Level Sets of Weak-Morse Functions for Triangular Mesh Slicing

In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed 2-manifold triangular meshes (mesh slicing) is relevant for the generation of 3D printing patterns. Current slicing methods rely on the assumption...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 8; no. 9; p. 1624
Main Authors Mejia-Parra, Daniel, Ruiz-Salguero, Oscar, Cadavid, Carlos, Moreno, Aitor, Posada, Jorge
Format Journal Article
LanguageEnglish
Published MDPI AG 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed 2-manifold triangular meshes (mesh slicing) is relevant for the generation of 3D printing patterns. Current slicing methods rely on the assumption that the function used to compute the level sets satisfies strong Morse conditions, rendering incorrect results when such a function is not a Morse one. To overcome this limitation, this manuscript presents an algorithm for the computation of mesh level sets under the presence of non-Morse degeneracies. To accomplish this, our method defines weak-Morse conditions, and presents a characterization of the possible types of degeneracies. This classification relies on the position of vertices, edges and faces in the neighborhood outside of the slicing plane. Finally, our algorithm produces oriented 1-manifold contours. Each contour orientation defines whether it belongs to a hole or to an external border. This definition is central for Additive Manufacturing purposes. We set up tests encompassing all known non-Morse degeneracies. Our algorithm successfully processes every generated case. Ongoing work addresses (a) a theoretical proof of completeness for our algorithm, (b) implementation of interval trees to improve the algorithm efficiency and, (c) integration into an Additive Manufacturing framework for industry applications.
AbstractList In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed 2-manifold triangular meshes (mesh slicing) is relevant for the generation of 3D printing patterns. Current slicing methods rely on the assumption that the function used to compute the level sets satisfies strong Morse conditions, rendering incorrect results when such a function is not a Morse one. To overcome this limitation, this manuscript presents an algorithm for the computation of mesh level sets under the presence of non-Morse degeneracies. To accomplish this, our method defines weak-Morse conditions, and presents a characterization of the possible types of degeneracies. This classification relies on the position of vertices, edges and faces in the neighborhood outside of the slicing plane. Finally, our algorithm produces oriented 1-manifold contours. Each contour orientation defines whether it belongs to a hole or to an external border. This definition is central for Additive Manufacturing purposes. We set up tests encompassing all known non-Morse degeneracies. Our algorithm successfully processes every generated case. Ongoing work addresses (a) a theoretical proof of completeness for our algorithm, (b) implementation of interval trees to improve the algorithm efficiency and, (c) integration into an Additive Manufacturing framework for industry applications.
Author Moreno, Aitor
Mejia-Parra, Daniel
Ruiz-Salguero, Oscar
Cadavid, Carlos
Posada, Jorge
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-8126-0546
  surname: Mejia-Parra
  fullname: Mejia-Parra, Daniel
– sequence: 2
  givenname: Oscar
  orcidid: 0000-0002-9674-8974
  surname: Ruiz-Salguero
  fullname: Ruiz-Salguero, Oscar
– sequence: 3
  givenname: Carlos
  surname: Cadavid
  fullname: Cadavid, Carlos
– sequence: 4
  givenname: Aitor
  orcidid: 0000-0002-9088-7332
  surname: Moreno
  fullname: Moreno, Aitor
– sequence: 5
  givenname: Jorge
  orcidid: 0000-0001-7985-9915
  surname: Posada
  fullname: Posada, Jorge
BookMark eNptkEFLAzEQhYNUsNae_AO5y2qSSXc3F0GK1UKLhy14DNnsbJu63UiyFfz3bq1CEecyw2Pex8y7JIPWt0jINWe3AIrd7Uy3yZniqZBnZCiEyJKs1wcn8wUZx7hlfSkOuVRDcr_AD2xogV2kvqavaN6SpQ8R6Wzf2s75NtLaB7oKzrTrfWMCXWLc0KJx1rXrK3Jemybi-KePSDF7XE2fk8XL03z6sEgsQNolCgFRcK5UWkpkXFoFwk4slpZlElWVApNQ5RMQTAHwHKAGwxWURpQWRmR-pFbebPV7cDsTPrU3Tn8LPqy1CZ2zDWqLCjGzJcqJkTYVChRWvOSlqC0Xpu5Z_MiywccYsNbWdebwaBeMazRn-pCmPkmz99z88fze8N_2F4X7d2c
CitedBy_id crossref_primary_10_1016_j_cag_2024_103994
crossref_primary_10_3390_e23030373
Cites_doi 10.1016/j.cad.2016.04.003
10.1016/j.rcim.2017.05.006
10.1007/s12008-017-0449-1
10.1007/s00170-016-9743-5
10.5772/61398
10.1016/j.rcim.2019.05.009
10.1080/00029890.1970.11992523
10.1016/j.cad.2004.02.001
10.1115/1.4045055
10.1145/129902.129906
10.1016/j.cad.2017.07.001
10.1016/j.cag.2013.05.011
10.1016/j.rcim.2017.03.008
10.1016/j.cad.2018.02.006
10.1016/j.jmsy.2017.05.003
10.1016/j.cag.2020.05.020
10.1016/j.cad.2018.09.006
10.1016/j.rcim.2015.09.002
10.1145/3072959.3126803
10.3390/app9061069
10.1016/j.cad.2018.09.005
10.1006/aima.1997.1650
10.1016/j.cag.2019.05.023
10.1007/s10845-019-01490-z
10.1016/j.cagd.2018.03.012
10.1016/j.procir.2018.03.315
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/math8091624
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_ce9ee7cbe45a4c62939ed1b1b2fc12af
10_3390_math8091624
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PQGLB
PUEGO
ID FETCH-LOGICAL-c336t-9e3ee211996b4e014c932c5cebc074e9d63043d853209331833f3a193ba2bc3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:32:04 EDT 2025
Tue Jul 01 02:57:56 EDT 2025
Thu Apr 24 22:52:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-9e3ee211996b4e014c932c5cebc074e9d63043d853209331833f3a193ba2bc3
ORCID 0000-0001-7985-9915
0000-0002-9674-8974
0000-0002-9088-7332
0000-0002-8126-0546
OpenAccessLink https://doaj.org/article/ce9ee7cbe45a4c62939ed1b1b2fc12af
ParticipantIDs doaj_primary_oai_doaj_org_article_ce9ee7cbe45a4c62939ed1b1b2fc12af
crossref_citationtrail_10_3390_math8091624
crossref_primary_10_3390_math8091624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nilsiam (ref_8) 2017; 18
Mao (ref_15) 2019; 107
Banchoff (ref_31) 1970; 77
Steuben (ref_5) 2016; 77
Feng (ref_21) 2019; 107
ref_14
Forman (ref_32) 1998; 134
ref_35
Roschli (ref_12) 2019; 25
ref_10
Song (ref_20) 2018; 62
Michel (ref_11) 2019; 60
Zhao (ref_30) 2019; 31
Fugacci (ref_33) 2020; 90
ref_19
ref_16
Ding (ref_27) 2016; 37
Jin (ref_6) 2017; 48
Vatti (ref_34) 1992; 35
Ma (ref_13) 2004; 36
Luu (ref_22) 2019; 82
Segura (ref_4) 2018; 12
Minetto (ref_17) 2017; 92
Xu (ref_18) 2018; 49
ref_24
Messner (ref_23) 2017; 18
Hildebrand (ref_25) 2013; 37
Jin (ref_29) 2017; 91
ref_1
ref_3
Ezair (ref_28) 2018; 100
Zhao (ref_2) 2019; 142
ref_26
ref_9
Jin (ref_7) 2017; 44
References_xml – volume: 77
  start-page: 107
  year: 2016
  ident: ref_5
  article-title: Implicit slicing for functionally tailored additive manufacturing
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2016.04.003
– volume: 49
  start-page: 1
  year: 2018
  ident: ref_18
  article-title: PLSP based layered contour generation from point cloud for additive manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2017.05.006
– volume: 12
  start-page: 877
  year: 2018
  ident: ref_4
  article-title: Fast and accurate mesh registration applied to in-line dimensional inspection processes
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-017-0449-1
– volume: 91
  start-page: 273
  year: 2017
  ident: ref_29
  article-title: Modeling and process planning for curved layer fused deposition
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9743-5
– ident: ref_24
– ident: ref_1
  doi: 10.5772/61398
– ident: ref_26
– volume: 60
  start-page: 1
  year: 2019
  ident: ref_11
  article-title: A modular path planning solution for Wire + Arc Additive Manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.05.009
– volume: 77
  start-page: 475
  year: 1970
  ident: ref_31
  article-title: Critical Points and Curvature for Embedded Polyhedral Surfaces
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1970.11992523
– ident: ref_16
– volume: 36
  start-page: 1309
  year: 2004
  ident: ref_13
  article-title: NURBS-based adaptive slicing for efficient rapid prototyping
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2004.02.001
– volume: 142
  start-page: 010801
  year: 2019
  ident: ref_2
  article-title: Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4045055
– volume: 35
  start-page: 56
  year: 1992
  ident: ref_34
  article-title: A Generic Solution to Polygon Clipping
  publication-title: Commun. ACM
  doi: 10.1145/129902.129906
– volume: 92
  start-page: 1
  year: 2017
  ident: ref_17
  article-title: An optimal algorithm for 3D triangle mesh slicing
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2017.07.001
– volume: 18
  start-page: 213
  year: 2017
  ident: ref_23
  article-title: A fast, efficient direct slicing method for slender member structures
  publication-title: Addit. Manuf.
– volume: 37
  start-page: 669
  year: 2013
  ident: ref_25
  article-title: Orthogonal slicing for additive manufacturing
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2013.05.011
– ident: ref_35
– volume: 48
  start-page: 132
  year: 2017
  ident: ref_6
  article-title: A non-retraction path planning approach for extrusion-based additive manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2017.03.008
– volume: 100
  start-page: 1
  year: 2018
  ident: ref_28
  article-title: Volumetric covering print-paths for additive manufacturing of 3D models
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2018.02.006
– volume: 44
  start-page: 65
  year: 2017
  ident: ref_7
  article-title: Optimization of process planning for reducing material consumption in additive manufacturing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2017.05.003
– volume: 90
  start-page: 43
  year: 2020
  ident: ref_33
  article-title: Critical sets of PL and discrete Morse theory: A correspondence
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2020.05.020
– volume: 107
  start-page: 89
  year: 2019
  ident: ref_15
  article-title: Adaptive slicing based on efficient profile analysis
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2018.09.006
– volume: 37
  start-page: 139
  year: 2016
  ident: ref_27
  article-title: Automatic multi-direction slicing algorithms for wire based additive manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2015.09.002
– ident: ref_14
  doi: 10.1145/3072959.3126803
– ident: ref_3
  doi: 10.3390/app9061069
– ident: ref_10
– volume: 107
  start-page: 50
  year: 2019
  ident: ref_21
  article-title: Layered infill area generation from triply periodic minimal surfaces for additive manufacturing
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2018.09.005
– volume: 134
  start-page: 90
  year: 1998
  ident: ref_32
  article-title: Morse Theory for Cell Complexes
  publication-title: Adv. Math.
  doi: 10.1006/aima.1997.1650
– volume: 18
  start-page: 110
  year: 2017
  ident: ref_8
  article-title: Slicer and process improvements for open-source GMAW-based metal 3-D printing
  publication-title: Addit. Manuf.
– volume: 82
  start-page: 295
  year: 2019
  ident: ref_22
  article-title: Efficient slicing of Catmull-Clark solids for 3D printed objects with functionally graded material
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2019.05.023
– volume: 31
  start-page: 985
  year: 2019
  ident: ref_30
  article-title: Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01490-z
– volume: 25
  start-page: 275
  year: 2019
  ident: ref_12
  article-title: Designing for Big Area Additive Manufacturing
  publication-title: Addit. Manuf.
– ident: ref_19
– volume: 62
  start-page: 276
  year: 2018
  ident: ref_20
  article-title: Function representation based slicer for 3D printing
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2018.03.012
– ident: ref_9
  doi: 10.1016/j.procir.2018.03.315
SSID ssj0000913849
Score 2.1334233
Snippet In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1624
SubjectTerms additive manufacturing
level sets
mesh slicing
Morse theory
Title Level Sets of Weak-Morse Functions for Triangular Mesh Slicing
URI https://doaj.org/article/ce9ee7cbe45a4c62939ed1b1b2fc12af
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1i_2ENPwlKzu9lkL4KKpYjx0oq9hf2YWLC00sT_72wSSwTBi9dlCOHNZN8bdvOGkEFqPCBLA4t94Zl0vmBG2IJJGyVGp5orE050s2c1fpGPs3jWGfUV7oQ19sANcEMHGiBxFmRspFPIThp8ZCPLCxdxU4TdFzmv00zVe7CORCp180OewL5-iPpvnuKy4vIHBXWc-mtKGe2R3VYL0tvmHfbJFiwPyE62MVItD8nNU7jUQydQlXRV0Fcw7yxbrUugIySkumYoyk46xTpahqnya5pBOaeTRTgxfzsik9HD9H7M2pEHzAmhKqZBAATTNa2sBGxfHOorFzuwDrketFfiWgqfhnEOWoTvURTCoAizhlsnjklvuVrCCaGqQJydS2TsUPAgdjrySRx7GXHLuU375Oobg9y1buBhKMUix64gAJZ3AOuTwSb4ozHB-D3sLoC5CQnO1fUC5jNv85n_lc_T_3jIGdnmoS-u74Kdk161_oQLFA-Vvazr5Avp1cRA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Level+Sets+of+Weak-Morse+Functions+for+Triangular+Mesh+Slicing&rft.jtitle=Mathematics+%28Basel%29&rft.au=Daniel+Mejia-Parra&rft.au=Oscar+Ruiz-Salguero&rft.au=Carlos+Cadavid&rft.au=Aitor+Moreno&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=8&rft.issue=9&rft.spage=1624&rft_id=info:doi/10.3390%2Fmath8091624&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ce9ee7cbe45a4c62939ed1b1b2fc12af
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon