Reducing variations in multi-center Alzheimer’s disease classification with convolutional adversarial autoencoder
Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer’s disease characterization and classification. Exist...
Saved in:
Published in | Medical image analysis Vol. 82; p. 102585 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer’s disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer’s disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer’s disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual’s structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.
[Display omitted]
•We propose an adversarial autoencoder method to reduce MRI variations in AD.•Robust to variations that exist in multi-center MRI-scans in AD classification.•The proposed method gives better performance than baseline approaches.•It provides a fully automatic end-to-end approach for AD classification. |
---|---|
AbstractList | Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer’s disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer’s disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer’s disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual’s structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.
[Display omitted]
•We propose an adversarial autoencoder method to reduce MRI variations in AD.•Robust to variations that exist in multi-center MRI-scans in AD classification.•The proposed method gives better performance than baseline approaches.•It provides a fully automatic end-to-end approach for AD classification. Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer's disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer's disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer's disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual's structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer's disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer's disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer's disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual's structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies. |
ArticleNumber | 102585 |
Author | Han, Wei Che, Liwei Yang, Qinli Shao, Junming Sorg, Christian Zheng, Changgang Cobbinah, Bernard M. Ternblom, Arvid |
Author_xml | – sequence: 1 givenname: Bernard M. surname: Cobbinah fullname: Cobbinah, Bernard M. organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China – sequence: 2 givenname: Christian surname: Sorg fullname: Sorg, Christian organization: Department of Neuroradiology, TUM-NIC Neuroimaging Center of Technical University Munich, Germany – sequence: 3 givenname: Qinli surname: Yang fullname: Yang, Qinli organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China – sequence: 4 givenname: Arvid surname: Ternblom fullname: Ternblom, Arvid organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China – sequence: 5 givenname: Changgang orcidid: 0000-0003-1894-722X surname: Zheng fullname: Zheng, Changgang organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China – sequence: 6 givenname: Wei orcidid: 0000-0002-2514-5519 surname: Han fullname: Han, Wei organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China – sequence: 7 givenname: Liwei surname: Che fullname: Che, Liwei organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China – sequence: 8 givenname: Junming surname: Shao fullname: Shao, Junming email: junmshao@uestc.edu.cn organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China |
BookMark | eNqFkLtuFDEUhkcokcjtCWhc0szi286loIgiblKkSAhqy3t8nJyVxw62ZxFUeQ1ejydhdhdRUEB1fh393198581JTBGb5oXgK8FF92q7mtCRXUku5fKR62H9rDkTqhPtoKU6-ZPF-nlzXsqWc95rzc-a8hHdDBTv2c5mspVSLIwim-ZQqQWMFTO7Dt8fkCbMP59-FOaooC3IINhSyBMcKPaV6gODFHcpzPuHDcy6Heay313yXBNGSA7zZXPqbSh49fteNJ_fvvl08769vXv34eb6tgWlutpa6RVIDuOgreg8uM1Gu2HjpAJQkg-9Qrsepeu0HninFPfccQm99t4LN_bqonl53H3M6cuMpZqJCmAINmKai5E9H3vNR9ktVXWsQk6lZPTmMdNk8zcjuNkrNltzUGz2is1R8UKNf1FA9WCjZkvhP-zrI4uLgR1hNgVoEbQUM0I1LtE_-V--Ap6I |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107384 crossref_primary_10_1016_j_heliyon_2024_e37552 crossref_primary_10_1007_s10489_024_05663_z crossref_primary_10_1109_ACCESS_2024_3476110 crossref_primary_10_1016_j_artmed_2024_102786 crossref_primary_10_1007_s11831_024_10120_8 crossref_primary_10_1016_j_ejrad_2023_110934 crossref_primary_10_1109_JBHI_2023_3256974 crossref_primary_10_1016_j_bspc_2024_106404 crossref_primary_10_1111_exsy_13463 crossref_primary_10_1016_j_nucengdes_2024_113493 crossref_primary_10_1016_j_bspc_2024_107422 crossref_primary_10_1049_cit2_12291 crossref_primary_10_1016_j_bspc_2024_106409 crossref_primary_10_1016_j_jneumeth_2024_110253 crossref_primary_10_1016_j_jksuci_2024_102157 crossref_primary_10_3390_s23156986 crossref_primary_10_1109_JBHI_2024_3416038 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1177_25424823241290694 |
Cites_doi | 10.1038/s41582-020-0377-8 10.1093/brain/aws084 10.1109/ICCV.2015.123 10.1016/j.jalz.2019.01.010 10.1016/j.neurobiolaging.2014.04.034 10.1016/j.compbiomed.2020.104118 10.1016/j.jalz.2019.06.674 10.1109/ICCV.2013.368 10.1016/j.inffus.2019.07.004 10.1016/S1053-8119(01)91428-4 10.1038/s41598-019-54548-6 10.3389/fnagi.2019.00220 10.1016/j.neurobiolaging.2006.09.013 10.1049/iet-ipr.2019.0312 10.1016/j.inffus.2020.10.006 10.1109/CVPR.2016.319 10.1002/alz.037352 10.3389/fneur.2019.00726 10.1016/j.pscychresns.2010.03.003 10.1016/j.jalz.2018.02.018 10.1038/nrn2154 10.1016/j.mri.2021.02.001 10.1109/CVPR.2017.683 10.1016/j.knosys.2021.107942 10.1016/j.pscychresns.2010.08.010 10.1002/hbm.23627 10.1016/j.inffus.2020.09.002 10.1016/j.media.2020.101765 10.3389/fncom.2015.00132 10.1088/1361-6560/aa5dbe 10.1109/TNN.2010.2091281 10.1016/S0031-3203(00)00023-6 10.1016/S0895-6111(00)00037-9 10.1038/s41598-019-45415-5 10.1016/j.media.2020.101694 10.1016/j.jalz.2010.03.009 10.1109/CVPR.2016.10 10.1016/j.neubiorev.2017.01.002 10.4236/jamp.2017.59159 10.1016/j.neuroimage.2012.01.024 10.1016/j.jalz.2018.02.001 10.3389/fnins.2020.626154 10.1002/cnm.3225 10.1016/j.jalz.2019.02.007 10.1002/hbm.20991 10.1016/j.inffus.2019.06.024 10.1016/j.media.2019.101625 10.1016/j.jalz.2019.08.141 10.1109/34.232073 10.1016/j.jalz.2015.04.005 10.1016/j.neuroimage.2006.11.060 10.1016/S1474-4422(11)70289-7 10.1016/j.media.2020.101850 10.1016/j.inffus.2020.11.005 10.1155/2019/2492719 10.1118/1.3081408 10.1016/j.jalz.2019.06.1003 10.1093/brain/awv191 10.1006/nimg.2001.0978 10.1109/CVPR.2016.90 10.1016/j.media.2020.101825 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.media.2022.102585 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 10_1016_j_media_2022_102585 S1361841522002237 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7X8 |
ID | FETCH-LOGICAL-c336t-a2f3c20c984a16fcdbb4d8bd23cc320873ea592d644806330f0d02c74fff1d973 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Jul 10 21:54:00 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Tue Jul 01 02:49:33 EDT 2025 Fri Feb 23 02:40:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional adversarial autoencoder Convolutional attention network Alzheimer’s disease classification Multi-center MRIs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-a2f3c20c984a16fcdbb4d8bd23cc320873ea592d644806330f0d02c74fff1d973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2514-5519 0000-0003-1894-722X |
PQID | 2709740926 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2709740926 crossref_primary_10_1016_j_media_2022_102585 crossref_citationtrail_10_1016_j_media_2022_102585 elsevier_sciencedirect_doi_10_1016_j_media_2022_102585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Medical image analysis |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bahdanau, Cho, Bengio (b5) 2014 Beekly, Ramos, van Belle, Deitrich, Clark, Jacka, Kukull (b7) 2004; 18 Squire, Wixted, Clark (b68) 2007; 8 Pulgar, Charte, Rivera, del Jesus (b63) 2020; 54 Sedeno, Piguet, Abrevaya, Desmaras, García-Cordero, Baez, Alethia de la Fuente, Reyes, Tu, Moguilner (b66) 2017; 38 Evans, Janke, Collins, Baillet (b17) 2012; 62 Jo, Nho, Saykin (b40) 2019; 11 Morain-Nicolier, Lebonvallet, Baudrier, Ruan (b53) 2007 Gupta, Lee, Choi, Lee, Kim, Kwon (b26) 2019; 2019 Hett, Ta, Oguz, Manjón, Coupé, Initiative (b30) 2021; 67 Goceri (b22) 2019; 14 Ellis, Rowe, Villemagne, Martins, Masters, Salvado, Szoeke, Ames, Group (b15) 2010; 6 Gradin, Gountouna, Waiter, Ahearn, Brennan, Condon, Marshall, McGonigle, Murray, Whalley (b25) 2010; 184 Mwangi, Ebmeier, Matthews, Douglas Steele (b54) 2012; 135 Association (b3) 2019; 15 Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin, Yao, Shen, Initiative (b27) 2020; 60 Ioffe, Szegedy (b36) 2015 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (b72) 2002; 15 Budding, EitelAlbrecht, Ritter (b9) 2020; 16 Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi, Initiative (b6) 2019; 21 Ossenkoppele, Pijnenburg, Perry, Cohn-Sheehy, Scheltens, Vogel, Kramer, van der Vlies, Joie, Rosen (b58) 2015; 138 Goceri (b21) 2019 Maggipinto, Bellotti, Amoroso, Diacono, Donvito, Lella, Monaco, Scelsi, Tangaro, Initiative (b49) 2017; 62 Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929. He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Mayerhoefer, Szomolanyi, Jirak, Materka, Trattnig (b52) 2009; 36 Yao, Wang, Fan, Liu, Li (b80) 2020; 53 Payan, Montana (b61) 2015 Makhzani, Shlens, Jaitly, Goodfellow, Frey (b50) 2015 Goceri (b23) 2019; 35 Simonyan, Zisserman (b67) 2014 Zhang, Wang, Xia, Jiang, Qian, Initiative (b81) 2021; 66 Yang, Z., He, X., Gao, J., Deng, L., Smola, A., 2016. Stacked attention networks for image question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 21–29. Luo, Li, Li (b48) 2017; 5 Huttenlocher, Klanderman, Rucklidge (b34) 1993; 15 Wang, Zhou, Yang, Zhang (b76) 2021; 13 Jack, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (b37) 2018; 14 Demšar (b12) 2006; 7 He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034. Li, Gu, Dvornek, Staib, Ventola, Duncan (b44) 2020; 65 Jo, Nho, Risacher, Saykin (b39) 2019; 15 Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (b43) 2008; 29 Fedorov, Billet, Prastawa, Gerig, Radmanesh, Warfield, Kikinis, Chrisochoides (b18) 2008 Masci, Meier, Cireşan, Schmidhuber (b51) 2011 Weiner, Veitch, Aisen, Beckett, Cairns, Cedarbaum, Donohue, Green, Harvey, Jack Jr. (b77) 2015; 11 Schnack, van Haren, Brouwer, van Baal, Picchioni, Weisbrod, Sauer, Cannon, Huttunen, Lepage (b65) 2010; 31 Kim, Scott (b41) 2012; 13 Iizuka, Fukasawa, Kameyama (b35) 2019; 9 Brett, Christoff, Cusack, Lancaster (b8) 2001; 13 Eskildsen, Coupé, Fonov, Pruessner, Collins, Initiative (b16) 2015; 36 Archip, Clatz, Whalen, Kacher, Fedorov, Kot, Chrisochoides, Jolesz, Golby, Black (b2) 2007; 35 Ortiz, Munilla, Álvarez-Illán, Górriz, Ramírez, Initiative (b57) 2015; 9 Pan, Tsang, Kwok, Yang (b60) 2010; 22 Zhang, Zheng, Gao, Feng, Liang, Long (b83) 2021; 78 Li, Habes, Wolk, Fan, Initiative (b45) 2019; 15 Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao, Zhang (b33) 2021; 14 Gilmore, Buser, Hanson (b20) 2019 Association (b4) 2018; 14 Crutch, Lehmann, Schott, Rabinovici, Rossor, Fox (b10) 2012; 11 Dong, Toledo, Honnorat, Doshi, Varol, Sotiras, Wolk, Trojanowski, Davatzikos, Initiative (b14) 2017; 140 Oh, Chung, Kim, Kim, Oh (b56) 2019; 9 Tang, Wu, Ma, Gallagher, Perera, Zhuang (b70) 2000; 24 Vieira, Pinaya, Mechelli (b73) 2017; 74 Zhu, Kim, Zhu, Kaufer, Wu, Initiative (b85) 2021; 67 Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T., 2013. Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2960–2967. Agaian, Almuntashri (b1) 2009 Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X., 2017. Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3156–3164. Teipel, Ewers, Wolf, Jessen, Kölsch, Arlt, Luckhaus, Schönknecht, Schmidtke, Heuser (b71) 2010; 182 Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b78) 2020; 63 Li, Wolk, Fan (b46) 2019; 15 Othman, Haron, Kadir, Rafiq (b59) 2009 Hosseini-Asl, Keynton, El-Baz (b32) 2016 Jin, Xu, Zhao, Hu, Yang, Liu, Jiang, Liu (b38) 2019 Myszczynska, Ojamies, Lacoste, Neil, Saffari, Mead, Hautbergue, Holbrook, Ferraiuolo (b55) 2020; 16 Liu, Lu, Pan, Xu, Lan, Luo (b47) 2022; 238 Da (b11) 2014 Zhang, Wang, Zhu (b82) 2020 Su, Surendranathan, Huang, Bevan-Jones, Passamonti, Hong, Arnold, Rodríguez, Wang, Mak (b69) 2021; 67 Hodges, Lehmann (b31) 2012 Potvin, Khademi, Chouinard, Farokhian, Dieumegarde, Leppert, Hoge, Rajah, Bellec, Duchesne (b62) 2019; 10 Ding, Goshtasby (b13) 2001; 34 Goceri (b24) 2021; 128 Qiu, Heydari, Miller, Joshi, Wong, Au, Kolachalama (b64) 2019; 15 Kumar, Kumar, Shao (b42) 2017 Wang, Nayak, Guttery, Zhang, Zhang (b75) 2021; 68 Evans (10.1016/j.media.2022.102585_b17) 2012; 62 Weiner (10.1016/j.media.2022.102585_b77) 2015; 11 Li (10.1016/j.media.2022.102585_b45) 2019; 15 Goceri (10.1016/j.media.2022.102585_b21) 2019 Ortiz (10.1016/j.media.2022.102585_b57) 2015; 9 Brett (10.1016/j.media.2022.102585_b8) 2001; 13 Schnack (10.1016/j.media.2022.102585_b65) 2010; 31 Gradin (10.1016/j.media.2022.102585_b25) 2010; 184 Demšar (10.1016/j.media.2022.102585_b12) 2006; 7 Zhang (10.1016/j.media.2022.102585_b81) 2021; 66 Masci (10.1016/j.media.2022.102585_b51) 2011 10.1016/j.media.2022.102585_b84 Budding (10.1016/j.media.2022.102585_b9) 2020; 16 Jin (10.1016/j.media.2022.102585_b38) 2019 Myszczynska (10.1016/j.media.2022.102585_b55) 2020; 16 Pan (10.1016/j.media.2022.102585_b60) 2010; 22 Da (10.1016/j.media.2022.102585_b11) 2014 Sedeno (10.1016/j.media.2022.102585_b66) 2017; 38 Tang (10.1016/j.media.2022.102585_b70) 2000; 24 Oh (10.1016/j.media.2022.102585_b56) 2019; 9 Gupta (10.1016/j.media.2022.102585_b26) 2019; 2019 Mayerhoefer (10.1016/j.media.2022.102585_b52) 2009; 36 Iizuka (10.1016/j.media.2022.102585_b35) 2019; 9 Ding (10.1016/j.media.2022.102585_b13) 2001; 34 Goceri (10.1016/j.media.2022.102585_b24) 2021; 128 Zhang (10.1016/j.media.2022.102585_b82) 2020 Association (10.1016/j.media.2022.102585_b4) 2018; 14 Hosseini-Asl (10.1016/j.media.2022.102585_b32) 2016 Wen (10.1016/j.media.2022.102585_b78) 2020; 63 10.1016/j.media.2022.102585_b19 Agaian (10.1016/j.media.2022.102585_b1) 2009 Fedorov (10.1016/j.media.2022.102585_b18) 2008 Makhzani (10.1016/j.media.2022.102585_b50) 2015 Tzourio-Mazoyer (10.1016/j.media.2022.102585_b72) 2002; 15 Jack (10.1016/j.media.2022.102585_b37) 2018; 14 Vieira (10.1016/j.media.2022.102585_b73) 2017; 74 Pulgar (10.1016/j.media.2022.102585_b63) 2020; 54 Zhu (10.1016/j.media.2022.102585_b85) 2021; 67 Crutch (10.1016/j.media.2022.102585_b10) 2012; 11 Dong (10.1016/j.media.2022.102585_b14) 2017; 140 Huttenlocher (10.1016/j.media.2022.102585_b34) 1993; 15 Lerch (10.1016/j.media.2022.102585_b43) 2008; 29 Association (10.1016/j.media.2022.102585_b3) 2019; 15 Hao (10.1016/j.media.2022.102585_b27) 2020; 60 Othman (10.1016/j.media.2022.102585_b59) 2009 Eskildsen (10.1016/j.media.2022.102585_b16) 2015; 36 Payan (10.1016/j.media.2022.102585_b61) 2015 Qiu (10.1016/j.media.2022.102585_b64) 2019; 15 Gilmore (10.1016/j.media.2022.102585_b20) 2019 Goceri (10.1016/j.media.2022.102585_b22) 2019; 14 Su (10.1016/j.media.2022.102585_b69) 2021; 67 Maggipinto (10.1016/j.media.2022.102585_b49) 2017; 62 Hu (10.1016/j.media.2022.102585_b33) 2021; 14 Liu (10.1016/j.media.2022.102585_b47) 2022; 238 Potvin (10.1016/j.media.2022.102585_b62) 2019; 10 Jo (10.1016/j.media.2022.102585_b39) 2019; 15 10.1016/j.media.2022.102585_b29 10.1016/j.media.2022.102585_b28 Kumar (10.1016/j.media.2022.102585_b42) 2017 Li (10.1016/j.media.2022.102585_b44) 2020; 65 Squire (10.1016/j.media.2022.102585_b68) 2007; 8 Wang (10.1016/j.media.2022.102585_b76) 2021; 13 Goceri (10.1016/j.media.2022.102585_b23) 2019; 35 Archip (10.1016/j.media.2022.102585_b2) 2007; 35 Bahdanau (10.1016/j.media.2022.102585_b5) 2014 Jo (10.1016/j.media.2022.102585_b40) 2019; 11 Simonyan (10.1016/j.media.2022.102585_b67) 2014 Wang (10.1016/j.media.2022.102585_b75) 2021; 68 Li (10.1016/j.media.2022.102585_b46) 2019; 15 Beekly (10.1016/j.media.2022.102585_b7) 2004; 18 Hett (10.1016/j.media.2022.102585_b30) 2021; 67 Kim (10.1016/j.media.2022.102585_b41) 2012; 13 Ossenkoppele (10.1016/j.media.2022.102585_b58) 2015; 138 Luo (10.1016/j.media.2022.102585_b48) 2017; 5 Morain-Nicolier (10.1016/j.media.2022.102585_b53) 2007 10.1016/j.media.2022.102585_b74 Hodges (10.1016/j.media.2022.102585_b31) 2012 Ioffe (10.1016/j.media.2022.102585_b36) 2015 Ellis (10.1016/j.media.2022.102585_b15) 2010; 6 Basaia (10.1016/j.media.2022.102585_b6) 2019; 21 Zhang (10.1016/j.media.2022.102585_b83) 2021; 78 Mwangi (10.1016/j.media.2022.102585_b54) 2012; 135 Teipel (10.1016/j.media.2022.102585_b71) 2010; 182 10.1016/j.media.2022.102585_b79 Yao (10.1016/j.media.2022.102585_b80) 2020; 53 |
References_xml | – volume: 9 start-page: 1 year: 2019 end-page: 16 ident: b56 article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning publication-title: Sci. Rep. – year: 2014 ident: b11 article-title: A method for stochastic optimization – reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929. – volume: 13 start-page: 85 year: 2001 ident: b8 article-title: Using the Talairach atlas with the MNI template publication-title: Neuroimage – reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034. – volume: 36 start-page: S23 year: 2015 end-page: S31 ident: b16 article-title: Structural imaging biomarkers of alzheimer’s disease: predicting disease progression publication-title: Neurobiol. Aging – volume: 14 start-page: 1468 year: 2021 ident: b33 article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease publication-title: Front. Neurosci. – start-page: 52 year: 2011 end-page: 59 ident: b51 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: International Conference on Artificial Neural Networks – year: 2014 ident: b5 article-title: Neural machine translation by jointly learning to align and translate – year: 2014 ident: b67 article-title: Very deep convolutional networks for large-scale image recognition – year: 2015 ident: b50 article-title: Adversarial autoencoders – volume: 74 start-page: 58 year: 2017 end-page: 75 ident: b73 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications publication-title: Neurosci. Biobehav. Rev. – start-page: 594 year: 2008 end-page: 603 ident: b18 article-title: Evaluation of brain MRI alignment with the robust Hausdorff distance measures publication-title: International Symposium on Visual Computing – volume: 65 year: 2020 ident: b44 article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results publication-title: Med. Image Anal. – start-page: 5597 year: 2007 end-page: 5600 ident: b53 article-title: Hausdorff distance based 3D quantification of brain tumor evolution from MRI images publication-title: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 21 year: 2019 ident: b6 article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: NeuroImage: Clin. – reference: Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T., 2013. Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2960–2967. – volume: 67 start-page: 116 year: 2021 end-page: 124 ident: b69 article-title: Relationship between tau, neuroinflammation and atrophy in Alzheimer’s disease: The NIMROD study publication-title: Inf. Fusion – volume: 6 start-page: 291 year: 2010 end-page: 296 ident: b15 article-title: Addressing population aging and Alzheimer’s disease through the Australian imaging biomarkers and lifestyle study: Collaboration with the Alzheimer’s disease neuroimaging initiative publication-title: Alzheimer’s Dement. – volume: 138 start-page: 2732 year: 2015 end-page: 2749 ident: b58 article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features publication-title: Brain – volume: 31 start-page: 1967 year: 2010 end-page: 1982 ident: b65 article-title: Mapping reliability in multicenter MRI: Voxel-based morphometry and cortical thickness publication-title: Human Brain Mapp. – volume: 15 start-page: 850 year: 1993 end-page: 863 ident: b34 article-title: Comparing images using the Hausdorff distance publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 start-page: 313 year: 2021 ident: b76 article-title: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation publication-title: Front. Aging Neurosci. – volume: 135 start-page: 1508 year: 2012 end-page: 1521 ident: b54 article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder publication-title: Brain – volume: 53 start-page: 174 year: 2020 end-page: 182 ident: b80 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inf. Fusion – volume: 18 start-page: 270 year: 2004 end-page: 277 ident: b7 article-title: The national Alzheimer’s coordinating center (NACC) database: an alzheimer disease database publication-title: Alzheimer Dis. Assoc. Disord. – volume: 16 start-page: 440 year: 2020 end-page: 456 ident: b55 article-title: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases publication-title: Nat. Rev. Neurol. – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: b60 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: b35 article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies publication-title: Sci. Rep. – volume: 38 start-page: 3804 year: 2017 end-page: 3822 ident: b66 article-title: Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia publication-title: Human Brain Mapp. – volume: 14 start-page: 367 year: 2018 end-page: 429 ident: b4 article-title: 2018 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. – volume: 11 start-page: 865 year: 2015 end-page: 884 ident: b77 article-title: Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014 publication-title: Alzheimer’s Dement. – volume: 34 start-page: 721 year: 2001 end-page: 725 ident: b13 article-title: On the Canny edge detector publication-title: Pattern Recognit. – volume: 14 start-page: 882 year: 2019 end-page: 889 ident: b22 article-title: CapsNet topology to classify tumours from brain images and comparative evaluation publication-title: IET Image Process. – start-page: 1047 year: 2019 end-page: 1051 ident: b38 article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration publication-title: 2019 IEEE 16Th International Symposium on Biomedical Imaging (ISBI 2019) – start-page: 133 year: 2009 end-page: 136 ident: b59 article-title: Comparison of Canny and Sobel edge detection in MRI images publication-title: Comput. Sci. Biomech. Tissue Eng. Group Inf. Syst. – volume: 13 start-page: 2529 year: 2012 end-page: 2565 ident: b41 article-title: Robust kernel density estimation publication-title: J. Mach. Learn. Res. – reference: Yang, Z., He, X., Gao, J., Deng, L., Smola, A., 2016. Stacked attention networks for image question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 21–29. – volume: 62 start-page: 911 year: 2012 end-page: 922 ident: b17 article-title: Brain templates and atlases publication-title: Neuroimage – start-page: 403 year: 2012 end-page: 418 ident: b31 article-title: Rank methods for combination of independent experiments in analysis of variance publication-title: Selected Works of EL Lehmann – start-page: 4035 year: 2017 end-page: 4042 ident: b42 article-title: Cross-database mammographic image analysis through unsupervised domain adaptation publication-title: 2017 IEEE International Conference on Big Data (Big Data) – volume: 11 start-page: 220 year: 2019 ident: b40 article-title: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data publication-title: Front. Aging Neurosci. – volume: 8 start-page: 872 year: 2007 end-page: 883 ident: b68 article-title: Recognition memory and the medial temporal lobe: a new perspective publication-title: Nat. Rev. Neurosci. – volume: 60 year: 2020 ident: b27 article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease publication-title: Med. Image Anal. – volume: 11 start-page: 170 year: 2012 end-page: 178 ident: b10 article-title: Posterior cortical atrophy publication-title: Lancet Neurol. – volume: 54 start-page: 44 year: 2020 end-page: 60 ident: b63 article-title: Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines publication-title: Inf. Fusion – year: 2019 ident: b20 article-title: Variations in structural mri quality impact measures of brain anatomy: Relations with age and other sociodemographic variables publication-title: Biorxiv – start-page: 3689 year: 2009 end-page: 3692 ident: b1 article-title: Noise-resilient edge detection algorithm for brain MRI images publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 140 start-page: 735 year: 2017 end-page: 747 ident: b14 article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers publication-title: Brain – volume: 78 start-page: 119 year: 2021 end-page: 126 ident: b83 article-title: A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification publication-title: Magn. Reson. Imaging – start-page: 126 year: 2016 end-page: 130 ident: b32 article-title: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network publication-title: 2016 IEEE International Conference on Image Processing – volume: 29 start-page: 23 year: 2008 end-page: 30 ident: b43 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls publication-title: Neurobiol. Aging – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 132 year: 2015 ident: b57 article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer’s disease diagnosis publication-title: Front. Comput. Neurosci. – start-page: 1 year: 2019 end-page: 6 ident: b21 article-title: Analysis of deep networks with residual blocks and different activation functions: classification of skin diseases publication-title: 2019 Ninth International Conference on Image Processing Theory, Tools and Applications – volume: 182 start-page: 244 year: 2010 end-page: 250 ident: b71 article-title: Multicentre variability of MRI-based medial temporal lobe volumetry in Alzheimer’s disease publication-title: Psychiatry Res.: Neuroimaging – volume: 15 start-page: P409 year: 2019 end-page: P410 ident: b39 article-title: P1-398: Multimodal-3DCNN: Diagnostic classification of Alzheimer’s disease using deep learning on neuroimaging, genetic, and demographic data publication-title: Alzheimer’s Dement. – volume: 238 year: 2022 ident: b47 article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network publication-title: Knowl.-Based Syst. – volume: 15 start-page: P280 year: 2019 end-page: P281 ident: b64 article-title: P1-119: ENHANCING deep learning model performance for ad diagnosis using roi-based selection publication-title: Alzheimer’s Dement. – volume: 66 start-page: 170 year: 2021 end-page: 183 ident: b81 article-title: Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion publication-title: Inf. Fusion – volume: 36 start-page: 1236 year: 2009 end-page: 1243 ident: b52 article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study publication-title: Med. Phys. – volume: 128 year: 2021 ident: b24 article-title: Deep learning based classification of facial dermatological disorders publication-title: Comput. Biol. Med. – volume: 16 year: 2020 ident: b9 article-title: Visualization of deep learning relevance maps for AD detection: Doctor AI: Making computers explain their decisions publication-title: Alzheimer’s Dement. – volume: 35 year: 2019 ident: b23 article-title: Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 67 year: 2021 ident: b30 article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction publication-title: Med. Image Anal. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: b72 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 10 start-page: 726 year: 2019 ident: b62 article-title: Measurement variability following MRI system upgrade publication-title: Front. Neurol. – reference: Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X., 2017. Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3156–3164. – volume: 14 start-page: 535 year: 2018 end-page: 562 ident: b37 article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s Dement. – start-page: 563 year: 2020 end-page: 567 ident: b82 article-title: Jointly analyzing alzheimer’s disease related structure-function using deep cross-model attention network publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging – volume: 67 year: 2021 ident: b85 article-title: Long range early diagnosis of Alzheimer’s disease using longitudinal MR imaging data publication-title: Med. Image Anal. – volume: 68 start-page: 131 year: 2021 end-page: 148 ident: b75 article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis publication-title: Inf. Fusion – volume: 35 start-page: 609 year: 2007 end-page: 624 ident: b2 article-title: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery publication-title: Neuroimage – year: 2015 ident: b61 article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks – start-page: 448 year: 2015 end-page: 456 ident: b36 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning – volume: 24 start-page: 349 year: 2000 end-page: 357 ident: b70 article-title: MRI brain image segmentation by multi-resolution edge detection and region selection publication-title: Comput. Med. Imaging Graph. – volume: 2019 year: 2019 ident: b26 article-title: Alzheimer’s disease diagnosis based on cortical and subcortical features publication-title: J. Healthc. Eng. – volume: 15 start-page: P1551 year: 2019 end-page: P1552 ident: b46 article-title: P4-593: Early prediction of cognitive decline based on brain MRI images using a deep learning survival analysis model publication-title: Alzheimer’s Dement. – volume: 15 start-page: 321 year: 2019 end-page: 387 ident: b3 article-title: 2019 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. – volume: 184 start-page: 86 year: 2010 end-page: 95 ident: b25 article-title: Between-and within-scanner variability in the CaliBrain study n-back cognitive task publication-title: Psychiatry Res.: Neuroimaging – volume: 5 start-page: 1892 year: 2017 end-page: 1898 ident: b48 article-title: Automatic Alzheimer’s disease recognition from MRI data using deep learning method publication-title: J. Appl. Math. Phys. – volume: 62 start-page: 2361 year: 2017 ident: b49 article-title: DTI measurements for Alzheimer’s classification publication-title: Phys. Med. Biol. – volume: 63 year: 2020 ident: b78 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. – volume: 15 start-page: 1059 year: 2019 end-page: 1070 ident: b45 article-title: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data publication-title: Alzheimer’s Dement. – volume: 16 start-page: 440 issue: 8 year: 2020 ident: 10.1016/j.media.2022.102585_b55 article-title: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-020-0377-8 – volume: 135 start-page: 1508 issue: 5 year: 2012 ident: 10.1016/j.media.2022.102585_b54 article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder publication-title: Brain doi: 10.1093/brain/aws084 – year: 2014 ident: 10.1016/j.media.2022.102585_b67 – ident: 10.1016/j.media.2022.102585_b28 doi: 10.1109/ICCV.2015.123 – start-page: 5597 year: 2007 ident: 10.1016/j.media.2022.102585_b53 article-title: Hausdorff distance based 3D quantification of brain tumor evolution from MRI images – volume: 15 start-page: 321 issue: 3 year: 2019 ident: 10.1016/j.media.2022.102585_b3 article-title: 2019 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2019.01.010 – start-page: 594 year: 2008 ident: 10.1016/j.media.2022.102585_b18 article-title: Evaluation of brain MRI alignment with the robust Hausdorff distance measures – start-page: 3689 year: 2009 ident: 10.1016/j.media.2022.102585_b1 article-title: Noise-resilient edge detection algorithm for brain MRI images – volume: 36 start-page: S23 year: 2015 ident: 10.1016/j.media.2022.102585_b16 article-title: Structural imaging biomarkers of alzheimer’s disease: predicting disease progression publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.034 – volume: 128 year: 2021 ident: 10.1016/j.media.2022.102585_b24 article-title: Deep learning based classification of facial dermatological disorders publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104118 – volume: 15 start-page: P280 year: 2019 ident: 10.1016/j.media.2022.102585_b64 article-title: P1-119: ENHANCING deep learning model performance for ad diagnosis using roi-based selection publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2019.06.674 – ident: 10.1016/j.media.2022.102585_b19 doi: 10.1109/ICCV.2013.368 – start-page: 448 year: 2015 ident: 10.1016/j.media.2022.102585_b36 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 54 start-page: 44 year: 2020 ident: 10.1016/j.media.2022.102585_b63 article-title: Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.004 – volume: 13 start-page: 85 issue: 6 year: 2001 ident: 10.1016/j.media.2022.102585_b8 article-title: Using the Talairach atlas with the MNI template publication-title: Neuroimage doi: 10.1016/S1053-8119(01)91428-4 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.media.2022.102585_b56 article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-54548-6 – start-page: 52 year: 2011 ident: 10.1016/j.media.2022.102585_b51 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction – volume: 11 start-page: 220 year: 2019 ident: 10.1016/j.media.2022.102585_b40 article-title: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00220 – volume: 29 start-page: 23 issue: 1 year: 2008 ident: 10.1016/j.media.2022.102585_b43 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.09.013 – volume: 14 start-page: 882 issue: 5 year: 2019 ident: 10.1016/j.media.2022.102585_b22 article-title: CapsNet topology to classify tumours from brain images and comparative evaluation publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0312 – year: 2019 ident: 10.1016/j.media.2022.102585_b20 article-title: Variations in structural mri quality impact measures of brain anatomy: Relations with age and other sociodemographic variables publication-title: Biorxiv – volume: 13 start-page: 2529 issue: 1 year: 2012 ident: 10.1016/j.media.2022.102585_b41 article-title: Robust kernel density estimation publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 313 year: 2021 ident: 10.1016/j.media.2022.102585_b76 article-title: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation publication-title: Front. Aging Neurosci. – volume: 67 start-page: 116 year: 2021 ident: 10.1016/j.media.2022.102585_b69 article-title: Relationship between tau, neuroinflammation and atrophy in Alzheimer’s disease: The NIMROD study publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.006 – ident: 10.1016/j.media.2022.102585_b84 doi: 10.1109/CVPR.2016.319 – volume: 16 year: 2020 ident: 10.1016/j.media.2022.102585_b9 article-title: Visualization of deep learning relevance maps for AD detection: Doctor AI: Making computers explain their decisions publication-title: Alzheimer’s Dement. doi: 10.1002/alz.037352 – volume: 10 start-page: 726 year: 2019 ident: 10.1016/j.media.2022.102585_b62 article-title: Measurement variability following MRI system upgrade publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00726 – volume: 182 start-page: 244 issue: 3 year: 2010 ident: 10.1016/j.media.2022.102585_b71 article-title: Multicentre variability of MRI-based medial temporal lobe volumetry in Alzheimer’s disease publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2010.03.003 – start-page: 1 year: 2019 ident: 10.1016/j.media.2022.102585_b21 article-title: Analysis of deep networks with residual blocks and different activation functions: classification of skin diseases – volume: 14 start-page: 535 issue: 4 year: 2018 ident: 10.1016/j.media.2022.102585_b37 article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 8 start-page: 872 issue: 11 year: 2007 ident: 10.1016/j.media.2022.102585_b68 article-title: Recognition memory and the medial temporal lobe: a new perspective publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2154 – volume: 78 start-page: 119 year: 2021 ident: 10.1016/j.media.2022.102585_b83 article-title: A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2021.02.001 – start-page: 563 year: 2020 ident: 10.1016/j.media.2022.102585_b82 article-title: Jointly analyzing alzheimer’s disease related structure-function using deep cross-model attention network – ident: 10.1016/j.media.2022.102585_b74 doi: 10.1109/CVPR.2017.683 – volume: 238 year: 2022 ident: 10.1016/j.media.2022.102585_b47 article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107942 – volume: 184 start-page: 86 issue: 2 year: 2010 ident: 10.1016/j.media.2022.102585_b25 article-title: Between-and within-scanner variability in the CaliBrain study n-back cognitive task publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2010.08.010 – volume: 38 start-page: 3804 issue: 8 year: 2017 ident: 10.1016/j.media.2022.102585_b66 article-title: Tackling variability: A multicenter study to provide a gold-standard network approach for frontotemporal dementia publication-title: Human Brain Mapp. doi: 10.1002/hbm.23627 – volume: 66 start-page: 170 year: 2021 ident: 10.1016/j.media.2022.102585_b81 article-title: Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.09.002 – volume: 65 year: 2020 ident: 10.1016/j.media.2022.102585_b44 article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101765 – volume: 9 start-page: 132 year: 2015 ident: 10.1016/j.media.2022.102585_b57 article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer’s disease diagnosis publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00132 – year: 2015 ident: 10.1016/j.media.2022.102585_b50 – volume: 62 start-page: 2361 issue: 6 year: 2017 ident: 10.1016/j.media.2022.102585_b49 article-title: DTI measurements for Alzheimer’s classification publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5dbe – start-page: 133 year: 2009 ident: 10.1016/j.media.2022.102585_b59 article-title: Comparison of Canny and Sobel edge detection in MRI images publication-title: Comput. Sci. Biomech. Tissue Eng. Group Inf. Syst. – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.media.2022.102585_b60 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 18 start-page: 270 issue: 4 year: 2004 ident: 10.1016/j.media.2022.102585_b7 article-title: The national Alzheimer’s coordinating center (NACC) database: an alzheimer disease database publication-title: Alzheimer Dis. Assoc. Disord. – volume: 34 start-page: 721 issue: 3 year: 2001 ident: 10.1016/j.media.2022.102585_b13 article-title: On the Canny edge detector publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00023-6 – volume: 24 start-page: 349 issue: 6 year: 2000 ident: 10.1016/j.media.2022.102585_b70 article-title: MRI brain image segmentation by multi-resolution edge detection and region selection publication-title: Comput. Med. Imaging Graph. doi: 10.1016/S0895-6111(00)00037-9 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.media.2022.102585_b35 article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies publication-title: Sci. Rep. doi: 10.1038/s41598-019-45415-5 – volume: 63 year: 2020 ident: 10.1016/j.media.2022.102585_b78 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101694 – volume: 6 start-page: 291 issue: 3 year: 2010 ident: 10.1016/j.media.2022.102585_b15 article-title: Addressing population aging and Alzheimer’s disease through the Australian imaging biomarkers and lifestyle study: Collaboration with the Alzheimer’s disease neuroimaging initiative publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2010.03.009 – ident: 10.1016/j.media.2022.102585_b79 doi: 10.1109/CVPR.2016.10 – volume: 74 start-page: 58 year: 2017 ident: 10.1016/j.media.2022.102585_b73 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.002 – volume: 5 start-page: 1892 issue: 9 year: 2017 ident: 10.1016/j.media.2022.102585_b48 article-title: Automatic Alzheimer’s disease recognition from MRI data using deep learning method publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2017.59159 – volume: 62 start-page: 911 issue: 2 year: 2012 ident: 10.1016/j.media.2022.102585_b17 article-title: Brain templates and atlases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.024 – volume: 14 start-page: 367 issue: 3 year: 2018 ident: 10.1016/j.media.2022.102585_b4 article-title: 2018 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2018.02.001 – volume: 14 start-page: 1468 year: 2021 ident: 10.1016/j.media.2022.102585_b33 article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.626154 – start-page: 1047 year: 2019 ident: 10.1016/j.media.2022.102585_b38 article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration – volume: 35 issue: 7 year: 2019 ident: 10.1016/j.media.2022.102585_b23 article-title: Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3225 – volume: 15 start-page: 1059 issue: 8 year: 2019 ident: 10.1016/j.media.2022.102585_b45 article-title: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2019.02.007 – volume: 31 start-page: 1967 issue: 12 year: 2010 ident: 10.1016/j.media.2022.102585_b65 article-title: Mapping reliability in multicenter MRI: Voxel-based morphometry and cortical thickness publication-title: Human Brain Mapp. doi: 10.1002/hbm.20991 – volume: 53 start-page: 174 year: 2020 ident: 10.1016/j.media.2022.102585_b80 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.024 – volume: 60 year: 2020 ident: 10.1016/j.media.2022.102585_b27 article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101625 – year: 2015 ident: 10.1016/j.media.2022.102585_b61 – start-page: 126 year: 2016 ident: 10.1016/j.media.2022.102585_b32 article-title: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network – start-page: 4035 year: 2017 ident: 10.1016/j.media.2022.102585_b42 article-title: Cross-database mammographic image analysis through unsupervised domain adaptation – volume: 15 start-page: P1551 year: 2019 ident: 10.1016/j.media.2022.102585_b46 article-title: P4-593: Early prediction of cognitive decline based on brain MRI images using a deep learning survival analysis model publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2019.08.141 – volume: 15 start-page: 850 issue: 9 year: 1993 ident: 10.1016/j.media.2022.102585_b34 article-title: Comparing images using the Hausdorff distance publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.232073 – volume: 11 start-page: 865 issue: 7 year: 2015 ident: 10.1016/j.media.2022.102585_b77 article-title: Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2015.04.005 – volume: 35 start-page: 609 issue: 2 year: 2007 ident: 10.1016/j.media.2022.102585_b2 article-title: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.060 – volume: 140 start-page: 735 issue: 3 year: 2017 ident: 10.1016/j.media.2022.102585_b14 article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers publication-title: Brain – year: 2014 ident: 10.1016/j.media.2022.102585_b5 – volume: 11 start-page: 170 issue: 2 year: 2012 ident: 10.1016/j.media.2022.102585_b10 article-title: Posterior cortical atrophy publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70289-7 – volume: 67 year: 2021 ident: 10.1016/j.media.2022.102585_b30 article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101850 – volume: 68 start-page: 131 year: 2021 ident: 10.1016/j.media.2022.102585_b75 article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.11.005 – volume: 2019 year: 2019 ident: 10.1016/j.media.2022.102585_b26 article-title: Alzheimer’s disease diagnosis based on cortical and subcortical features publication-title: J. Healthc. Eng. doi: 10.1155/2019/2492719 – volume: 21 year: 2019 ident: 10.1016/j.media.2022.102585_b6 article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: NeuroImage: Clin. – year: 2014 ident: 10.1016/j.media.2022.102585_b11 – volume: 36 start-page: 1236 issue: 4 year: 2009 ident: 10.1016/j.media.2022.102585_b52 article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study publication-title: Med. Phys. doi: 10.1118/1.3081408 – volume: 15 start-page: P409 year: 2019 ident: 10.1016/j.media.2022.102585_b39 article-title: P1-398: Multimodal-3DCNN: Diagnostic classification of Alzheimer’s disease using deep learning on neuroimaging, genetic, and demographic data publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2019.06.1003 – volume: 138 start-page: 2732 issue: 9 year: 2015 ident: 10.1016/j.media.2022.102585_b58 article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features publication-title: Brain doi: 10.1093/brain/awv191 – start-page: 403 year: 2012 ident: 10.1016/j.media.2022.102585_b31 article-title: Rank methods for combination of independent experiments in analysis of variance – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.media.2022.102585_b72 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.media.2022.102585_b12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.media.2022.102585_b29 doi: 10.1109/CVPR.2016.90 – volume: 67 year: 2021 ident: 10.1016/j.media.2022.102585_b85 article-title: Long range early diagnosis of Alzheimer’s disease using longitudinal MR imaging data publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101825 |
SSID | ssj0007440 |
Score | 2.47751 |
Snippet | Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102585 |
SubjectTerms | Alzheimer’s disease classification Convolutional adversarial autoencoder Convolutional attention network Multi-center MRIs |
Title | Reducing variations in multi-center Alzheimer’s disease classification with convolutional adversarial autoencoder |
URI | https://dx.doi.org/10.1016/j.media.2022.102585 https://www.proquest.com/docview/2709740926 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFA6lBdGFaFWs2hLBpfFmkkwys7yUlqvSLtRCdyGTB15p55b7cOFC_Bv-PX-J52Qy9YF04W5mSELIyZxH8p3vEPIiGR0dD5p12jumWtUxB14IazyYzwgGpMsEpienenam3pzX51vkcMyFQVhl0f2DTs_aunyZlNWcXM3nk_eVxGIlYH8QZyAkZpQrZXCXv_r6C-aBBHhD7lXFsPXIPJQxXjk7A4JEIZDCoMaCyv-2Tn_p6Wx8ju-Ru8VrpNNhYvfJVux3yZ3fuAR3ya2Tckv-gKzeIR8rfKWfIRIejuTovKcZPMgQjhmXdHrx5WOcX8blj2_fV7Tc01CPzjSih3Iviqe0FIHpZYPCHBxWcF7huPC8WS-QCDPE5UNydnz04XDGSnEF5qXUa-ZEkl5w3zbKVTr50HUqNF0Q0nspeGNkdHUrAsZv4MZInnjgwhuVUqpCa-Qjst0v-viY0KRMqLQztYsJAqga-pq2AVXoW8mDE3tEjItqfWEexwIYF3aEmH2yWRIWJWEHSeyRl9edrgbijZub61Fa9o_9Y8E03Nzx-ShbC38WXpe4Pi42KysMh2CLt0I_-d_Bn5Lb-DbkLj4j2-vlJu6DE7PuDvIuPSA709dvZ6c_AVze83Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrcTjUJUCokCpkThirWMndnJcVVRb2t0DtFJvluOHuqhkq31w4MTf4O_xS_AkTlWqqofeIidjWR5nHvbnbwA-BiW9YU7SWlpD8yqvqYlRCC1tdJ8-OpC6JTCdTOX4LP9yXpxvwEF_FwZhlcn2dza9tdapZZhmc3g1mw2_ZQKLlUT_gzgDLtQj2ER2qmIAm6Oj4_H02iAjB153_SqjKNCTD7Uwr_aCRswTOUcWgwJrKt_toG6Z6tb_HG7DVgocyagb23PY8M0OPLtBJ7gDjyfpoPwFLL8iJWtsJT9jMtztypFZQ1r8IEVEpl-Q0eWvCz_74Rd_f_9ZknRUQyzG0wggaqUIbtQSxKanNRrHYLCI8xL7jc_r1Ry5MJ1fvISzw8-nB2Oa6itQK4RcUcODsJzZqsxNJoN1dZ27snZcWCs4K5Xwpqi4wxQuRjKCBeYYtyoPIWSuUuIVDJp5418DCblymTSqMD7EHKqIsqoqozW0lWDO8F3g_aRqm8jHsQbGpe5RZt91qwmNmtCdJnbh07XQVce9cf_nsteW_m8J6egd7hf80OtWx58LT0xM4-frpeaKxXyLVVy-eWjn-_BkfDo50SdH0-O38BTfdFcZ38FgtVj7vRjTrOr3ac3-A7AA9iU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+variations+in+multi-center+Alzheimer%27s+disease+classification+with+convolutional+adversarial+autoencoder&rft.jtitle=Medical+image+analysis&rft.au=Cobbinah%2C+Bernard+M&rft.au=Sorg%2C+Christian&rft.au=Yang%2C+Qinli&rft.au=Ternblom%2C+Arvid&rft.date=2022-11-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=82&rft.spage=102585&rft_id=info:doi/10.1016%2Fj.media.2022.102585&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |