Level Sets of Weak-Morse Functions for Triangular Mesh Slicing
In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed 2-manifold triangular meshes (mesh slicing) is relevant for the generation of 3D printing patterns. Current slicing methods rely on the assumption...
Saved in:
Published in | Mathematics (Basel) Vol. 8; no. 9; p. 1624 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed 2-manifold triangular meshes (mesh slicing) is relevant for the generation of 3D printing patterns. Current slicing methods rely on the assumption that the function used to compute the level sets satisfies strong Morse conditions, rendering incorrect results when such a function is not a Morse one. To overcome this limitation, this manuscript presents an algorithm for the computation of mesh level sets under the presence of non-Morse degeneracies. To accomplish this, our method defines weak-Morse conditions, and presents a characterization of the possible types of degeneracies. This classification relies on the position of vertices, edges and faces in the neighborhood outside of the slicing plane. Finally, our algorithm produces oriented 1-manifold contours. Each contour orientation defines whether it belongs to a hole or to an external border. This definition is central for Additive Manufacturing purposes. We set up tests encompassing all known non-Morse degeneracies. Our algorithm successfully processes every generated case. Ongoing work addresses (a) a theoretical proof of completeness for our algorithm, (b) implementation of interval trees to improve the algorithm efficiency and, (c) integration into an Additive Manufacturing framework for industry applications. |
---|---|
AbstractList | In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed 2-manifold triangular meshes (mesh slicing) is relevant for the generation of 3D printing patterns. Current slicing methods rely on the assumption that the function used to compute the level sets satisfies strong Morse conditions, rendering incorrect results when such a function is not a Morse one. To overcome this limitation, this manuscript presents an algorithm for the computation of mesh level sets under the presence of non-Morse degeneracies. To accomplish this, our method defines weak-Morse conditions, and presents a characterization of the possible types of degeneracies. This classification relies on the position of vertices, edges and faces in the neighborhood outside of the slicing plane. Finally, our algorithm produces oriented 1-manifold contours. Each contour orientation defines whether it belongs to a hole or to an external border. This definition is central for Additive Manufacturing purposes. We set up tests encompassing all known non-Morse degeneracies. Our algorithm successfully processes every generated case. Ongoing work addresses (a) a theoretical proof of completeness for our algorithm, (b) implementation of interval trees to improve the algorithm efficiency and, (c) integration into an Additive Manufacturing framework for industry applications. |
Author | Moreno, Aitor Mejia-Parra, Daniel Ruiz-Salguero, Oscar Cadavid, Carlos Posada, Jorge |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-8126-0546 surname: Mejia-Parra fullname: Mejia-Parra, Daniel – sequence: 2 givenname: Oscar orcidid: 0000-0002-9674-8974 surname: Ruiz-Salguero fullname: Ruiz-Salguero, Oscar – sequence: 3 givenname: Carlos surname: Cadavid fullname: Cadavid, Carlos – sequence: 4 givenname: Aitor orcidid: 0000-0002-9088-7332 surname: Moreno fullname: Moreno, Aitor – sequence: 5 givenname: Jorge orcidid: 0000-0001-7985-9915 surname: Posada fullname: Posada, Jorge |
BookMark | eNptkEFLAzEQhYNUsNae_AO5y2qSSXc3F0GK1UKLhy14DNnsbJu63UiyFfz3bq1CEecyw2Pex8y7JIPWt0jINWe3AIrd7Uy3yZniqZBnZCiEyJKs1wcn8wUZx7hlfSkOuVRDcr_AD2xogV2kvqavaN6SpQ8R6Wzf2s75NtLaB7oKzrTrfWMCXWLc0KJx1rXrK3Jemybi-KePSDF7XE2fk8XL03z6sEgsQNolCgFRcK5UWkpkXFoFwk4slpZlElWVApNQ5RMQTAHwHKAGwxWURpQWRmR-pFbebPV7cDsTPrU3Tn8LPqy1CZ2zDWqLCjGzJcqJkTYVChRWvOSlqC0Xpu5Z_MiywccYsNbWdebwaBeMazRn-pCmPkmz99z88fze8N_2F4X7d2c |
CitedBy_id | crossref_primary_10_1016_j_cag_2024_103994 crossref_primary_10_3390_e23030373 |
Cites_doi | 10.1016/j.cad.2016.04.003 10.1016/j.rcim.2017.05.006 10.1007/s12008-017-0449-1 10.1007/s00170-016-9743-5 10.5772/61398 10.1016/j.rcim.2019.05.009 10.1080/00029890.1970.11992523 10.1016/j.cad.2004.02.001 10.1115/1.4045055 10.1145/129902.129906 10.1016/j.cad.2017.07.001 10.1016/j.cag.2013.05.011 10.1016/j.rcim.2017.03.008 10.1016/j.cad.2018.02.006 10.1016/j.jmsy.2017.05.003 10.1016/j.cag.2020.05.020 10.1016/j.cad.2018.09.006 10.1016/j.rcim.2015.09.002 10.1145/3072959.3126803 10.3390/app9061069 10.1016/j.cad.2018.09.005 10.1006/aima.1997.1650 10.1016/j.cag.2019.05.023 10.1007/s10845-019-01490-z 10.1016/j.cagd.2018.03.012 10.1016/j.procir.2018.03.315 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/math8091624 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_ce9ee7cbe45a4c62939ed1b1b2fc12af 10_3390_math8091624 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PQGLB PUEGO |
ID | FETCH-LOGICAL-c336t-9e3ee211996b4e014c932c5cebc074e9d63043d853209331833f3a193ba2bc3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Tue Jul 01 02:57:56 EDT 2025 Thu Apr 24 22:52:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-9e3ee211996b4e014c932c5cebc074e9d63043d853209331833f3a193ba2bc3 |
ORCID | 0000-0001-7985-9915 0000-0002-9674-8974 0000-0002-9088-7332 0000-0002-8126-0546 |
OpenAccessLink | https://doaj.org/article/ce9ee7cbe45a4c62939ed1b1b2fc12af |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce9ee7cbe45a4c62939ed1b1b2fc12af crossref_citationtrail_10_3390_math8091624 crossref_primary_10_3390_math8091624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Nilsiam (ref_8) 2017; 18 Mao (ref_15) 2019; 107 Banchoff (ref_31) 1970; 77 Steuben (ref_5) 2016; 77 Feng (ref_21) 2019; 107 ref_14 Forman (ref_32) 1998; 134 ref_35 Roschli (ref_12) 2019; 25 ref_10 Song (ref_20) 2018; 62 Michel (ref_11) 2019; 60 Zhao (ref_30) 2019; 31 Fugacci (ref_33) 2020; 90 ref_19 ref_16 Ding (ref_27) 2016; 37 Jin (ref_6) 2017; 48 Vatti (ref_34) 1992; 35 Ma (ref_13) 2004; 36 Luu (ref_22) 2019; 82 Segura (ref_4) 2018; 12 Minetto (ref_17) 2017; 92 Xu (ref_18) 2018; 49 ref_24 Messner (ref_23) 2017; 18 Hildebrand (ref_25) 2013; 37 Jin (ref_29) 2017; 91 ref_1 ref_3 Ezair (ref_28) 2018; 100 Zhao (ref_2) 2019; 142 ref_26 ref_9 Jin (ref_7) 2017; 44 |
References_xml | – volume: 77 start-page: 107 year: 2016 ident: ref_5 article-title: Implicit slicing for functionally tailored additive manufacturing publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2016.04.003 – volume: 49 start-page: 1 year: 2018 ident: ref_18 article-title: PLSP based layered contour generation from point cloud for additive manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2017.05.006 – volume: 12 start-page: 877 year: 2018 ident: ref_4 article-title: Fast and accurate mesh registration applied to in-line dimensional inspection processes publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-017-0449-1 – volume: 91 start-page: 273 year: 2017 ident: ref_29 article-title: Modeling and process planning for curved layer fused deposition publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9743-5 – ident: ref_24 – ident: ref_1 doi: 10.5772/61398 – ident: ref_26 – volume: 60 start-page: 1 year: 2019 ident: ref_11 article-title: A modular path planning solution for Wire + Arc Additive Manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.05.009 – volume: 77 start-page: 475 year: 1970 ident: ref_31 article-title: Critical Points and Curvature for Embedded Polyhedral Surfaces publication-title: Am. Math. Mon. doi: 10.1080/00029890.1970.11992523 – ident: ref_16 – volume: 36 start-page: 1309 year: 2004 ident: ref_13 article-title: NURBS-based adaptive slicing for efficient rapid prototyping publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2004.02.001 – volume: 142 start-page: 010801 year: 2019 ident: ref_2 article-title: Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4045055 – volume: 35 start-page: 56 year: 1992 ident: ref_34 article-title: A Generic Solution to Polygon Clipping publication-title: Commun. ACM doi: 10.1145/129902.129906 – volume: 92 start-page: 1 year: 2017 ident: ref_17 article-title: An optimal algorithm for 3D triangle mesh slicing publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2017.07.001 – volume: 18 start-page: 213 year: 2017 ident: ref_23 article-title: A fast, efficient direct slicing method for slender member structures publication-title: Addit. Manuf. – volume: 37 start-page: 669 year: 2013 ident: ref_25 article-title: Orthogonal slicing for additive manufacturing publication-title: Comput. Graph. doi: 10.1016/j.cag.2013.05.011 – ident: ref_35 – volume: 48 start-page: 132 year: 2017 ident: ref_6 article-title: A non-retraction path planning approach for extrusion-based additive manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2017.03.008 – volume: 100 start-page: 1 year: 2018 ident: ref_28 article-title: Volumetric covering print-paths for additive manufacturing of 3D models publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2018.02.006 – volume: 44 start-page: 65 year: 2017 ident: ref_7 article-title: Optimization of process planning for reducing material consumption in additive manufacturing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2017.05.003 – volume: 90 start-page: 43 year: 2020 ident: ref_33 article-title: Critical sets of PL and discrete Morse theory: A correspondence publication-title: Comput. Graph. doi: 10.1016/j.cag.2020.05.020 – volume: 107 start-page: 89 year: 2019 ident: ref_15 article-title: Adaptive slicing based on efficient profile analysis publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2018.09.006 – volume: 37 start-page: 139 year: 2016 ident: ref_27 article-title: Automatic multi-direction slicing algorithms for wire based additive manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2015.09.002 – ident: ref_14 doi: 10.1145/3072959.3126803 – ident: ref_3 doi: 10.3390/app9061069 – ident: ref_10 – volume: 107 start-page: 50 year: 2019 ident: ref_21 article-title: Layered infill area generation from triply periodic minimal surfaces for additive manufacturing publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2018.09.005 – volume: 134 start-page: 90 year: 1998 ident: ref_32 article-title: Morse Theory for Cell Complexes publication-title: Adv. Math. doi: 10.1006/aima.1997.1650 – volume: 18 start-page: 110 year: 2017 ident: ref_8 article-title: Slicer and process improvements for open-source GMAW-based metal 3-D printing publication-title: Addit. Manuf. – volume: 82 start-page: 295 year: 2019 ident: ref_22 article-title: Efficient slicing of Catmull-Clark solids for 3D printed objects with functionally graded material publication-title: Comput. Graph. doi: 10.1016/j.cag.2019.05.023 – volume: 31 start-page: 985 year: 2019 ident: ref_30 article-title: Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01490-z – volume: 25 start-page: 275 year: 2019 ident: ref_12 article-title: Designing for Big Area Additive Manufacturing publication-title: Addit. Manuf. – ident: ref_19 – volume: 62 start-page: 276 year: 2018 ident: ref_20 article-title: Function representation based slicer for 3D printing publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2018.03.012 – ident: ref_9 doi: 10.1016/j.procir.2018.03.315 |
SSID | ssj0000913849 |
Score | 2.1334233 |
Snippet | In the context of CAD CAM CAE (Computer-Aided Design, Manufacturing and Engineering) and Additive Manufacturing, the computation of level sets of closed... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1624 |
SubjectTerms | additive manufacturing level sets mesh slicing Morse theory |
Title | Level Sets of Weak-Morse Functions for Triangular Mesh Slicing |
URI | https://doaj.org/article/ce9ee7cbe45a4c62939ed1b1b2fc12af |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1i_2ENPwlKzu9lkL4KKpYjx0oq9hf2YWLC00sT_72wSSwTBi9dlCOHNZN8bdvOGkEFqPCBLA4t94Zl0vmBG2IJJGyVGp5orE050s2c1fpGPs3jWGfUV7oQ19sANcEMHGiBxFmRspFPIThp8ZCPLCxdxU4TdFzmv00zVe7CORCp180OewL5-iPpvnuKy4vIHBXWc-mtKGe2R3VYL0tvmHfbJFiwPyE62MVItD8nNU7jUQydQlXRV0Fcw7yxbrUugIySkumYoyk46xTpahqnya5pBOaeTRTgxfzsik9HD9H7M2pEHzAmhKqZBAATTNa2sBGxfHOorFzuwDrketFfiWgqfhnEOWoTvURTCoAizhlsnjklvuVrCCaGqQJydS2TsUPAgdjrySRx7GXHLuU375Oobg9y1buBhKMUix64gAJZ3AOuTwSb4ozHB-D3sLoC5CQnO1fUC5jNv85n_lc_T_3jIGdnmoS-u74Kdk161_oQLFA-Vvazr5Avp1cRA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Level+Sets+of+Weak-Morse+Functions+for+Triangular+Mesh+Slicing&rft.jtitle=Mathematics+%28Basel%29&rft.au=Daniel+Mejia-Parra&rft.au=Oscar+Ruiz-Salguero&rft.au=Carlos+Cadavid&rft.au=Aitor+Moreno&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=8&rft.issue=9&rft.spage=1624&rft_id=info:doi/10.3390%2Fmath8091624&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ce9ee7cbe45a4c62939ed1b1b2fc12af |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |