Reducing variations in multi-center Alzheimer’s disease classification with convolutional adversarial autoencoder

Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer’s disease characterization and classification. Exist...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 82; p. 102585
Main Authors Cobbinah, Bernard M., Sorg, Christian, Yang, Qinli, Ternblom, Arvid, Zheng, Changgang, Han, Wei, Che, Liwei, Shao, Junming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer’s disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer’s disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer’s disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual’s structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies. [Display omitted] •We propose an adversarial autoencoder method to reduce MRI variations in AD.•Robust to variations that exist in multi-center MRI-scans in AD classification.•The proposed method gives better performance than baseline approaches.•It provides a fully automatic end-to-end approach for AD classification.
AbstractList Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer’s disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer’s disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer’s disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual’s structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies. [Display omitted] •We propose an adversarial autoencoder method to reduce MRI variations in AD.•Robust to variations that exist in multi-center MRI-scans in AD classification.•The proposed method gives better performance than baseline approaches.•It provides a fully automatic end-to-end approach for AD classification.
Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer's disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer's disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer's disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual's structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer's disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer's disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer's disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual's structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.
ArticleNumber 102585
Author Han, Wei
Che, Liwei
Yang, Qinli
Shao, Junming
Sorg, Christian
Zheng, Changgang
Cobbinah, Bernard M.
Ternblom, Arvid
Author_xml – sequence: 1
  givenname: Bernard M.
  surname: Cobbinah
  fullname: Cobbinah, Bernard M.
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
– sequence: 2
  givenname: Christian
  surname: Sorg
  fullname: Sorg, Christian
  organization: Department of Neuroradiology, TUM-NIC Neuroimaging Center of Technical University Munich, Germany
– sequence: 3
  givenname: Qinli
  surname: Yang
  fullname: Yang, Qinli
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
– sequence: 4
  givenname: Arvid
  surname: Ternblom
  fullname: Ternblom, Arvid
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
– sequence: 5
  givenname: Changgang
  orcidid: 0000-0003-1894-722X
  surname: Zheng
  fullname: Zheng, Changgang
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-2514-5519
  surname: Han
  fullname: Han, Wei
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
– sequence: 7
  givenname: Liwei
  surname: Che
  fullname: Che, Liwei
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
– sequence: 8
  givenname: Junming
  surname: Shao
  fullname: Shao, Junming
  email: junmshao@uestc.edu.cn
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
BookMark eNqFkLtuFDEUhkcokcjtCWhc0szi286loIgiblKkSAhqy3t8nJyVxw62ZxFUeQ1ejydhdhdRUEB1fh393198581JTBGb5oXgK8FF92q7mtCRXUku5fKR62H9rDkTqhPtoKU6-ZPF-nlzXsqWc95rzc-a8hHdDBTv2c5mspVSLIwim-ZQqQWMFTO7Dt8fkCbMP59-FOaooC3IINhSyBMcKPaV6gODFHcpzPuHDcy6Heay313yXBNGSA7zZXPqbSh49fteNJ_fvvl08769vXv34eb6tgWlutpa6RVIDuOgreg8uM1Gu2HjpAJQkg-9Qrsepeu0HninFPfccQm99t4LN_bqonl53H3M6cuMpZqJCmAINmKai5E9H3vNR9ktVXWsQk6lZPTmMdNk8zcjuNkrNltzUGz2is1R8UKNf1FA9WCjZkvhP-zrI4uLgR1hNgVoEbQUM0I1LtE_-V--Ap6I
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107384
crossref_primary_10_1016_j_heliyon_2024_e37552
crossref_primary_10_1007_s10489_024_05663_z
crossref_primary_10_1109_ACCESS_2024_3476110
crossref_primary_10_1016_j_artmed_2024_102786
crossref_primary_10_1007_s11831_024_10120_8
crossref_primary_10_1016_j_ejrad_2023_110934
crossref_primary_10_1109_JBHI_2023_3256974
crossref_primary_10_1016_j_bspc_2024_106404
crossref_primary_10_1111_exsy_13463
crossref_primary_10_1016_j_nucengdes_2024_113493
crossref_primary_10_1016_j_bspc_2024_107422
crossref_primary_10_1049_cit2_12291
crossref_primary_10_1016_j_bspc_2024_106409
crossref_primary_10_1016_j_jneumeth_2024_110253
crossref_primary_10_1016_j_jksuci_2024_102157
crossref_primary_10_3390_s23156986
crossref_primary_10_1109_JBHI_2024_3416038
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1177_25424823241290694
Cites_doi 10.1038/s41582-020-0377-8
10.1093/brain/aws084
10.1109/ICCV.2015.123
10.1016/j.jalz.2019.01.010
10.1016/j.neurobiolaging.2014.04.034
10.1016/j.compbiomed.2020.104118
10.1016/j.jalz.2019.06.674
10.1109/ICCV.2013.368
10.1016/j.inffus.2019.07.004
10.1016/S1053-8119(01)91428-4
10.1038/s41598-019-54548-6
10.3389/fnagi.2019.00220
10.1016/j.neurobiolaging.2006.09.013
10.1049/iet-ipr.2019.0312
10.1016/j.inffus.2020.10.006
10.1109/CVPR.2016.319
10.1002/alz.037352
10.3389/fneur.2019.00726
10.1016/j.pscychresns.2010.03.003
10.1016/j.jalz.2018.02.018
10.1038/nrn2154
10.1016/j.mri.2021.02.001
10.1109/CVPR.2017.683
10.1016/j.knosys.2021.107942
10.1016/j.pscychresns.2010.08.010
10.1002/hbm.23627
10.1016/j.inffus.2020.09.002
10.1016/j.media.2020.101765
10.3389/fncom.2015.00132
10.1088/1361-6560/aa5dbe
10.1109/TNN.2010.2091281
10.1016/S0031-3203(00)00023-6
10.1016/S0895-6111(00)00037-9
10.1038/s41598-019-45415-5
10.1016/j.media.2020.101694
10.1016/j.jalz.2010.03.009
10.1109/CVPR.2016.10
10.1016/j.neubiorev.2017.01.002
10.4236/jamp.2017.59159
10.1016/j.neuroimage.2012.01.024
10.1016/j.jalz.2018.02.001
10.3389/fnins.2020.626154
10.1002/cnm.3225
10.1016/j.jalz.2019.02.007
10.1002/hbm.20991
10.1016/j.inffus.2019.06.024
10.1016/j.media.2019.101625
10.1016/j.jalz.2019.08.141
10.1109/34.232073
10.1016/j.jalz.2015.04.005
10.1016/j.neuroimage.2006.11.060
10.1016/S1474-4422(11)70289-7
10.1016/j.media.2020.101850
10.1016/j.inffus.2020.11.005
10.1155/2019/2492719
10.1118/1.3081408
10.1016/j.jalz.2019.06.1003
10.1093/brain/awv191
10.1006/nimg.2001.0978
10.1109/CVPR.2016.90
10.1016/j.media.2020.101825
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.media.2022.102585
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2022_102585
S1361841522002237
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7X8
ID FETCH-LOGICAL-c336t-a2f3c20c984a16fcdbb4d8bd23cc320873ea592d644806330f0d02c74fff1d973
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Thu Jul 10 21:54:00 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Tue Jul 01 02:49:33 EDT 2025
Fri Feb 23 02:40:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional adversarial autoencoder
Convolutional attention network
Alzheimer’s disease classification
Multi-center MRIs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-a2f3c20c984a16fcdbb4d8bd23cc320873ea592d644806330f0d02c74fff1d973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2514-5519
0000-0003-1894-722X
PQID 2709740926
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2709740926
crossref_primary_10_1016_j_media_2022_102585
crossref_citationtrail_10_1016_j_media_2022_102585
elsevier_sciencedirect_doi_10_1016_j_media_2022_102585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Medical image analysis
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bahdanau, Cho, Bengio (b5) 2014
Beekly, Ramos, van Belle, Deitrich, Clark, Jacka, Kukull (b7) 2004; 18
Squire, Wixted, Clark (b68) 2007; 8
Pulgar, Charte, Rivera, del Jesus (b63) 2020; 54
Sedeno, Piguet, Abrevaya, Desmaras, García-Cordero, Baez, Alethia de la Fuente, Reyes, Tu, Moguilner (b66) 2017; 38
Evans, Janke, Collins, Baillet (b17) 2012; 62
Jo, Nho, Saykin (b40) 2019; 11
Morain-Nicolier, Lebonvallet, Baudrier, Ruan (b53) 2007
Gupta, Lee, Choi, Lee, Kim, Kwon (b26) 2019; 2019
Hett, Ta, Oguz, Manjón, Coupé, Initiative (b30) 2021; 67
Goceri (b22) 2019; 14
Ellis, Rowe, Villemagne, Martins, Masters, Salvado, Szoeke, Ames, Group (b15) 2010; 6
Gradin, Gountouna, Waiter, Ahearn, Brennan, Condon, Marshall, McGonigle, Murray, Whalley (b25) 2010; 184
Mwangi, Ebmeier, Matthews, Douglas Steele (b54) 2012; 135
Association (b3) 2019; 15
Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin, Yao, Shen, Initiative (b27) 2020; 60
Ioffe, Szegedy (b36) 2015
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (b72) 2002; 15
Budding, EitelAlbrecht, Ritter (b9) 2020; 16
Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi, Initiative (b6) 2019; 21
Ossenkoppele, Pijnenburg, Perry, Cohn-Sheehy, Scheltens, Vogel, Kramer, van der Vlies, Joie, Rosen (b58) 2015; 138
Goceri (b21) 2019
Maggipinto, Bellotti, Amoroso, Diacono, Donvito, Lella, Monaco, Scelsi, Tangaro, Initiative (b49) 2017; 62
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Mayerhoefer, Szomolanyi, Jirak, Materka, Trattnig (b52) 2009; 36
Yao, Wang, Fan, Liu, Li (b80) 2020; 53
Payan, Montana (b61) 2015
Makhzani, Shlens, Jaitly, Goodfellow, Frey (b50) 2015
Goceri (b23) 2019; 35
Simonyan, Zisserman (b67) 2014
Zhang, Wang, Xia, Jiang, Qian, Initiative (b81) 2021; 66
Yang, Z., He, X., Gao, J., Deng, L., Smola, A., 2016. Stacked attention networks for image question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 21–29.
Luo, Li, Li (b48) 2017; 5
Huttenlocher, Klanderman, Rucklidge (b34) 1993; 15
Wang, Zhou, Yang, Zhang (b76) 2021; 13
Jack, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (b37) 2018; 14
Demšar (b12) 2006; 7
He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034.
Li, Gu, Dvornek, Staib, Ventola, Duncan (b44) 2020; 65
Jo, Nho, Risacher, Saykin (b39) 2019; 15
Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (b43) 2008; 29
Fedorov, Billet, Prastawa, Gerig, Radmanesh, Warfield, Kikinis, Chrisochoides (b18) 2008
Masci, Meier, Cireşan, Schmidhuber (b51) 2011
Weiner, Veitch, Aisen, Beckett, Cairns, Cedarbaum, Donohue, Green, Harvey, Jack Jr. (b77) 2015; 11
Schnack, van Haren, Brouwer, van Baal, Picchioni, Weisbrod, Sauer, Cannon, Huttunen, Lepage (b65) 2010; 31
Kim, Scott (b41) 2012; 13
Iizuka, Fukasawa, Kameyama (b35) 2019; 9
Brett, Christoff, Cusack, Lancaster (b8) 2001; 13
Eskildsen, Coupé, Fonov, Pruessner, Collins, Initiative (b16) 2015; 36
Archip, Clatz, Whalen, Kacher, Fedorov, Kot, Chrisochoides, Jolesz, Golby, Black (b2) 2007; 35
Ortiz, Munilla, Álvarez-Illán, Górriz, Ramírez, Initiative (b57) 2015; 9
Pan, Tsang, Kwok, Yang (b60) 2010; 22
Zhang, Zheng, Gao, Feng, Liang, Long (b83) 2021; 78
Li, Habes, Wolk, Fan, Initiative (b45) 2019; 15
Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao, Zhang (b33) 2021; 14
Gilmore, Buser, Hanson (b20) 2019
Association (b4) 2018; 14
Crutch, Lehmann, Schott, Rabinovici, Rossor, Fox (b10) 2012; 11
Dong, Toledo, Honnorat, Doshi, Varol, Sotiras, Wolk, Trojanowski, Davatzikos, Initiative (b14) 2017; 140
Oh, Chung, Kim, Kim, Oh (b56) 2019; 9
Tang, Wu, Ma, Gallagher, Perera, Zhuang (b70) 2000; 24
Vieira, Pinaya, Mechelli (b73) 2017; 74
Zhu, Kim, Zhu, Kaufer, Wu, Initiative (b85) 2021; 67
Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T., 2013. Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2960–2967.
Agaian, Almuntashri (b1) 2009
Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X., 2017. Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3156–3164.
Teipel, Ewers, Wolf, Jessen, Kölsch, Arlt, Luckhaus, Schönknecht, Schmidtke, Heuser (b71) 2010; 182
Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b78) 2020; 63
Li, Wolk, Fan (b46) 2019; 15
Othman, Haron, Kadir, Rafiq (b59) 2009
Hosseini-Asl, Keynton, El-Baz (b32) 2016
Jin, Xu, Zhao, Hu, Yang, Liu, Jiang, Liu (b38) 2019
Myszczynska, Ojamies, Lacoste, Neil, Saffari, Mead, Hautbergue, Holbrook, Ferraiuolo (b55) 2020; 16
Liu, Lu, Pan, Xu, Lan, Luo (b47) 2022; 238
Da (b11) 2014
Zhang, Wang, Zhu (b82) 2020
Su, Surendranathan, Huang, Bevan-Jones, Passamonti, Hong, Arnold, Rodríguez, Wang, Mak (b69) 2021; 67
Hodges, Lehmann (b31) 2012
Potvin, Khademi, Chouinard, Farokhian, Dieumegarde, Leppert, Hoge, Rajah, Bellec, Duchesne (b62) 2019; 10
Ding, Goshtasby (b13) 2001; 34
Goceri (b24) 2021; 128
Qiu, Heydari, Miller, Joshi, Wong, Au, Kolachalama (b64) 2019; 15
Kumar, Kumar, Shao (b42) 2017
Wang, Nayak, Guttery, Zhang, Zhang (b75) 2021; 68
Evans (10.1016/j.media.2022.102585_b17) 2012; 62
Weiner (10.1016/j.media.2022.102585_b77) 2015; 11
Li (10.1016/j.media.2022.102585_b45) 2019; 15
Goceri (10.1016/j.media.2022.102585_b21) 2019
Ortiz (10.1016/j.media.2022.102585_b57) 2015; 9
Brett (10.1016/j.media.2022.102585_b8) 2001; 13
Schnack (10.1016/j.media.2022.102585_b65) 2010; 31
Gradin (10.1016/j.media.2022.102585_b25) 2010; 184
Demšar (10.1016/j.media.2022.102585_b12) 2006; 7
Zhang (10.1016/j.media.2022.102585_b81) 2021; 66
Masci (10.1016/j.media.2022.102585_b51) 2011
10.1016/j.media.2022.102585_b84
Budding (10.1016/j.media.2022.102585_b9) 2020; 16
Jin (10.1016/j.media.2022.102585_b38) 2019
Myszczynska (10.1016/j.media.2022.102585_b55) 2020; 16
Pan (10.1016/j.media.2022.102585_b60) 2010; 22
Da (10.1016/j.media.2022.102585_b11) 2014
Sedeno (10.1016/j.media.2022.102585_b66) 2017; 38
Tang (10.1016/j.media.2022.102585_b70) 2000; 24
Oh (10.1016/j.media.2022.102585_b56) 2019; 9
Gupta (10.1016/j.media.2022.102585_b26) 2019; 2019
Mayerhoefer (10.1016/j.media.2022.102585_b52) 2009; 36
Iizuka (10.1016/j.media.2022.102585_b35) 2019; 9
Ding (10.1016/j.media.2022.102585_b13) 2001; 34
Goceri (10.1016/j.media.2022.102585_b24) 2021; 128
Zhang (10.1016/j.media.2022.102585_b82) 2020
Association (10.1016/j.media.2022.102585_b4) 2018; 14
Hosseini-Asl (10.1016/j.media.2022.102585_b32) 2016
Wen (10.1016/j.media.2022.102585_b78) 2020; 63
10.1016/j.media.2022.102585_b19
Agaian (10.1016/j.media.2022.102585_b1) 2009
Fedorov (10.1016/j.media.2022.102585_b18) 2008
Makhzani (10.1016/j.media.2022.102585_b50) 2015
Tzourio-Mazoyer (10.1016/j.media.2022.102585_b72) 2002; 15
Jack (10.1016/j.media.2022.102585_b37) 2018; 14
Vieira (10.1016/j.media.2022.102585_b73) 2017; 74
Pulgar (10.1016/j.media.2022.102585_b63) 2020; 54
Zhu (10.1016/j.media.2022.102585_b85) 2021; 67
Crutch (10.1016/j.media.2022.102585_b10) 2012; 11
Dong (10.1016/j.media.2022.102585_b14) 2017; 140
Huttenlocher (10.1016/j.media.2022.102585_b34) 1993; 15
Lerch (10.1016/j.media.2022.102585_b43) 2008; 29
Association (10.1016/j.media.2022.102585_b3) 2019; 15
Hao (10.1016/j.media.2022.102585_b27) 2020; 60
Othman (10.1016/j.media.2022.102585_b59) 2009
Eskildsen (10.1016/j.media.2022.102585_b16) 2015; 36
Payan (10.1016/j.media.2022.102585_b61) 2015
Qiu (10.1016/j.media.2022.102585_b64) 2019; 15
Gilmore (10.1016/j.media.2022.102585_b20) 2019
Goceri (10.1016/j.media.2022.102585_b22) 2019; 14
Su (10.1016/j.media.2022.102585_b69) 2021; 67
Maggipinto (10.1016/j.media.2022.102585_b49) 2017; 62
Hu (10.1016/j.media.2022.102585_b33) 2021; 14
Liu (10.1016/j.media.2022.102585_b47) 2022; 238
Potvin (10.1016/j.media.2022.102585_b62) 2019; 10
Jo (10.1016/j.media.2022.102585_b39) 2019; 15
10.1016/j.media.2022.102585_b29
10.1016/j.media.2022.102585_b28
Kumar (10.1016/j.media.2022.102585_b42) 2017
Li (10.1016/j.media.2022.102585_b44) 2020; 65
Squire (10.1016/j.media.2022.102585_b68) 2007; 8
Wang (10.1016/j.media.2022.102585_b76) 2021; 13
Goceri (10.1016/j.media.2022.102585_b23) 2019; 35
Archip (10.1016/j.media.2022.102585_b2) 2007; 35
Bahdanau (10.1016/j.media.2022.102585_b5) 2014
Jo (10.1016/j.media.2022.102585_b40) 2019; 11
Simonyan (10.1016/j.media.2022.102585_b67) 2014
Wang (10.1016/j.media.2022.102585_b75) 2021; 68
Li (10.1016/j.media.2022.102585_b46) 2019; 15
Beekly (10.1016/j.media.2022.102585_b7) 2004; 18
Hett (10.1016/j.media.2022.102585_b30) 2021; 67
Kim (10.1016/j.media.2022.102585_b41) 2012; 13
Ossenkoppele (10.1016/j.media.2022.102585_b58) 2015; 138
Luo (10.1016/j.media.2022.102585_b48) 2017; 5
Morain-Nicolier (10.1016/j.media.2022.102585_b53) 2007
10.1016/j.media.2022.102585_b74
Hodges (10.1016/j.media.2022.102585_b31) 2012
Ioffe (10.1016/j.media.2022.102585_b36) 2015
Ellis (10.1016/j.media.2022.102585_b15) 2010; 6
Basaia (10.1016/j.media.2022.102585_b6) 2019; 21
Zhang (10.1016/j.media.2022.102585_b83) 2021; 78
Mwangi (10.1016/j.media.2022.102585_b54) 2012; 135
Teipel (10.1016/j.media.2022.102585_b71) 2010; 182
10.1016/j.media.2022.102585_b79
Yao (10.1016/j.media.2022.102585_b80) 2020; 53
References_xml – volume: 9
  start-page: 1
  year: 2019
  end-page: 16
  ident: b56
  article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning
  publication-title: Sci. Rep.
– year: 2014
  ident: b11
  article-title: A method for stochastic optimization
– reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929.
– volume: 13
  start-page: 85
  year: 2001
  ident: b8
  article-title: Using the Talairach atlas with the MNI template
  publication-title: Neuroimage
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034.
– volume: 36
  start-page: S23
  year: 2015
  end-page: S31
  ident: b16
  article-title: Structural imaging biomarkers of alzheimer’s disease: predicting disease progression
  publication-title: Neurobiol. Aging
– volume: 14
  start-page: 1468
  year: 2021
  ident: b33
  article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease
  publication-title: Front. Neurosci.
– start-page: 52
  year: 2011
  end-page: 59
  ident: b51
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: International Conference on Artificial Neural Networks
– year: 2014
  ident: b5
  article-title: Neural machine translation by jointly learning to align and translate
– year: 2014
  ident: b67
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2015
  ident: b50
  article-title: Adversarial autoencoders
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  ident: b73
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 594
  year: 2008
  end-page: 603
  ident: b18
  article-title: Evaluation of brain MRI alignment with the robust Hausdorff distance measures
  publication-title: International Symposium on Visual Computing
– volume: 65
  year: 2020
  ident: b44
  article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
  publication-title: Med. Image Anal.
– start-page: 5597
  year: 2007
  end-page: 5600
  ident: b53
  article-title: Hausdorff distance based 3D quantification of brain tumor evolution from MRI images
  publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 21
  year: 2019
  ident: b6
  article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: NeuroImage: Clin.
– reference: Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T., 2013. Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2960–2967.
– volume: 67
  start-page: 116
  year: 2021
  end-page: 124
  ident: b69
  article-title: Relationship between tau, neuroinflammation and atrophy in Alzheimer’s disease: The NIMROD study
  publication-title: Inf. Fusion
– volume: 6
  start-page: 291
  year: 2010
  end-page: 296
  ident: b15
  article-title: Addressing population aging and Alzheimer’s disease through the Australian imaging biomarkers and lifestyle study: Collaboration with the Alzheimer’s disease neuroimaging initiative
  publication-title: Alzheimer’s Dement.
– volume: 138
  start-page: 2732
  year: 2015
  end-page: 2749
  ident: b58
  article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features
  publication-title: Brain
– volume: 31
  start-page: 1967
  year: 2010
  end-page: 1982
  ident: b65
  article-title: Mapping reliability in multicenter MRI: Voxel-based morphometry and cortical thickness
  publication-title: Human Brain Mapp.
– volume: 15
  start-page: 850
  year: 1993
  end-page: 863
  ident: b34
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  start-page: 313
  year: 2021
  ident: b76
  article-title: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation
  publication-title: Front. Aging Neurosci.
– volume: 135
  start-page: 1508
  year: 2012
  end-page: 1521
  ident: b54
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain
– volume: 53
  start-page: 174
  year: 2020
  end-page: 182
  ident: b80
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
– volume: 18
  start-page: 270
  year: 2004
  end-page: 277
  ident: b7
  article-title: The national Alzheimer’s coordinating center (NACC) database: an alzheimer disease database
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 16
  start-page: 440
  year: 2020
  end-page: 456
  ident: b55
  article-title: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases
  publication-title: Nat. Rev. Neurol.
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: b60
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: b35
  article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies
  publication-title: Sci. Rep.
– volume: 38
  start-page: 3804
  year: 2017
  end-page: 3822
  ident: b66
  article-title: Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia
  publication-title: Human Brain Mapp.
– volume: 14
  start-page: 367
  year: 2018
  end-page: 429
  ident: b4
  article-title: 2018 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
– volume: 11
  start-page: 865
  year: 2015
  end-page: 884
  ident: b77
  article-title: Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014
  publication-title: Alzheimer’s Dement.
– volume: 34
  start-page: 721
  year: 2001
  end-page: 725
  ident: b13
  article-title: On the Canny edge detector
  publication-title: Pattern Recognit.
– volume: 14
  start-page: 882
  year: 2019
  end-page: 889
  ident: b22
  article-title: CapsNet topology to classify tumours from brain images and comparative evaluation
  publication-title: IET Image Process.
– start-page: 1047
  year: 2019
  end-page: 1051
  ident: b38
  article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration
  publication-title: 2019 IEEE 16Th International Symposium on Biomedical Imaging (ISBI 2019)
– start-page: 133
  year: 2009
  end-page: 136
  ident: b59
  article-title: Comparison of Canny and Sobel edge detection in MRI images
  publication-title: Comput. Sci. Biomech. Tissue Eng. Group Inf. Syst.
– volume: 13
  start-page: 2529
  year: 2012
  end-page: 2565
  ident: b41
  article-title: Robust kernel density estimation
  publication-title: J. Mach. Learn. Res.
– reference: Yang, Z., He, X., Gao, J., Deng, L., Smola, A., 2016. Stacked attention networks for image question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 21–29.
– volume: 62
  start-page: 911
  year: 2012
  end-page: 922
  ident: b17
  article-title: Brain templates and atlases
  publication-title: Neuroimage
– start-page: 403
  year: 2012
  end-page: 418
  ident: b31
  article-title: Rank methods for combination of independent experiments in analysis of variance
  publication-title: Selected Works of EL Lehmann
– start-page: 4035
  year: 2017
  end-page: 4042
  ident: b42
  article-title: Cross-database mammographic image analysis through unsupervised domain adaptation
  publication-title: 2017 IEEE International Conference on Big Data (Big Data)
– volume: 11
  start-page: 220
  year: 2019
  ident: b40
  article-title: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data
  publication-title: Front. Aging Neurosci.
– volume: 8
  start-page: 872
  year: 2007
  end-page: 883
  ident: b68
  article-title: Recognition memory and the medial temporal lobe: a new perspective
  publication-title: Nat. Rev. Neurosci.
– volume: 60
  year: 2020
  ident: b27
  article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
– volume: 11
  start-page: 170
  year: 2012
  end-page: 178
  ident: b10
  article-title: Posterior cortical atrophy
  publication-title: Lancet Neurol.
– volume: 54
  start-page: 44
  year: 2020
  end-page: 60
  ident: b63
  article-title: Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines
  publication-title: Inf. Fusion
– year: 2019
  ident: b20
  article-title: Variations in structural mri quality impact measures of brain anatomy: Relations with age and other sociodemographic variables
  publication-title: Biorxiv
– start-page: 3689
  year: 2009
  end-page: 3692
  ident: b1
  article-title: Noise-resilient edge detection algorithm for brain MRI images
  publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 140
  start-page: 735
  year: 2017
  end-page: 747
  ident: b14
  article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers
  publication-title: Brain
– volume: 78
  start-page: 119
  year: 2021
  end-page: 126
  ident: b83
  article-title: A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification
  publication-title: Magn. Reson. Imaging
– start-page: 126
  year: 2016
  end-page: 130
  ident: b32
  article-title: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network
  publication-title: 2016 IEEE International Conference on Image Processing
– volume: 29
  start-page: 23
  year: 2008
  end-page: 30
  ident: b43
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
  publication-title: Neurobiol. Aging
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b12
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 132
  year: 2015
  ident: b57
  article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer’s disease diagnosis
  publication-title: Front. Comput. Neurosci.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b21
  article-title: Analysis of deep networks with residual blocks and different activation functions: classification of skin diseases
  publication-title: 2019 Ninth International Conference on Image Processing Theory, Tools and Applications
– volume: 182
  start-page: 244
  year: 2010
  end-page: 250
  ident: b71
  article-title: Multicentre variability of MRI-based medial temporal lobe volumetry in Alzheimer’s disease
  publication-title: Psychiatry Res.: Neuroimaging
– volume: 15
  start-page: P409
  year: 2019
  end-page: P410
  ident: b39
  article-title: P1-398: Multimodal-3DCNN: Diagnostic classification of Alzheimer’s disease using deep learning on neuroimaging, genetic, and demographic data
  publication-title: Alzheimer’s Dement.
– volume: 238
  year: 2022
  ident: b47
  article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network
  publication-title: Knowl.-Based Syst.
– volume: 15
  start-page: P280
  year: 2019
  end-page: P281
  ident: b64
  article-title: P1-119: ENHANCING deep learning model performance for ad diagnosis using roi-based selection
  publication-title: Alzheimer’s Dement.
– volume: 66
  start-page: 170
  year: 2021
  end-page: 183
  ident: b81
  article-title: Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion
  publication-title: Inf. Fusion
– volume: 36
  start-page: 1236
  year: 2009
  end-page: 1243
  ident: b52
  article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study
  publication-title: Med. Phys.
– volume: 128
  year: 2021
  ident: b24
  article-title: Deep learning based classification of facial dermatological disorders
  publication-title: Comput. Biol. Med.
– volume: 16
  year: 2020
  ident: b9
  article-title: Visualization of deep learning relevance maps for AD detection: Doctor AI: Making computers explain their decisions
  publication-title: Alzheimer’s Dement.
– volume: 35
  year: 2019
  ident: b23
  article-title: Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 67
  year: 2021
  ident: b30
  article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction
  publication-title: Med. Image Anal.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: b72
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 10
  start-page: 726
  year: 2019
  ident: b62
  article-title: Measurement variability following MRI system upgrade
  publication-title: Front. Neurol.
– reference: Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X., 2017. Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3156–3164.
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  ident: b37
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s Dement.
– start-page: 563
  year: 2020
  end-page: 567
  ident: b82
  article-title: Jointly analyzing alzheimer’s disease related structure-function using deep cross-model attention network
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging
– volume: 67
  year: 2021
  ident: b85
  article-title: Long range early diagnosis of Alzheimer’s disease using longitudinal MR imaging data
  publication-title: Med. Image Anal.
– volume: 68
  start-page: 131
  year: 2021
  end-page: 148
  ident: b75
  article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis
  publication-title: Inf. Fusion
– volume: 35
  start-page: 609
  year: 2007
  end-page: 624
  ident: b2
  article-title: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery
  publication-title: Neuroimage
– year: 2015
  ident: b61
  article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks
– start-page: 448
  year: 2015
  end-page: 456
  ident: b36
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: 24
  start-page: 349
  year: 2000
  end-page: 357
  ident: b70
  article-title: MRI brain image segmentation by multi-resolution edge detection and region selection
  publication-title: Comput. Med. Imaging Graph.
– volume: 2019
  year: 2019
  ident: b26
  article-title: Alzheimer’s disease diagnosis based on cortical and subcortical features
  publication-title: J. Healthc. Eng.
– volume: 15
  start-page: P1551
  year: 2019
  end-page: P1552
  ident: b46
  article-title: P4-593: Early prediction of cognitive decline based on brain MRI images using a deep learning survival analysis model
  publication-title: Alzheimer’s Dement.
– volume: 15
  start-page: 321
  year: 2019
  end-page: 387
  ident: b3
  article-title: 2019 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
– volume: 184
  start-page: 86
  year: 2010
  end-page: 95
  ident: b25
  article-title: Between-and within-scanner variability in the CaliBrain study n-back cognitive task
  publication-title: Psychiatry Res.: Neuroimaging
– volume: 5
  start-page: 1892
  year: 2017
  end-page: 1898
  ident: b48
  article-title: Automatic Alzheimer’s disease recognition from MRI data using deep learning method
  publication-title: J. Appl. Math. Phys.
– volume: 62
  start-page: 2361
  year: 2017
  ident: b49
  article-title: DTI measurements for Alzheimer’s classification
  publication-title: Phys. Med. Biol.
– volume: 63
  year: 2020
  ident: b78
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
– volume: 15
  start-page: 1059
  year: 2019
  end-page: 1070
  ident: b45
  article-title: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data
  publication-title: Alzheimer’s Dement.
– volume: 16
  start-page: 440
  issue: 8
  year: 2020
  ident: 10.1016/j.media.2022.102585_b55
  article-title: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-020-0377-8
– volume: 135
  start-page: 1508
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2022.102585_b54
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain
  doi: 10.1093/brain/aws084
– year: 2014
  ident: 10.1016/j.media.2022.102585_b67
– ident: 10.1016/j.media.2022.102585_b28
  doi: 10.1109/ICCV.2015.123
– start-page: 5597
  year: 2007
  ident: 10.1016/j.media.2022.102585_b53
  article-title: Hausdorff distance based 3D quantification of brain tumor evolution from MRI images
– volume: 15
  start-page: 321
  issue: 3
  year: 2019
  ident: 10.1016/j.media.2022.102585_b3
  article-title: 2019 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2019.01.010
– start-page: 594
  year: 2008
  ident: 10.1016/j.media.2022.102585_b18
  article-title: Evaluation of brain MRI alignment with the robust Hausdorff distance measures
– start-page: 3689
  year: 2009
  ident: 10.1016/j.media.2022.102585_b1
  article-title: Noise-resilient edge detection algorithm for brain MRI images
– volume: 36
  start-page: S23
  year: 2015
  ident: 10.1016/j.media.2022.102585_b16
  article-title: Structural imaging biomarkers of alzheimer’s disease: predicting disease progression
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.034
– volume: 128
  year: 2021
  ident: 10.1016/j.media.2022.102585_b24
  article-title: Deep learning based classification of facial dermatological disorders
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104118
– volume: 15
  start-page: P280
  year: 2019
  ident: 10.1016/j.media.2022.102585_b64
  article-title: P1-119: ENHANCING deep learning model performance for ad diagnosis using roi-based selection
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2019.06.674
– ident: 10.1016/j.media.2022.102585_b19
  doi: 10.1109/ICCV.2013.368
– start-page: 448
  year: 2015
  ident: 10.1016/j.media.2022.102585_b36
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 54
  start-page: 44
  year: 2020
  ident: 10.1016/j.media.2022.102585_b63
  article-title: Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.004
– volume: 13
  start-page: 85
  issue: 6
  year: 2001
  ident: 10.1016/j.media.2022.102585_b8
  article-title: Using the Talairach atlas with the MNI template
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(01)91428-4
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2022.102585_b56
  article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54548-6
– start-page: 52
  year: 2011
  ident: 10.1016/j.media.2022.102585_b51
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
– volume: 11
  start-page: 220
  year: 2019
  ident: 10.1016/j.media.2022.102585_b40
  article-title: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00220
– volume: 29
  start-page: 23
  issue: 1
  year: 2008
  ident: 10.1016/j.media.2022.102585_b43
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.09.013
– volume: 14
  start-page: 882
  issue: 5
  year: 2019
  ident: 10.1016/j.media.2022.102585_b22
  article-title: CapsNet topology to classify tumours from brain images and comparative evaluation
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0312
– year: 2019
  ident: 10.1016/j.media.2022.102585_b20
  article-title: Variations in structural mri quality impact measures of brain anatomy: Relations with age and other sociodemographic variables
  publication-title: Biorxiv
– volume: 13
  start-page: 2529
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2022.102585_b41
  article-title: Robust kernel density estimation
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 313
  year: 2021
  ident: 10.1016/j.media.2022.102585_b76
  article-title: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation
  publication-title: Front. Aging Neurosci.
– volume: 67
  start-page: 116
  year: 2021
  ident: 10.1016/j.media.2022.102585_b69
  article-title: Relationship between tau, neuroinflammation and atrophy in Alzheimer’s disease: The NIMROD study
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.006
– ident: 10.1016/j.media.2022.102585_b84
  doi: 10.1109/CVPR.2016.319
– volume: 16
  year: 2020
  ident: 10.1016/j.media.2022.102585_b9
  article-title: Visualization of deep learning relevance maps for AD detection: Doctor AI: Making computers explain their decisions
  publication-title: Alzheimer’s Dement.
  doi: 10.1002/alz.037352
– volume: 10
  start-page: 726
  year: 2019
  ident: 10.1016/j.media.2022.102585_b62
  article-title: Measurement variability following MRI system upgrade
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00726
– volume: 182
  start-page: 244
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2022.102585_b71
  article-title: Multicentre variability of MRI-based medial temporal lobe volumetry in Alzheimer’s disease
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2010.03.003
– start-page: 1
  year: 2019
  ident: 10.1016/j.media.2022.102585_b21
  article-title: Analysis of deep networks with residual blocks and different activation functions: classification of skin diseases
– volume: 14
  start-page: 535
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2022.102585_b37
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2018.02.018
– volume: 8
  start-page: 872
  issue: 11
  year: 2007
  ident: 10.1016/j.media.2022.102585_b68
  article-title: Recognition memory and the medial temporal lobe: a new perspective
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2154
– volume: 78
  start-page: 119
  year: 2021
  ident: 10.1016/j.media.2022.102585_b83
  article-title: A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2021.02.001
– start-page: 563
  year: 2020
  ident: 10.1016/j.media.2022.102585_b82
  article-title: Jointly analyzing alzheimer’s disease related structure-function using deep cross-model attention network
– ident: 10.1016/j.media.2022.102585_b74
  doi: 10.1109/CVPR.2017.683
– volume: 238
  year: 2022
  ident: 10.1016/j.media.2022.102585_b47
  article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107942
– volume: 184
  start-page: 86
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2022.102585_b25
  article-title: Between-and within-scanner variability in the CaliBrain study n-back cognitive task
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2010.08.010
– volume: 38
  start-page: 3804
  issue: 8
  year: 2017
  ident: 10.1016/j.media.2022.102585_b66
  article-title: Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.23627
– volume: 66
  start-page: 170
  year: 2021
  ident: 10.1016/j.media.2022.102585_b81
  article-title: Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.09.002
– volume: 65
  year: 2020
  ident: 10.1016/j.media.2022.102585_b44
  article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101765
– volume: 9
  start-page: 132
  year: 2015
  ident: 10.1016/j.media.2022.102585_b57
  article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer’s disease diagnosis
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00132
– year: 2015
  ident: 10.1016/j.media.2022.102585_b50
– volume: 62
  start-page: 2361
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2022.102585_b49
  article-title: DTI measurements for Alzheimer’s classification
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5dbe
– start-page: 133
  year: 2009
  ident: 10.1016/j.media.2022.102585_b59
  article-title: Comparison of Canny and Sobel edge detection in MRI images
  publication-title: Comput. Sci. Biomech. Tissue Eng. Group Inf. Syst.
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2022.102585_b60
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 18
  start-page: 270
  issue: 4
  year: 2004
  ident: 10.1016/j.media.2022.102585_b7
  article-title: The national Alzheimer’s coordinating center (NACC) database: an alzheimer disease database
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 34
  start-page: 721
  issue: 3
  year: 2001
  ident: 10.1016/j.media.2022.102585_b13
  article-title: On the Canny edge detector
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00023-6
– volume: 24
  start-page: 349
  issue: 6
  year: 2000
  ident: 10.1016/j.media.2022.102585_b70
  article-title: MRI brain image segmentation by multi-resolution edge detection and region selection
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/S0895-6111(00)00037-9
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2022.102585_b35
  article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45415-5
– volume: 63
  year: 2020
  ident: 10.1016/j.media.2022.102585_b78
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101694
– volume: 6
  start-page: 291
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2022.102585_b15
  article-title: Addressing population aging and Alzheimer’s disease through the Australian imaging biomarkers and lifestyle study: Collaboration with the Alzheimer’s disease neuroimaging initiative
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2010.03.009
– ident: 10.1016/j.media.2022.102585_b79
  doi: 10.1109/CVPR.2016.10
– volume: 74
  start-page: 58
  year: 2017
  ident: 10.1016/j.media.2022.102585_b73
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.002
– volume: 5
  start-page: 1892
  issue: 9
  year: 2017
  ident: 10.1016/j.media.2022.102585_b48
  article-title: Automatic Alzheimer’s disease recognition from MRI data using deep learning method
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2017.59159
– volume: 62
  start-page: 911
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2022.102585_b17
  article-title: Brain templates and atlases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.024
– volume: 14
  start-page: 367
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2022.102585_b4
  article-title: 2018 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2018.02.001
– volume: 14
  start-page: 1468
  year: 2021
  ident: 10.1016/j.media.2022.102585_b33
  article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.626154
– start-page: 1047
  year: 2019
  ident: 10.1016/j.media.2022.102585_b38
  article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration
– volume: 35
  issue: 7
  year: 2019
  ident: 10.1016/j.media.2022.102585_b23
  article-title: Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.3225
– volume: 15
  start-page: 1059
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2022.102585_b45
  article-title: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2019.02.007
– volume: 31
  start-page: 1967
  issue: 12
  year: 2010
  ident: 10.1016/j.media.2022.102585_b65
  article-title: Mapping reliability in multicenter MRI: Voxel-based morphometry and cortical thickness
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.20991
– volume: 53
  start-page: 174
  year: 2020
  ident: 10.1016/j.media.2022.102585_b80
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– volume: 60
  year: 2020
  ident: 10.1016/j.media.2022.102585_b27
  article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101625
– year: 2015
  ident: 10.1016/j.media.2022.102585_b61
– start-page: 126
  year: 2016
  ident: 10.1016/j.media.2022.102585_b32
  article-title: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network
– start-page: 4035
  year: 2017
  ident: 10.1016/j.media.2022.102585_b42
  article-title: Cross-database mammographic image analysis through unsupervised domain adaptation
– volume: 15
  start-page: P1551
  year: 2019
  ident: 10.1016/j.media.2022.102585_b46
  article-title: P4-593: Early prediction of cognitive decline based on brain MRI images using a deep learning survival analysis model
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2019.08.141
– volume: 15
  start-page: 850
  issue: 9
  year: 1993
  ident: 10.1016/j.media.2022.102585_b34
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.232073
– volume: 11
  start-page: 865
  issue: 7
  year: 2015
  ident: 10.1016/j.media.2022.102585_b77
  article-title: Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2015.04.005
– volume: 35
  start-page: 609
  issue: 2
  year: 2007
  ident: 10.1016/j.media.2022.102585_b2
  article-title: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.060
– volume: 140
  start-page: 735
  issue: 3
  year: 2017
  ident: 10.1016/j.media.2022.102585_b14
  article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers
  publication-title: Brain
– year: 2014
  ident: 10.1016/j.media.2022.102585_b5
– volume: 11
  start-page: 170
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2022.102585_b10
  article-title: Posterior cortical atrophy
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(11)70289-7
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2022.102585_b30
  article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101850
– volume: 68
  start-page: 131
  year: 2021
  ident: 10.1016/j.media.2022.102585_b75
  article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.11.005
– volume: 2019
  year: 2019
  ident: 10.1016/j.media.2022.102585_b26
  article-title: Alzheimer’s disease diagnosis based on cortical and subcortical features
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2019/2492719
– volume: 21
  year: 2019
  ident: 10.1016/j.media.2022.102585_b6
  article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: NeuroImage: Clin.
– year: 2014
  ident: 10.1016/j.media.2022.102585_b11
– volume: 36
  start-page: 1236
  issue: 4
  year: 2009
  ident: 10.1016/j.media.2022.102585_b52
  article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study
  publication-title: Med. Phys.
  doi: 10.1118/1.3081408
– volume: 15
  start-page: P409
  year: 2019
  ident: 10.1016/j.media.2022.102585_b39
  article-title: P1-398: Multimodal-3DCNN: Diagnostic classification of Alzheimer’s disease using deep learning on neuroimaging, genetic, and demographic data
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2019.06.1003
– volume: 138
  start-page: 2732
  issue: 9
  year: 2015
  ident: 10.1016/j.media.2022.102585_b58
  article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features
  publication-title: Brain
  doi: 10.1093/brain/awv191
– start-page: 403
  year: 2012
  ident: 10.1016/j.media.2022.102585_b31
  article-title: Rank methods for combination of independent experiments in analysis of variance
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.media.2022.102585_b72
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.media.2022.102585_b12
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.media.2022.102585_b29
  doi: 10.1109/CVPR.2016.90
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2022.102585_b85
  article-title: Long range early diagnosis of Alzheimer’s disease using longitudinal MR imaging data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101825
SSID ssj0007440
Score 2.47751
Snippet Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102585
SubjectTerms Alzheimer’s disease classification
Convolutional adversarial autoencoder
Convolutional attention network
Multi-center MRIs
Title Reducing variations in multi-center Alzheimer’s disease classification with convolutional adversarial autoencoder
URI https://dx.doi.org/10.1016/j.media.2022.102585
https://www.proquest.com/docview/2709740926
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFA6lBdGFaFWs2hLBpfFmkkwys7yUlqvSLtRCdyGTB15p55b7cOFC_Bv-PX-J52Qy9YF04W5mSELIyZxH8p3vEPIiGR0dD5p12jumWtUxB14IazyYzwgGpMsEpienenam3pzX51vkcMyFQVhl0f2DTs_aunyZlNWcXM3nk_eVxGIlYH8QZyAkZpQrZXCXv_r6C-aBBHhD7lXFsPXIPJQxXjk7A4JEIZDCoMaCyv-2Tn_p6Wx8ju-Ru8VrpNNhYvfJVux3yZ3fuAR3ya2Tckv-gKzeIR8rfKWfIRIejuTovKcZPMgQjhmXdHrx5WOcX8blj2_fV7Tc01CPzjSih3Iviqe0FIHpZYPCHBxWcF7huPC8WS-QCDPE5UNydnz04XDGSnEF5qXUa-ZEkl5w3zbKVTr50HUqNF0Q0nspeGNkdHUrAsZv4MZInnjgwhuVUqpCa-Qjst0v-viY0KRMqLQztYsJAqga-pq2AVXoW8mDE3tEjItqfWEexwIYF3aEmH2yWRIWJWEHSeyRl9edrgbijZub61Fa9o_9Y8E03Nzx-ShbC38WXpe4Pi42KysMh2CLt0I_-d_Bn5Lb-DbkLj4j2-vlJu6DE7PuDvIuPSA709dvZ6c_AVze83Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrcTjUJUCokCpkThirWMndnJcVVRb2t0DtFJvluOHuqhkq31w4MTf4O_xS_AkTlWqqofeIidjWR5nHvbnbwA-BiW9YU7SWlpD8yqvqYlRCC1tdJ8-OpC6JTCdTOX4LP9yXpxvwEF_FwZhlcn2dza9tdapZZhmc3g1mw2_ZQKLlUT_gzgDLtQj2ER2qmIAm6Oj4_H02iAjB153_SqjKNCTD7Uwr_aCRswTOUcWgwJrKt_toG6Z6tb_HG7DVgocyagb23PY8M0OPLtBJ7gDjyfpoPwFLL8iJWtsJT9jMtztypFZQ1r8IEVEpl-Q0eWvCz_74Rd_f_9ZknRUQyzG0wggaqUIbtQSxKanNRrHYLCI8xL7jc_r1Ry5MJ1fvISzw8-nB2Oa6itQK4RcUcODsJzZqsxNJoN1dZ27snZcWCs4K5Xwpqi4wxQuRjKCBeYYtyoPIWSuUuIVDJp5418DCblymTSqMD7EHKqIsqoqozW0lWDO8F3g_aRqm8jHsQbGpe5RZt91qwmNmtCdJnbh07XQVce9cf_nsteW_m8J6egd7hf80OtWx58LT0xM4-frpeaKxXyLVVy-eWjn-_BkfDo50SdH0-O38BTfdFcZ38FgtVj7vRjTrOr3ac3-A7AA9iU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+variations+in+multi-center+Alzheimer%27s+disease+classification+with+convolutional+adversarial+autoencoder&rft.jtitle=Medical+image+analysis&rft.au=Cobbinah%2C+Bernard+M&rft.au=Sorg%2C+Christian&rft.au=Yang%2C+Qinli&rft.au=Ternblom%2C+Arvid&rft.date=2022-11-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=82&rft.spage=102585&rft_id=info:doi/10.1016%2Fj.media.2022.102585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon