Interpolation of the Mean Anomalies for Cloud Filling in Land Surface Temperature and Normalized Difference Vegetation Index
When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with so...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 57; no. 8; pp. 6068 - 6078 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with some competitors. The method consists of: 1) defining a neighborhood for the target image from previous and subsequent images across previous and subsequent years; 2) computing the mean target image of the neighborhood; 3) estimating the anomalies in the target image by subtracting the mean image from the target image; 4) filtering the anomalies; 5) averaging the anomalies over a predefined window; 6) interpolating the averaged anomalies; and 7) adding the interpolated anomalies to the mean image. To assess the performance of the IMA method, both a real example and a simulation study are conducted with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and MODIS AQUA images captured over the region of Navarre (Spain) from 2011 to 2013. We analyze the land surface temperature (LST) day and night, and the normalized difference vegetation index (NDVI). In the simulation study, seven sizes of artificial clouds are randomly introduced to each image in the studied time series. The square root of the mean-squared prediction error (RMSE) between the original and the filled data is chosen as an indicator of the goodness of fit. The results show that the IMA method outperforms Timesat, Hants, and Gapfill (GF) in filling small, moderate, and big cloud gaps in both the day and night LST and NDVI data, reaching RMSE reductions of up to 23%. |
---|---|
AbstractList | When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with some competitors. The method consists of: 1) defining a neighborhood for the target image from previous and subsequent images across previous and subsequent years; 2) computing the mean target image of the neighborhood; 3) estimating the anomalies in the target image by subtracting the mean image from the target image; 4) filtering the anomalies; 5) averaging the anomalies over a predefined window; 6) interpolating the averaged anomalies; and 7) adding the interpolated anomalies to the mean image. To assess the performance of the IMA method, both a real example and a simulation study are conducted with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and MODIS AQUA images captured over the region of Navarre (Spain) from 2011 to 2013. We analyze the land surface temperature (LST) day and night, and the normalized difference vegetation index (NDVI). In the simulation study, seven sizes of artificial clouds are randomly introduced to each image in the studied time series. The square root of the mean-squared prediction error (RMSE) between the original and the filled data is chosen as an indicator of the goodness of fit. The results show that the IMA method outperforms Timesat, Hants, and Gapfill (GF) in filling small, moderate, and big cloud gaps in both the day and night LST and NDVI data, reaching RMSE reductions of up to 23%. |
Author | Ugarte, M. Dolores Genton, Marc G. Militino, Ana F. Perez-Goya, Unai |
Author_xml | – sequence: 1 givenname: Ana F. orcidid: 0000-0002-0631-3919 surname: Militino fullname: Militino, Ana F. email: militino@unavarra.es organization: Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain – sequence: 2 givenname: M. Dolores orcidid: 0000-0002-3505-8400 surname: Ugarte fullname: Ugarte, M. Dolores organization: Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain – sequence: 3 givenname: Unai orcidid: 0000-0002-2796-9079 surname: Perez-Goya fullname: Perez-Goya, Unai organization: Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain – sequence: 4 givenname: Marc G. orcidid: 0000-0001-6467-2998 surname: Genton fullname: Genton, Marc G. organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University Science and Technology (KAUST), Thuwal, Saudi Arabia |
BookMark | eNo9kNFKwzAUhoNMcJs-gHgT8LozSZO0uRzTzcFUcNPbkranM6NLatqCig9vS4dXB87__efAN0Ej6ywgdE3JjFKi7nar1-2MEapmTBFOVXiGxlSIOCCS8xEad4kMWKzYBZrU9YEQygWNxuh3bRvwlSt1Y5zFrsDNB-An0BbPrTvq0kCNC-fxonRtjpemLI3dY2PxRtscb1tf6AzwDo4VeN20HnC_f3a-7_5Aju9NUYAH21HvsIdmeLS2OXxdovNClzVcneYUvS0fdovHYPOyWi_mmyALQ9kEKuWSSIh5GrFIxyIExrjOIYIcuihNiWRM8zAKM6kyIHmsaMFTIToNEZEinKLb4W7l3WcLdZMcXOtt9zJhTFImBVGko-hAZd7VtYciqbw5av-dUJL0kpNectJLTk6Su87N0DEA8M_HUrGI8fAPPEp6nQ |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_su152416782 crossref_primary_10_1109_TGRS_2021_3053284 crossref_primary_10_1109_TGRS_2021_3124798 crossref_primary_10_1109_TGRS_2022_3140436 crossref_primary_10_1109_TGRS_2023_3324481 crossref_primary_10_1117_1_JRS_18_024507 crossref_primary_10_1016_j_atmosres_2021_105536 crossref_primary_10_1007_s10651_023_00590_7 crossref_primary_10_1007_s11222_024_10383_y crossref_primary_10_1016_j_jhydrol_2021_126930 crossref_primary_10_1080_17538947_2023_2283492 crossref_primary_10_3390_rs12162528 crossref_primary_10_1016_j_rse_2022_113422 crossref_primary_10_3390_rs12121934 crossref_primary_10_3390_rs14102381 crossref_primary_10_1109_JSTARS_2022_3155463 crossref_primary_10_1109_TGRS_2020_3038878 |
Cites_doi | 10.1080/01431169608949001 10.1016/j.rse.2012.06.006 10.1109/TGRS.2015.2502956 10.1016/j.asr.2005.08.037 10.1080/014311699213028 10.1016/j.isprsjprs.2012.06.003 10.1016/j.ecoinf.2010.12.003 10.14358/PERS.75.5.569 10.1890/03-5354 10.1007/s10021-013-9669-9 10.1016/j.rse.2012.04.024 10.3390/rs8060442 10.1080/01621459.1980.10477521 10.1016/j.rse.2016.11.023 10.1016/j.isprsjprs.2009.06.001 10.1016/j.rse.2014.11.005 10.1016/0034-4257(94)90057-4 10.1080/01431160500168686 10.3390/rs9010012 10.1016/S0034-4257(02)00093-7 10.1109/TGRS.2016.2580576 10.1109/TGRS.2009.2039797 10.1007/BF00116469 10.1016/j.rse.2012.04.001 10.1109/TGRS.2015.2431315 10.1016/j.rse.2012.04.019 10.1111/1467-9868.00374 10.1016/0016-7061(94)90027-2 10.1109/TGRS.2017.2785240 10.1080/014311600209814 10.1016/S0303-2434(01)85006-6 10.1016/j.rse.2008.03.009 10.1046/j.1365-2486.2003.00507.x 10.1109/TGRS.2017.2778420 10.3390/rs10030398 10.1002/joc.1583 10.1016/j.rse.2008.09.003 10.1016/j.rse.2010.02.017 10.1109/TGRS.2015.2475615 10.1109/36.508406 10.1016/j.rse.2010.12.010 10.1007/BFb0086566 10.1109/LGRS.2005.857030 10.1109/TGRS.2006.872089 10.1117/1.3265996 10.1016/j.rse.2015.03.018 10.1080/01431161.2017.1363432 10.1016/j.rse.2014.10.014 10.1017/CBO9781139924801 10.1109/LGRS.2011.2173290 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2019.2904193 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 6078 |
ExternalDocumentID | 10_1109_TGRS_2019_2904193 8692724 |
Genre | orig-research |
GrantInformation_xml | – fundername: MTM2017-82553-R (AEI/FEDER, UE) – fundername: PI015-2016 and PI043-2017 (Government of Navarra, Spain) – fundername: Fundación CANObra Social Caixa-UNED Pamplona 2016 and 2017 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c336t-9b4606e84b727a853e224ade7edeb46bb0622a4373c69ce0d891f4b5519370653 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Oct 10 19:57:21 EDT 2024 Fri Aug 23 02:58:45 EDT 2024 Mon Nov 04 11:47:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-9b4606e84b727a853e224ade7edeb46bb0622a4373c69ce0d891f4b5519370653 |
ORCID | 0000-0002-0631-3919 0000-0002-3505-8400 0000-0002-2796-9079 0000-0001-6467-2998 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8692724 |
PQID | 2261265090 |
PQPubID | 85465 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8692724 crossref_primary_10_1109_TGRS_2019_2904193 proquest_journals_2261265090 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref16 ref19 ref18 (ref62) 2009 ref51 eklundh (ref13) 2012 ref46 ref45 ref48 ref42 ref41 ref43 matheron (ref24) 1981 ref49 davino (ref60) 2013 neteler (ref58) 2013; 689 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 filipova-racheva (ref32) 2000 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 rouse (ref47) 1974; 351 (ref44) 2017 gerber (ref17) 2016 nychka (ref57) 2015 cressie (ref26) 2015 wan (ref50) 1996; 34 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 team (ref59) 2018 ref61 |
References_xml | – ident: ref14 doi: 10.1080/01431169608949001 – year: 2016 ident: ref17 publication-title: Predicting missing values in spatio-temporal satellite data contributor: fullname: gerber – ident: ref5 doi: 10.1016/j.rse.2012.06.006 – ident: ref23 doi: 10.1109/TGRS.2015.2502956 – ident: ref31 doi: 10.1016/j.asr.2005.08.037 – ident: ref28 doi: 10.1080/014311699213028 – year: 2015 ident: ref57 publication-title: FIELDS Tools for Spatial Data University Corporation for Atmospheric Research contributor: fullname: nychka – ident: ref34 doi: 10.1016/j.isprsjprs.2012.06.003 – ident: ref53 doi: 10.1016/j.ecoinf.2010.12.003 – ident: ref8 doi: 10.14358/PERS.75.5.569 – start-page: 77 year: 1981 ident: ref24 article-title: Splines and Kriging: Their formal equivalence publication-title: Down-to-Earth Statistics Solutions Looking for Geological Problems contributor: fullname: matheron – ident: ref48 doi: 10.1890/03-5354 – ident: ref7 doi: 10.1007/s10021-013-9669-9 – ident: ref49 doi: 10.1016/j.rse.2012.04.024 – ident: ref39 doi: 10.3390/rs8060442 – ident: ref30 doi: 10.1080/01621459.1980.10477521 – ident: ref42 doi: 10.1016/j.rse.2016.11.023 – ident: ref36 doi: 10.1016/j.isprsjprs.2009.06.001 – year: 2018 ident: ref59 publication-title: R A language and environment for statistical computing R foundation for statistical computing contributor: fullname: team – ident: ref10 doi: 10.1016/j.rse.2014.11.005 – ident: ref27 doi: 10.1016/0034-4257(94)90057-4 – ident: ref46 doi: 10.1080/01431160500168686 – start-page: 17 year: 2000 ident: ref32 article-title: Smoothing of NDVI time series curves for monitoring of vegetation changes in time publication-title: Proc Ecological Monitor Assessment Netw Nat Sci Meeting contributor: fullname: filipova-racheva – ident: ref38 doi: 10.3390/rs9010012 – ident: ref51 doi: 10.1016/S0034-4257(02)00093-7 – volume: 689 year: 2013 ident: ref58 publication-title: Open Source GIS A GRASS GIS Approach contributor: fullname: neteler – ident: ref12 doi: 10.1109/TGRS.2016.2580576 – ident: ref20 doi: 10.1109/TGRS.2009.2039797 – ident: ref25 doi: 10.1007/BF00116469 – ident: ref40 doi: 10.1016/j.rse.2012.04.001 – ident: ref3 doi: 10.1109/TGRS.2015.2431315 – ident: ref37 doi: 10.1016/j.rse.2012.04.019 – ident: ref52 doi: 10.1111/1467-9868.00374 – ident: ref18 doi: 10.1016/0016-7061(94)90027-2 – ident: ref16 doi: 10.1109/TGRS.2017.2785240 – ident: ref15 doi: 10.1080/014311600209814 – ident: ref56 doi: 10.1016/S0303-2434(01)85006-6 – ident: ref11 doi: 10.1016/j.rse.2008.03.009 – ident: ref45 doi: 10.1046/j.1365-2486.2003.00507.x – ident: ref22 doi: 10.1109/TGRS.2017.2778420 – ident: ref19 doi: 10.3390/rs10030398 – year: 2013 ident: ref60 publication-title: Quantile Regression Theory and Applications contributor: fullname: davino – year: 2015 ident: ref26 publication-title: Statistics for Spatio-Temporal Data contributor: fullname: cressie – ident: ref54 doi: 10.1002/joc.1583 – year: 2017 ident: ref44 publication-title: MODIS – ident: ref29 doi: 10.1016/j.rse.2008.09.003 – ident: ref1 doi: 10.1016/j.rse.2010.02.017 – ident: ref21 doi: 10.1109/TGRS.2015.2475615 – volume: 34 start-page: 892 year: 1996 ident: ref50 article-title: A generalized split-window algorithm for retrieving land-surface temperature from space publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/36.508406 contributor: fullname: wan – year: 2012 ident: ref13 publication-title: TIMESAT 3 2 with parallel processing Software Manual contributor: fullname: eklundh – ident: ref35 doi: 10.1016/j.rse.2010.12.010 – year: 2009 ident: ref62 publication-title: Apache Hadoop – ident: ref55 doi: 10.1007/BFb0086566 – ident: ref6 doi: 10.1109/LGRS.2005.857030 – ident: ref43 doi: 10.1109/TGRS.2006.872089 – ident: ref2 doi: 10.1117/1.3265996 – volume: 351 start-page: 309 year: 1974 ident: ref47 publication-title: NASA Special Pub contributor: fullname: rouse – ident: ref33 doi: 10.1016/j.rse.2015.03.018 – ident: ref41 doi: 10.1080/01431161.2017.1363432 – ident: ref4 doi: 10.1016/j.rse.2014.10.014 – ident: ref61 doi: 10.1017/CBO9781139924801 – ident: ref9 doi: 10.1109/LGRS.2011.2173290 |
SSID | ssj0014517 |
Score | 2.4508119 |
Snippet | When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 6068 |
SubjectTerms | Anomalies Artificial clouds Atmospheric effects Clouds Competitors Computer simulation Data Geostatistics Goodness of fit Image filters Imaging techniques Interpolation Land surface temperature moderate resolution imaging spectroradiometer (MODIS) MODIS Night Normalized difference vegetative index Remote monitoring Remote sensing Root-mean-square errors Simulation smoothing images Spectroradiometers Surface temperature Target recognition thin-plate splines Time series Time series analysis Vegetation Vegetation mapping |
Title | Interpolation of the Mean Anomalies for Cloud Filling in Land Surface Temperature and Normalized Difference Vegetation Index |
URI | https://ieeexplore.ieee.org/document/8692724 https://www.proquest.com/docview/2261265090 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJCQYeCPKSx6YEClp4jw8IqAURDtAQWxRYl9QRUkQbRbEj-fsuFUFDGxR4kSWz_F95_vuM8AxlyogRxc7QRoph0cUoBAI4Y7Ic0TJpeBGianXD7uP_PY5eG7A6awWBhEN-Qxb-tLk8lUpK71VdhaHwos8vgALkRB1rdYsY8CDti2NDh0KIjybwWy74mxwff-gSVyi5QmXmxzznA8yh6r8WomNe-msQW_asZpV8tqqJllLfv7QbPxvz9dh1eJMdl5PjA1oYLEJK3Pqg5uwZNifcrwFXzX1sKx5cazMGcFC1sO0YOdF-UZQHceM0C27GJWVYp2hEfJmw4LdpYViD9VHnkpkAyQMXms0M32_r_HwaPiJil3ac1io1RO-WIoju9FSjdvw2LkaXHQdeyyDI30_nDgi4xT1YMwzwj4puXskGJAqjFAhPcoyN_S8VEsmyVBIdFUs2jnPAo0VdVLV34HFoixwF1ikCG8EgU-LAhkwdeNMECATcajZogH6TTiZGip5r9U3EhO1uCLRVk20VRNr1SZs6YGfNbRj3oSDqWkT-3-OE08rp2nxQHfv77f2YVl_u6b6HcDi5KPCQ4Ifk-zIzLtvC9TVhg |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5iIDR22PixibIOfOCESEkT54ePVbdSoO2BtohblNgvUzVIEG0u1f54nh23QrDDblHiKJaf4_c9v-99BjjlUgXk6GInSCPl8IgCFAIh3BF5jii5FNwoMQ1HYX_Kr--D-w04X9fCIKIhn2FLX5pcviplpbfKLuJQeJHHP8AW4eo4rKu11jkDHrRtcXToUBjh2Rxm2xUXk8vbsaZxiZYnXG6yzK-8kDlW5d1abBxM7wsMV12reSV_WtUia8nlG9XG_-37Lny2SJN16qmxBxtY7MOnV_qD-7Bt-J9yfgB_a_JhWTPjWJkzAoZsiGnBOkX5SGAd54zwLes-lJVivZmR8mazgg3SQrFx9ZynEtkECYXXKs1M3x9pRPwwW6JiP-1JLNTqDn9bkiO70mKNX2Ha-zXp9h17MIMjfT9cOCLjFPdgzDNCPyk5fCQgkCqMUCE9yjI39LxUiybJUEh0VSzaOc8CjRZ1WtX_BptFWeAhsEgR4ggCn5YFMmDqxpkgSCbiUPNFA_QbcLYyVPJU628kJm5xRaKtmmirJtaqDTjQA79uaMe8Ac2VaRP7h84TT2unaflA9-jfb53Ax_5kOEgGV6Ob77Cjv1MT_5qwuXiu8AeBkUV2bObgC17W2NE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+of+the+Mean+Anomalies+for+Cloud+Filling+in+Land+Surface+Temperature+and+Normalized+Difference+Vegetation+Index&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Militino%2C+Ana+F.&rft.au=Ugarte%2C+M.+Dolores&rft.au=Perez-Goya%2C+Unai&rft.au=Genton%2C+Marc+G.&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=57&rft.issue=8&rft.spage=6068&rft.epage=6078&rft_id=info:doi/10.1109%2FTGRS.2019.2904193&rft.externalDocID=8692724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |