLogVaSVJiq8mtJRp03OHt6LMAkrp11Zz_IkQAYW2m-ePpb-TTyOAnquravlBKbxWt1FoQdyrw1tCSma6j7U5hs9PZZIGPsDuukg_FOvKuQeFmuUuEw8Xu-AnkpjvbQPLMmBkunQw1Oa4Xg3jEoEkxfFaO9XhuPRFgD3LZzg9ykJziy2P8ZRAblxkGSYjv-p2bi8Hby2t_MMTFPH82i0300Dsfdvt-vXyCrynlpa-IAjJOBJdAQSfWRz6QmiUgYbimui0jxUyoTCoClgSKKSIFCRIVAl0RAUDRLdSYZlOzjbAWlJtAK4hoZaQj1lZaRFJyQRMDCi7x0NFHu8azyiUjrka3aewAiGsAPLRrWz0GercetdpO5tFlDJBCnHnioQMA4-837Pzjnl20TGxY7CbY7KFGmc_NPmiHUjVBNd-Tpus97xx8xY8 |
link.rule.ids | 230,315,783,787,888,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+transfer+learning+for+star+cluster+classification%3A+I.+application+to+the+PHANGS%E2%80%93+HST+survey&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Wei%2C+Wei&rft.au=Huerta%2C+E.+A.&rft.au=Whitmore%2C+Bradley+C.&rft.au=Lee%2C+Janice+C.&rft.date=2020-04-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=493&rft.issue=3&rft_id=info:doi/10.1093%2Fmnras%2Fstaa325&rft.externalDocID=1604098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |