Perturbation solution for the viscoelastic flow around a rigid sphere under pure uniaxial elongation

► We study the 3D viscoelastic flow around a rigid sphere subject to pure uniaxial flow imposed on the ambient fluid. ► A perturbation technique with the small parameter being the Deborah number is invoked to solve the governing equations. ► The resulting equations are solved analytically up to seco...

Full description

Saved in:
Bibliographic Details
Published inJournal of non-Newtonian fluid mechanics Vol. 167; pp. 75 - 86
Main Authors Housiadas, Kostas D., Tanner, Roger I.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2012
Subjects
Online AccessGet full text
ISSN0377-0257
1873-2631
DOI10.1016/j.jnnfm.2011.10.006

Cover

Abstract ► We study the 3D viscoelastic flow around a rigid sphere subject to pure uniaxial flow imposed on the ambient fluid. ► A perturbation technique with the small parameter being the Deborah number is invoked to solve the governing equations. ► The resulting equations are solved analytically up to second order and numerically up to fourth order in Deborah number. We study the steady, three-dimensional creeping and viscoelastic flow around a rigid sphere subject to steady uniaxial extensional flow imposed at infinity. The viscoelastic response of the ambient fluid to the flow deformation is modeled using the second-order-fluid model, the Upper Convected Maxwell, the exponential affine Phan-Thien and Tanner and the Giesekus constitutive equations. A spherical coordinate system with origin at the center of the sphere is used to describe the flow field and the solution of the governing equations is expanded as a series in the Deborah number. The resulting sequence of differential equations is solved analytically up to second order and numerically up to fourth order in Deborah number by employing fully spectral representations for all the primary variables. In particular, Chebyshev polynomials are utilized in the radial coordinate and the Double Fourier Series in the longitudinal and latitudinal coordinates. The numerical results up to second-order agree within machine accuracy with the available analytical solutions clearly indicating the correctness and accuracy of the numerical method used here.
AbstractList We study the steady, three-dimensional creeping and viscoelastic flow around a rigid sphere subject to steady uniaxial extensional flow imposed at infinity. The viscoelastic response of the ambient fluid to the flow deformation is modeled using the second-order-fluid model, the Upper Convected Maxwell, the exponential affine Phan-Thien and Tanner and the Giesekus constitutive equations. A spherical coordinate system with origin at the center of the sphere is used to describe the flow field and the solution of the governing equations is expanded as a series in the Deborah number. The resulting sequence of differential equations is solved analytically up to second order and numerically up to fourth order in Deborah number by employing fully spectral representations for all the primary variables. In particular, Chebyshev polynomials are utilized in the radial coordinate and the Double Fourier Series in the longitudinal and latitudinal coordinates. The numerical results up to second-order agree within machine accuracy with the available analytical solutions clearly indicating the correctness and accuracy of the numerical method used here.
► We study the 3D viscoelastic flow around a rigid sphere subject to pure uniaxial flow imposed on the ambient fluid. ► A perturbation technique with the small parameter being the Deborah number is invoked to solve the governing equations. ► The resulting equations are solved analytically up to second order and numerically up to fourth order in Deborah number. We study the steady, three-dimensional creeping and viscoelastic flow around a rigid sphere subject to steady uniaxial extensional flow imposed at infinity. The viscoelastic response of the ambient fluid to the flow deformation is modeled using the second-order-fluid model, the Upper Convected Maxwell, the exponential affine Phan-Thien and Tanner and the Giesekus constitutive equations. A spherical coordinate system with origin at the center of the sphere is used to describe the flow field and the solution of the governing equations is expanded as a series in the Deborah number. The resulting sequence of differential equations is solved analytically up to second order and numerically up to fourth order in Deborah number by employing fully spectral representations for all the primary variables. In particular, Chebyshev polynomials are utilized in the radial coordinate and the Double Fourier Series in the longitudinal and latitudinal coordinates. The numerical results up to second-order agree within machine accuracy with the available analytical solutions clearly indicating the correctness and accuracy of the numerical method used here.
Author Housiadas, Kostas D.
Tanner, Roger I.
Author_xml – sequence: 1
  givenname: Kostas D.
  surname: Housiadas
  fullname: Housiadas, Kostas D.
  email: housiada@aegean.gr
  organization: Department of Mathematics, University of the Aegean, Karlovassi, Samos, 83200, Greece
– sequence: 2
  givenname: Roger I.
  surname: Tanner
  fullname: Tanner, Roger I.
  organization: School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
BookMark eNqFkD1PHDEQhi1EJA6SX5DGJc0e_sD2bUGBECRISEkBteW1x-CTzz5sLx__nr29VClgmhm9mmdkP8foMOUECP2kZEkJlWfr5Tolv1kyQumULAmRB2hBV4p3THJ6iBaEK9URJtQROq51TaYSXC6Q-wuljWUwLeSEa47jPPhccHsC_BKqzRBNbcFiH_MrNiWPyWGDS3gMDtftExTAUwQFb8d5DOYtmIgh5vQ43_2OvnkTK_z410_Qw831_dXv7u7Pr9ury7vOci5bZ8TA6aCo68-BSNav_EqeK0KtGBzzPe-FkpYJTkAI7oXspSSUMzmsgHrnOD9Bp_u725KfR6hNb6b3Q4wmQR6rplJRphjvybTK96u25FoLeL0tYWPKu6ZE75zqtZ6d6p3TXTg5naj-P8qGNn-xFRPiF-zFnoXJwEuAoqsNkCy4UMA27XL4lP8A4xKWsQ
CitedBy_id crossref_primary_10_1007_s10665_013_9666_1
crossref_primary_10_1063_1_4928974
crossref_primary_10_1103_PhysRevFluids_7_013301
Cites_doi 10.1146/annurev.fl.16.010184.000401
10.1122/1.1396356
10.1016/j.jnnfm.2007.02.013
10.1002/fld.2269
10.1063/1.1487378
10.1017/S0022112004001648
10.1017/S0022112075003187
10.1016/j.jnnfm.2006.03.019
10.1175/1520-0493(1974)102<0056:FSOS>2.0.CO;2
10.1122/1.551083
10.1016/j.jnnfm.2008.11.004
10.1017/S0022112070001659
10.1016/0378-4371(87)90192-0
10.1137/S1064827597317028
10.1016/j.jnnfm.2009.05.006
10.1122/1.2998219
10.1063/1.3615518
10.1017/S0022112095000280
10.1017/S0022112095004204
10.1017/S0022112002008261
10.1063/1.3583376
10.1122/1.1501925
10.1017/S0022112002001490
10.1007/s003970200006
10.1002/(SICI)1097-0363(19990815)30:7<921::AID-FLD875>3.0.CO;2-3
10.1016/j.jnnfm.2007.06.002
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.jnnfm.2011.10.006
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-2631
EndPage 86
ExternalDocumentID 10_1016_j_jnnfm_2011_10_006
S0377025711002515
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VOH
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
7U5
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c336t-a5b31b71d94e06298f864701c5bd2f939576c2530e553f5696601326b8e1fdd33
IEDL.DBID AIKHN
ISSN 0377-0257
IngestDate Fri Sep 05 12:08:55 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 00:25:51 EDT 2025
Fri Feb 23 02:19:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uniaxial flow
UCM, PTT and Giesekus modes
Perturbation
Rigid sphere
Suspensions
Second order fluid model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-a5b31b71d94e06298f864701c5bd2f939576c2530e553f5696601326b8e1fdd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671272390
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1671272390
crossref_primary_10_1016_j_jnnfm_2011_10_006
crossref_citationtrail_10_1016_j_jnnfm_2011_10_006
elsevier_sciencedirect_doi_10_1016_j_jnnfm_2011_10_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Journal of non-Newtonian fluid mechanics
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Housiadas, Tanner (b0095) 2011; 23
Leal (b0055) 2007
Greco, D’ Avino, Maffettone (b0105) 2007; 147
Bagchi, Balachandar (b0045) 2002; 14
Shen (b0140) 1999; 20
Zarraga, Hill, Leighton (b0020) 2000; 44
Bagchi, Balachandar (b0075) 2002; 466
Lin, Peery, Schowalter (b0040) 1970; 44
Barnes (b0005) 2003; 1
Housiadas, Tanner (b0120) 2011; 23
Hesthaven, Gottlieb, Gottlieb (b0125) 2007
Rallison (b0080) 1984; 14
Magnaudet, Rivero, Fabre (b0070) 1995; 284
Orszag (b0130) 1974; 102
Subramanian, Koch (b0165) 2007; 144
Boyd (b0135) 2001
Mohammadi, Floryan, Kaloni (b0090) 2011; 66
Mikulencak, Morris (b0050) 2004; 520
Housiadas, Tanner (b0110) 2009; 162
Bedeaux, Rubi (b0065) 1987; 144A
Zarraga, Hill, Leighton (b0010) 2001; 45
Sierou, Brady (b0025) 2000; 46
J.H. Peery, Fluid mechanics of rigid and deformable particles in shear flows at low Reynolds numbers, PhD Thesis, Princeton University, USA, 1966.
Mewis, Wagner (b0035) 2009; 157
Wolfram Research Inc., Mathematica Edition: Version 7.0, Wolfram Research, Inc., Champaign, Illinois, 2008.
D’Avino, Hulsen, Snijkers, Vermant, Greco, Maffettone (b0115) 2008; 52
Koch, Subramanian (b0100) 2006; 138
Chang, Maxey (b0150) 1995; 303
Bird, Curtiss, Armstrong, Hassager (b0085) 1987
Mittal (b0155) 1999; 30
Mall-Gleissle, Gleissl, McKinley, Buggisch (b0015) 2002; 41
Drazer, Koplik, Khusid, Acrivos (b0030) 2002; 460
Poe, Acrivos (b0160) 1975; 72
Housiadas (10.1016/j.jnnfm.2011.10.006_b0110) 2009; 162
Leal (10.1016/j.jnnfm.2011.10.006_b0055) 2007
Barnes (10.1016/j.jnnfm.2011.10.006_b0005) 2003; 1
Housiadas (10.1016/j.jnnfm.2011.10.006_b0095) 2011; 23
Magnaudet (10.1016/j.jnnfm.2011.10.006_b0070) 1995; 284
Bagchi (10.1016/j.jnnfm.2011.10.006_b0045) 2002; 14
Sierou (10.1016/j.jnnfm.2011.10.006_b0025) 2000; 46
Bagchi (10.1016/j.jnnfm.2011.10.006_b0075) 2002; 466
Shen (10.1016/j.jnnfm.2011.10.006_b0140) 1999; 20
Rallison (10.1016/j.jnnfm.2011.10.006_b0080) 1984; 14
Bird (10.1016/j.jnnfm.2011.10.006_b0085) 1987
Lin (10.1016/j.jnnfm.2011.10.006_b0040) 1970; 44
Bedeaux (10.1016/j.jnnfm.2011.10.006_b0065) 1987; 144A
Mohammadi (10.1016/j.jnnfm.2011.10.006_b0090) 2011; 66
Mewis (10.1016/j.jnnfm.2011.10.006_b0035) 2009; 157
Mikulencak (10.1016/j.jnnfm.2011.10.006_b0050) 2004; 520
Poe (10.1016/j.jnnfm.2011.10.006_b0160) 1975; 72
Drazer (10.1016/j.jnnfm.2011.10.006_b0030) 2002; 460
Zarraga (10.1016/j.jnnfm.2011.10.006_b0010) 2001; 45
Zarraga (10.1016/j.jnnfm.2011.10.006_b0020) 2000; 44
Greco (10.1016/j.jnnfm.2011.10.006_b0105) 2007; 147
Boyd (10.1016/j.jnnfm.2011.10.006_b0135) 2001
Chang (10.1016/j.jnnfm.2011.10.006_b0150) 1995; 303
Mall-Gleissle (10.1016/j.jnnfm.2011.10.006_b0015) 2002; 41
Subramanian (10.1016/j.jnnfm.2011.10.006_b0165) 2007; 144
Koch (10.1016/j.jnnfm.2011.10.006_b0100) 2006; 138
D’Avino (10.1016/j.jnnfm.2011.10.006_b0115) 2008; 52
Housiadas (10.1016/j.jnnfm.2011.10.006_b0120) 2011; 23
Orszag (10.1016/j.jnnfm.2011.10.006_b0130) 1974; 102
10.1016/j.jnnfm.2011.10.006_b0060
Mittal (10.1016/j.jnnfm.2011.10.006_b0155) 1999; 30
Hesthaven (10.1016/j.jnnfm.2011.10.006_b0125) 2007
10.1016/j.jnnfm.2011.10.006_b0145
References_xml – volume: 66
  start-page: 509
  year: 2011
  end-page: 536
  ident: b0090
  article-title: Spectrally accurate method for analysis of stationary flows of second-order fluids in rough micro-channels
  publication-title: Int. J. Numer. Methods Fluids
– reference: J.H. Peery, Fluid mechanics of rigid and deformable particles in shear flows at low Reynolds numbers, PhD Thesis, Princeton University, USA, 1966.
– reference: Wolfram Research Inc., Mathematica Edition: Version 7.0, Wolfram Research, Inc., Champaign, Illinois, 2008.
– volume: 147
  start-page: 1
  year: 2007
  end-page: 10
  ident: b0105
  article-title: Rheology of a dilute suspension of rigid spheres in a second order fluid
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 30
  start-page: 921
  year: 1999
  end-page: 937
  ident: b0155
  article-title: A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids
  publication-title: Int. J. Num. Methods Fluids
– volume: 138
  start-page: 87
  year: 2006
  end-page: 97
  ident: b0100
  article-title: The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity profile
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 162
  start-page: 88
  year: 2009
  end-page: 92
  ident: b0110
  article-title: On the rheology of a dilute suspension of rigid spheres in a weakly viscoelastic matrix fluid
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 144A
  start-page: 285
  year: 1987
  end-page: 298
  ident: b0065
  article-title: Drag on a sphere moving slowly through a fluid in elongational flow
  publication-title: Physica A
– volume: 102
  start-page: 56
  year: 1974
  end-page: 75
  ident: b0130
  article-title: Fourier series on spheres
  publication-title: Month. Weath. Rep.
– volume: 20
  start-page: 1438
  year: 1999
  end-page: 1455
  ident: b0140
  article-title: Efficient spectral-Galerkin methods IV: spherical geometries
  publication-title: SIAM J. Scient. Comput.
– year: 2007
  ident: b0055
  article-title: Advanced Transport Phenomena
– year: 1987
  ident: b0085
  article-title: Dynamics of Polymeric Liquids
– volume: 144
  start-page: 49
  year: 2007
  end-page: 57
  ident: b0165
  article-title: Heat transfer from a neutrally buoyant sphere in a second-order fluid
  publication-title: J. Non-Newton. Fluid Mech.
– year: 2007
  ident: b0125
  article-title: Spectral Methods for Time-dependent Problems
– volume: 45
  start-page: 1065
  year: 2001
  end-page: 1084
  ident: b0010
  article-title: Normal stresses and free surface deformation in concentrated suspensions of non-colloidal spheres in a viscoelastic fluid
  publication-title: J. Rheol.
– year: 2001
  ident: b0135
  article-title: Chebyshev and Fourier Spectral Methods
– volume: 1
  start-page: 1
  year: 2003
  end-page: 36
  ident: b0005
  article-title: A review of the rheology of filled viscoelastic systems
  publication-title: Rheol. Rev.
– volume: 72
  start-page: 605
  year: 1975
  end-page: 623
  ident: b0160
  article-title: Closed-streamline flows past rotating single cylinders and spheres: inertia effects
  publication-title: J. Fluid Mech.
– volume: 520
  start-page: 215
  year: 2004
  end-page: 242
  ident: b0050
  article-title: Stationary shear flow around fixed and free bodies at finite Reynolds number
  publication-title: J. Fluid Mech.
– volume: 466
  start-page: 365
  year: 2002
  end-page: 407
  ident: b0075
  article-title: Steady planar straining flow past a rigid sphere at moderate Reynolds numbers”
  publication-title: J. Fluid Mech.
– volume: 44
  start-page: 185
  year: 2000
  end-page: 220
  ident: b0020
  article-title: The characterization of the total stresses of concentrated suspensions of non-colloidal particles in Newtonian fluids
  publication-title: J. Rheol.
– volume: 44
  start-page: 1
  year: 1970
  end-page: 17
  ident: b0040
  article-title: Simple shear flow round a rigid sphere: inertial effects and suspension rheology
  publication-title: J. Fluid Mech.
– volume: 41
  start-page: 61
  year: 2002
  end-page: 76
  ident: b0015
  article-title: The normal stress behavior of suspensions with viscoelastic matrix fluids
  publication-title: Rheol. Acta
– volume: 52
  start-page: 1331
  year: 2008
  end-page: 1346
  ident: b0115
  article-title: Rotation of a sphere in a viscoelastic liquid subjected to shear. Part I: simulation results
  publication-title: J. Rheol.
– volume: 303
  start-page: 133
  year: 1995
  end-page: 153
  ident: b0150
  article-title: Unsteady flow about a sphere at low to moderate Reynolds number. Part 2: accelerated motion
  publication-title: J. Fluid Mech.
– volume: 284
  start-page: 97
  year: 1995
  end-page: 135
  ident: b0070
  article-title: Accelerated flows past a rigid sphere or a spherical bubble. Part 1: steady straining flow
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 051702
  year: 2011
  ident: b0095
  article-title: The angular velocity of a freely rotating sphere in a weakly viscoelastic matrix fluid
  publication-title: Phys. Fluids
– volume: 460
  start-page: 307
  year: 2002
  end-page: 335
  ident: b0030
  article-title: Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions
  publication-title: J. Fluid Mech.
– volume: 157
  start-page: 147
  year: 2009
  end-page: 150
  ident: b0035
  article-title: Current trends in suspension rheology
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 14
  start-page: 45
  year: 1984
  end-page: 66
  ident: b0080
  article-title: The deformation of small viscous drops and bubbles in shear flows
  publication-title: Ann. Rev. Fluid Mech.
– volume: 14
  start-page: 2719
  year: 2002
  end-page: 2737
  ident: b0045
  article-title: Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re
  publication-title: Phys. Fluids
– volume: 46
  start-page: 1031
  year: 2000
  end-page: 1056
  ident: b0025
  article-title: Rheology and microstructure in concentrated noncolloidal suspensions
  publication-title: J. Rheol.
– volume: 23
  start-page: 083101
  year: 2011
  ident: b0120
  article-title: Perturbation solution for the viscoelastic 3D flow around a rigid sphere subject to simple shear
  publication-title: Phys. Fluids
– volume: 14
  start-page: 45
  year: 1984
  ident: 10.1016/j.jnnfm.2011.10.006_b0080
  article-title: The deformation of small viscous drops and bubbles in shear flows
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.16.010184.000401
– volume: 45
  start-page: 1065
  issue: 5
  year: 2001
  ident: 10.1016/j.jnnfm.2011.10.006_b0010
  article-title: Normal stresses and free surface deformation in concentrated suspensions of non-colloidal spheres in a viscoelastic fluid
  publication-title: J. Rheol.
  doi: 10.1122/1.1396356
– volume: 144
  start-page: 49
  year: 2007
  ident: 10.1016/j.jnnfm.2011.10.006_b0165
  article-title: Heat transfer from a neutrally buoyant sphere in a second-order fluid
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2007.02.013
– volume: 66
  start-page: 509
  year: 2011
  ident: 10.1016/j.jnnfm.2011.10.006_b0090
  article-title: Spectrally accurate method for analysis of stationary flows of second-order fluids in rough micro-channels
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2269
– volume: 14
  start-page: 2719
  year: 2002
  ident: 10.1016/j.jnnfm.2011.10.006_b0045
  article-title: Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re
  publication-title: Phys. Fluids
  doi: 10.1063/1.1487378
– volume: 520
  start-page: 215
  year: 2004
  ident: 10.1016/j.jnnfm.2011.10.006_b0050
  article-title: Stationary shear flow around fixed and free bodies at finite Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004001648
– volume: 72
  start-page: 605
  year: 1975
  ident: 10.1016/j.jnnfm.2011.10.006_b0160
  article-title: Closed-streamline flows past rotating single cylinders and spheres: inertia effects
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075003187
– volume: 138
  start-page: 87
  year: 2006
  ident: 10.1016/j.jnnfm.2011.10.006_b0100
  article-title: The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity profile
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2006.03.019
– year: 2007
  ident: 10.1016/j.jnnfm.2011.10.006_b0055
– volume: 102
  start-page: 56
  year: 1974
  ident: 10.1016/j.jnnfm.2011.10.006_b0130
  article-title: Fourier series on spheres
  publication-title: Month. Weath. Rep.
  doi: 10.1175/1520-0493(1974)102<0056:FSOS>2.0.CO;2
– volume: 44
  start-page: 185
  issue: 2
  year: 2000
  ident: 10.1016/j.jnnfm.2011.10.006_b0020
  article-title: The characterization of the total stresses of concentrated suspensions of non-colloidal particles in Newtonian fluids
  publication-title: J. Rheol.
  doi: 10.1122/1.551083
– volume: 157
  start-page: 147
  year: 2009
  ident: 10.1016/j.jnnfm.2011.10.006_b0035
  article-title: Current trends in suspension rheology
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2008.11.004
– volume: 44
  start-page: 1
  year: 1970
  ident: 10.1016/j.jnnfm.2011.10.006_b0040
  article-title: Simple shear flow round a rigid sphere: inertial effects and suspension rheology
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112070001659
– ident: 10.1016/j.jnnfm.2011.10.006_b0060
– volume: 144A
  start-page: 285
  year: 1987
  ident: 10.1016/j.jnnfm.2011.10.006_b0065
  article-title: Drag on a sphere moving slowly through a fluid in elongational flow
  publication-title: Physica A
  doi: 10.1016/0378-4371(87)90192-0
– year: 2001
  ident: 10.1016/j.jnnfm.2011.10.006_b0135
– volume: 20
  start-page: 1438
  year: 1999
  ident: 10.1016/j.jnnfm.2011.10.006_b0140
  article-title: Efficient spectral-Galerkin methods IV: spherical geometries
  publication-title: SIAM J. Scient. Comput.
  doi: 10.1137/S1064827597317028
– volume: 162
  start-page: 88
  year: 2009
  ident: 10.1016/j.jnnfm.2011.10.006_b0110
  article-title: On the rheology of a dilute suspension of rigid spheres in a weakly viscoelastic matrix fluid
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2009.05.006
– volume: 52
  start-page: 1331
  year: 2008
  ident: 10.1016/j.jnnfm.2011.10.006_b0115
  article-title: Rotation of a sphere in a viscoelastic liquid subjected to shear. Part I: simulation results
  publication-title: J. Rheol.
  doi: 10.1122/1.2998219
– volume: 23
  start-page: 083101
  year: 2011
  ident: 10.1016/j.jnnfm.2011.10.006_b0120
  article-title: Perturbation solution for the viscoelastic 3D flow around a rigid sphere subject to simple shear
  publication-title: Phys. Fluids
  doi: 10.1063/1.3615518
– volume: 284
  start-page: 97
  year: 1995
  ident: 10.1016/j.jnnfm.2011.10.006_b0070
  article-title: Accelerated flows past a rigid sphere or a spherical bubble. Part 1: steady straining flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095000280
– volume: 303
  start-page: 133
  year: 1995
  ident: 10.1016/j.jnnfm.2011.10.006_b0150
  article-title: Unsteady flow about a sphere at low to moderate Reynolds number. Part 2: accelerated motion
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095004204
– volume: 460
  start-page: 307
  year: 2002
  ident: 10.1016/j.jnnfm.2011.10.006_b0030
  article-title: Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002008261
– year: 1987
  ident: 10.1016/j.jnnfm.2011.10.006_b0085
– volume: 23
  start-page: 051702
  year: 2011
  ident: 10.1016/j.jnnfm.2011.10.006_b0095
  article-title: The angular velocity of a freely rotating sphere in a weakly viscoelastic matrix fluid
  publication-title: Phys. Fluids
  doi: 10.1063/1.3583376
– ident: 10.1016/j.jnnfm.2011.10.006_b0145
– volume: 46
  start-page: 1031
  issue: 5
  year: 2000
  ident: 10.1016/j.jnnfm.2011.10.006_b0025
  article-title: Rheology and microstructure in concentrated noncolloidal suspensions
  publication-title: J. Rheol.
  doi: 10.1122/1.1501925
– volume: 1
  start-page: 1
  year: 2003
  ident: 10.1016/j.jnnfm.2011.10.006_b0005
  article-title: A review of the rheology of filled viscoelastic systems
  publication-title: Rheol. Rev.
– volume: 466
  start-page: 365
  year: 2002
  ident: 10.1016/j.jnnfm.2011.10.006_b0075
  article-title: Steady planar straining flow past a rigid sphere at moderate Reynolds numbers”
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002001490
– volume: 41
  start-page: 61
  year: 2002
  ident: 10.1016/j.jnnfm.2011.10.006_b0015
  article-title: The normal stress behavior of suspensions with viscoelastic matrix fluids
  publication-title: Rheol. Acta
  doi: 10.1007/s003970200006
– volume: 30
  start-page: 921
  year: 1999
  ident: 10.1016/j.jnnfm.2011.10.006_b0155
  article-title: A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids
  publication-title: Int. J. Num. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19990815)30:7<921::AID-FLD875>3.0.CO;2-3
– volume: 147
  start-page: 1
  year: 2007
  ident: 10.1016/j.jnnfm.2011.10.006_b0105
  article-title: Rheology of a dilute suspension of rigid spheres in a second order fluid
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2007.06.002
– year: 2007
  ident: 10.1016/j.jnnfm.2011.10.006_b0125
SSID ssj0000536
Score 1.9757949
Snippet ► We study the 3D viscoelastic flow around a rigid sphere subject to pure uniaxial flow imposed on the ambient fluid. ► A perturbation technique with the small...
We study the steady, three-dimensional creeping and viscoelastic flow around a rigid sphere subject to steady uniaxial extensional flow imposed at infinity....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Accuracy
Constitutive relationships
Deborah number
Differential equations
Mathematical analysis
Mathematical models
Perturbation
Rigid sphere
Second order fluid model
Suspensions
Three dimensional
UCM, PTT and Giesekus modes
Uniaxial flow
Viscoelasticity
Title Perturbation solution for the viscoelastic flow around a rigid sphere under pure uniaxial elongation
URI https://dx.doi.org/10.1016/j.jnnfm.2011.10.006
https://www.proquest.com/docview/1671272390
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcuFSSgtigSJX6rFh43dyRKhoaSVUqSBxixzbQYuWZLUP4MRvZ5w4RUWCQ2-JFY-imfHMl3j8DcA34TPptBGJrHSaCONtYpi1iZJSIZYzNjVtle-FGl-Jn9fyeg1O-7Mwoawyxv4uprfROo6MojZHs8lk9CflWmPG1oH0DLO0XIcNxnMlB7Bxcv5rfPESkCXvtiy1TsKEnnyoLfO6revqrqPy7Kq83kpQr0J1m3_OPsKHCBzJSfdu27Dm60-wFUEkiUt08Rncbz_HNFK2Gie9ZxHEpgSxHrmfLGzjETKjGFJNmwdi5qGzEjEktMhyZBF4BjwJZ8vmZLZqLyfmEd2U-GlT37Ryd-Dq7Mfl6TiJrRQSy7laJkaWnJaaulz4VLE8qzIldEqtLB2r8rBZpyyTPPVS8kqqwNmJ36mqzDytnON8FwZ1U_s9IEznuRUW7SiEcFRn3JQ6q5jzlmY2dUNgvf4KG3nGQ7uLadEXlN0WrdKLoPQwiEofwve_k2Ydzcb7j6veMMU_3lJgInh_4tfejAWuo7A5YmrfrBYFVZoyjQ6U7v-v8APYxDvW_aA5hMFyvvJfELIsyyNYP36iR9ExnwHEa-uv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZYOWyXDQbTOgZ4EkdCE_9MjhMCFejQJFqpN8uxnalVl1T9MTjxt-_ZSUBMoofdIsexoufn977En7-H0AlzKbdSs4gXMo6YdibSxJhIcC4Ay2kT68DyvRX9Ebse8_EWOm_PwnhaZRP765geonXT0mus2ZtPJr27mEoJGVt60TPI0vwN2macSs_rO3t85nmAl9UbllJGvnsrPRRIXtOyLH7XQp41x-u19PRPoA7Z53IHvW9gI_5ev9ku2nLlR_ShgZC4WaDLPWR_ugUkkTzYG7d-hQGZYkB6-M9kaSoHgBmGwcWsusd64esqYY19gSyLl15lwGF_smyB5-twOdEP4KTYzaryVxh3H40uL4bn_agppBAZSsUq0jynSS4TmzEXC5KlRSqYjBPDc0uKzG_VCUM4jR3ntODCK3bCV6rIU5cU1lL6CXXKqnSfESYyywwzMIuMMZvIlOpcpgWxziSpiW0XkdZ-yjQq477YxUy1dLKpCkZX3ui-EYzeRadPD81rkY3N3UU7MeqFryhIA5sf_NZOo4JV5LdGdOmq9VIlQiZEEprFX_538GP0tj_8MVCDq9ubA_QO7pD6V81X1Fkt1u4QwMsqPwrO-RfC3ex6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbation+solution+for+the+viscoelastic+flow+around+a+rigid+sphere+under+pure+uniaxial+elongation&rft.jtitle=Journal+of+non-Newtonian+fluid+mechanics&rft.au=Housiadas%2C+Kostas+D.&rft.au=Tanner%2C+Roger+I.&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=0377-0257&rft.eissn=1873-2631&rft.volume=167&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1016%2Fj.jnnfm.2011.10.006&rft.externalDocID=S0377025711002515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0257&client=summon