Interpolation of the Mean Anomalies for Cloud Filling in Land Surface Temperature and Normalized Difference Vegetation Index

When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with so...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 57; no. 8; pp. 6068 - 6078
Main Authors Militino, Ana F., Ugarte, M. Dolores, Perez-Goya, Unai, Genton, Marc G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with some competitors. The method consists of: 1) defining a neighborhood for the target image from previous and subsequent images across previous and subsequent years; 2) computing the mean target image of the neighborhood; 3) estimating the anomalies in the target image by subtracting the mean image from the target image; 4) filtering the anomalies; 5) averaging the anomalies over a predefined window; 6) interpolating the averaged anomalies; and 7) adding the interpolated anomalies to the mean image. To assess the performance of the IMA method, both a real example and a simulation study are conducted with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and MODIS AQUA images captured over the region of Navarre (Spain) from 2011 to 2013. We analyze the land surface temperature (LST) day and night, and the normalized difference vegetation index (NDVI). In the simulation study, seven sizes of artificial clouds are randomly introduced to each image in the studied time series. The square root of the mean-squared prediction error (RMSE) between the original and the filled data is chosen as an indicator of the goodness of fit. The results show that the IMA method outperforms Timesat, Hants, and Gapfill (GF) in filling small, moderate, and big cloud gaps in both the day and night LST and NDVI data, reaching RMSE reductions of up to 23%.
AbstractList When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with some competitors. The method consists of: 1) defining a neighborhood for the target image from previous and subsequent images across previous and subsequent years; 2) computing the mean target image of the neighborhood; 3) estimating the anomalies in the target image by subtracting the mean image from the target image; 4) filtering the anomalies; 5) averaging the anomalies over a predefined window; 6) interpolating the averaged anomalies; and 7) adding the interpolated anomalies to the mean image. To assess the performance of the IMA method, both a real example and a simulation study are conducted with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and MODIS AQUA images captured over the region of Navarre (Spain) from 2011 to 2013. We analyze the land surface temperature (LST) day and night, and the normalized difference vegetation index (NDVI). In the simulation study, seven sizes of artificial clouds are randomly introduced to each image in the studied time series. The square root of the mean-squared prediction error (RMSE) between the original and the filled data is chosen as an indicator of the goodness of fit. The results show that the IMA method outperforms Timesat, Hants, and Gapfill (GF) in filling small, moderate, and big cloud gaps in both the day and night LST and NDVI data, reaching RMSE reductions of up to 23%.
Author Ugarte, M. Dolores
Genton, Marc G.
Militino, Ana F.
Perez-Goya, Unai
Author_xml – sequence: 1
  givenname: Ana F.
  orcidid: 0000-0002-0631-3919
  surname: Militino
  fullname: Militino, Ana F.
  email: militino@unavarra.es
  organization: Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
– sequence: 2
  givenname: M. Dolores
  orcidid: 0000-0002-3505-8400
  surname: Ugarte
  fullname: Ugarte, M. Dolores
  organization: Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
– sequence: 3
  givenname: Unai
  orcidid: 0000-0002-2796-9079
  surname: Perez-Goya
  fullname: Perez-Goya, Unai
  organization: Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
– sequence: 4
  givenname: Marc G.
  orcidid: 0000-0001-6467-2998
  surname: Genton
  fullname: Genton, Marc G.
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University Science and Technology (KAUST), Thuwal, Saudi Arabia
BookMark eNo9kNFKwzAUhoNMcJs-gHgT8LozSZO0uRzTzcFUcNPbkranM6NLatqCig9vS4dXB87__efAN0Ej6ywgdE3JjFKi7nar1-2MEapmTBFOVXiGxlSIOCCS8xEad4kMWKzYBZrU9YEQygWNxuh3bRvwlSt1Y5zFrsDNB-An0BbPrTvq0kCNC-fxonRtjpemLI3dY2PxRtscb1tf6AzwDo4VeN20HnC_f3a-7_5Aju9NUYAH21HvsIdmeLS2OXxdovNClzVcneYUvS0fdovHYPOyWi_mmyALQ9kEKuWSSIh5GrFIxyIExrjOIYIcuihNiWRM8zAKM6kyIHmsaMFTIToNEZEinKLb4W7l3WcLdZMcXOtt9zJhTFImBVGko-hAZd7VtYciqbw5av-dUJL0kpNectJLTk6Su87N0DEA8M_HUrGI8fAPPEp6nQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_su152416782
crossref_primary_10_1109_TGRS_2021_3053284
crossref_primary_10_1109_TGRS_2021_3124798
crossref_primary_10_1109_TGRS_2022_3140436
crossref_primary_10_1109_TGRS_2023_3324481
crossref_primary_10_1117_1_JRS_18_024507
crossref_primary_10_1016_j_atmosres_2021_105536
crossref_primary_10_1007_s10651_023_00590_7
crossref_primary_10_1007_s11222_024_10383_y
crossref_primary_10_1016_j_jhydrol_2021_126930
crossref_primary_10_1080_17538947_2023_2283492
crossref_primary_10_3390_rs12162528
crossref_primary_10_1016_j_rse_2022_113422
crossref_primary_10_3390_rs12121934
crossref_primary_10_3390_rs14102381
crossref_primary_10_1109_JSTARS_2022_3155463
crossref_primary_10_1109_TGRS_2020_3038878
Cites_doi 10.1080/01431169608949001
10.1016/j.rse.2012.06.006
10.1109/TGRS.2015.2502956
10.1016/j.asr.2005.08.037
10.1080/014311699213028
10.1016/j.isprsjprs.2012.06.003
10.1016/j.ecoinf.2010.12.003
10.14358/PERS.75.5.569
10.1890/03-5354
10.1007/s10021-013-9669-9
10.1016/j.rse.2012.04.024
10.3390/rs8060442
10.1080/01621459.1980.10477521
10.1016/j.rse.2016.11.023
10.1016/j.isprsjprs.2009.06.001
10.1016/j.rse.2014.11.005
10.1016/0034-4257(94)90057-4
10.1080/01431160500168686
10.3390/rs9010012
10.1016/S0034-4257(02)00093-7
10.1109/TGRS.2016.2580576
10.1109/TGRS.2009.2039797
10.1007/BF00116469
10.1016/j.rse.2012.04.001
10.1109/TGRS.2015.2431315
10.1016/j.rse.2012.04.019
10.1111/1467-9868.00374
10.1016/0016-7061(94)90027-2
10.1109/TGRS.2017.2785240
10.1080/014311600209814
10.1016/S0303-2434(01)85006-6
10.1016/j.rse.2008.03.009
10.1046/j.1365-2486.2003.00507.x
10.1109/TGRS.2017.2778420
10.3390/rs10030398
10.1002/joc.1583
10.1016/j.rse.2008.09.003
10.1016/j.rse.2010.02.017
10.1109/TGRS.2015.2475615
10.1109/36.508406
10.1016/j.rse.2010.12.010
10.1007/BFb0086566
10.1109/LGRS.2005.857030
10.1109/TGRS.2006.872089
10.1117/1.3265996
10.1016/j.rse.2015.03.018
10.1080/01431161.2017.1363432
10.1016/j.rse.2014.10.014
10.1017/CBO9781139924801
10.1109/LGRS.2011.2173290
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2904193
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 6078
ExternalDocumentID 10_1109_TGRS_2019_2904193
8692724
Genre orig-research
GrantInformation_xml – fundername: MTM2017-82553-R (AEI/FEDER, UE)
– fundername: PI015-2016 and PI043-2017 (Government of Navarra, Spain)
– fundername: Fundación CANObra Social Caixa-UNED Pamplona 2016 and 2017
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c336t-9b4606e84b727a853e224ade7edeb46bb0622a4373c69ce0d891f4b5519370653
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Oct 10 19:57:21 EDT 2024
Fri Aug 23 02:58:45 EDT 2024
Mon Nov 04 11:47:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-9b4606e84b727a853e224ade7edeb46bb0622a4373c69ce0d891f4b5519370653
ORCID 0000-0002-0631-3919
0000-0002-3505-8400
0000-0002-2796-9079
0000-0001-6467-2998
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8692724
PQID 2261265090
PQPubID 85465
PageCount 11
ParticipantIDs ieee_primary_8692724
crossref_primary_10_1109_TGRS_2019_2904193
proquest_journals_2261265090
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref16
ref19
ref18
(ref62) 2009
ref51
eklundh (ref13) 2012
ref46
ref45
ref48
ref42
ref41
ref43
matheron (ref24) 1981
ref49
davino (ref60) 2013
neteler (ref58) 2013; 689
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
filipova-racheva (ref32) 2000
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
rouse (ref47) 1974; 351
(ref44) 2017
gerber (ref17) 2016
nychka (ref57) 2015
cressie (ref26) 2015
wan (ref50) 1996; 34
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
team (ref59) 2018
ref61
References_xml – ident: ref14
  doi: 10.1080/01431169608949001
– year: 2016
  ident: ref17
  publication-title: Predicting missing values in spatio-temporal satellite data
  contributor:
    fullname: gerber
– ident: ref5
  doi: 10.1016/j.rse.2012.06.006
– ident: ref23
  doi: 10.1109/TGRS.2015.2502956
– ident: ref31
  doi: 10.1016/j.asr.2005.08.037
– ident: ref28
  doi: 10.1080/014311699213028
– year: 2015
  ident: ref57
  publication-title: FIELDS Tools for Spatial Data University Corporation for Atmospheric Research
  contributor:
    fullname: nychka
– ident: ref34
  doi: 10.1016/j.isprsjprs.2012.06.003
– ident: ref53
  doi: 10.1016/j.ecoinf.2010.12.003
– ident: ref8
  doi: 10.14358/PERS.75.5.569
– start-page: 77
  year: 1981
  ident: ref24
  article-title: Splines and Kriging: Their formal equivalence
  publication-title: Down-to-Earth Statistics Solutions Looking for Geological Problems
  contributor:
    fullname: matheron
– ident: ref48
  doi: 10.1890/03-5354
– ident: ref7
  doi: 10.1007/s10021-013-9669-9
– ident: ref49
  doi: 10.1016/j.rse.2012.04.024
– ident: ref39
  doi: 10.3390/rs8060442
– ident: ref30
  doi: 10.1080/01621459.1980.10477521
– ident: ref42
  doi: 10.1016/j.rse.2016.11.023
– ident: ref36
  doi: 10.1016/j.isprsjprs.2009.06.001
– year: 2018
  ident: ref59
  publication-title: R A language and environment for statistical computing R foundation for statistical computing
  contributor:
    fullname: team
– ident: ref10
  doi: 10.1016/j.rse.2014.11.005
– ident: ref27
  doi: 10.1016/0034-4257(94)90057-4
– ident: ref46
  doi: 10.1080/01431160500168686
– start-page: 17
  year: 2000
  ident: ref32
  article-title: Smoothing of NDVI time series curves for monitoring of vegetation changes in time
  publication-title: Proc Ecological Monitor Assessment Netw Nat Sci Meeting
  contributor:
    fullname: filipova-racheva
– ident: ref38
  doi: 10.3390/rs9010012
– ident: ref51
  doi: 10.1016/S0034-4257(02)00093-7
– volume: 689
  year: 2013
  ident: ref58
  publication-title: Open Source GIS A GRASS GIS Approach
  contributor:
    fullname: neteler
– ident: ref12
  doi: 10.1109/TGRS.2016.2580576
– ident: ref20
  doi: 10.1109/TGRS.2009.2039797
– ident: ref25
  doi: 10.1007/BF00116469
– ident: ref40
  doi: 10.1016/j.rse.2012.04.001
– ident: ref3
  doi: 10.1109/TGRS.2015.2431315
– ident: ref37
  doi: 10.1016/j.rse.2012.04.019
– ident: ref52
  doi: 10.1111/1467-9868.00374
– ident: ref18
  doi: 10.1016/0016-7061(94)90027-2
– ident: ref16
  doi: 10.1109/TGRS.2017.2785240
– ident: ref15
  doi: 10.1080/014311600209814
– ident: ref56
  doi: 10.1016/S0303-2434(01)85006-6
– ident: ref11
  doi: 10.1016/j.rse.2008.03.009
– ident: ref45
  doi: 10.1046/j.1365-2486.2003.00507.x
– ident: ref22
  doi: 10.1109/TGRS.2017.2778420
– ident: ref19
  doi: 10.3390/rs10030398
– year: 2013
  ident: ref60
  publication-title: Quantile Regression Theory and Applications
  contributor:
    fullname: davino
– year: 2015
  ident: ref26
  publication-title: Statistics for Spatio-Temporal Data
  contributor:
    fullname: cressie
– ident: ref54
  doi: 10.1002/joc.1583
– year: 2017
  ident: ref44
  publication-title: MODIS
– ident: ref29
  doi: 10.1016/j.rse.2008.09.003
– ident: ref1
  doi: 10.1016/j.rse.2010.02.017
– ident: ref21
  doi: 10.1109/TGRS.2015.2475615
– volume: 34
  start-page: 892
  year: 1996
  ident: ref50
  article-title: A generalized split-window algorithm for retrieving land-surface temperature from space
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.508406
  contributor:
    fullname: wan
– year: 2012
  ident: ref13
  publication-title: TIMESAT 3 2 with parallel processing Software Manual
  contributor:
    fullname: eklundh
– ident: ref35
  doi: 10.1016/j.rse.2010.12.010
– year: 2009
  ident: ref62
  publication-title: Apache Hadoop
– ident: ref55
  doi: 10.1007/BFb0086566
– ident: ref6
  doi: 10.1109/LGRS.2005.857030
– ident: ref43
  doi: 10.1109/TGRS.2006.872089
– ident: ref2
  doi: 10.1117/1.3265996
– volume: 351
  start-page: 309
  year: 1974
  ident: ref47
  publication-title: NASA Special Pub
  contributor:
    fullname: rouse
– ident: ref33
  doi: 10.1016/j.rse.2015.03.018
– ident: ref41
  doi: 10.1080/01431161.2017.1363432
– ident: ref4
  doi: 10.1016/j.rse.2014.10.014
– ident: ref61
  doi: 10.1017/CBO9781139924801
– ident: ref9
  doi: 10.1109/LGRS.2011.2173290
SSID ssj0014517
Score 2.4508119
Snippet When monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 6068
SubjectTerms Anomalies
Artificial clouds
Atmospheric effects
Clouds
Competitors
Computer simulation
Data
Geostatistics
Goodness of fit
Image filters
Imaging techniques
Interpolation
Land surface temperature
moderate resolution imaging spectroradiometer (MODIS)
MODIS
Night
Normalized difference vegetative index
Remote monitoring
Remote sensing
Root-mean-square errors
Simulation
smoothing images
Spectroradiometers
Surface temperature
Target recognition
thin-plate splines
Time series
Time series analysis
Vegetation
Vegetation mapping
Title Interpolation of the Mean Anomalies for Cloud Filling in Land Surface Temperature and Normalized Difference Vegetation Index
URI https://ieeexplore.ieee.org/document/8692724
https://www.proquest.com/docview/2261265090
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJCQYeCPKSx6YEClp4jw8IqAURDtAQWxRYl9QRUkQbRbEj-fsuFUFDGxR4kSWz_F95_vuM8AxlyogRxc7QRoph0cUoBAI4Y7Ic0TJpeBGianXD7uP_PY5eG7A6awWBhEN-Qxb-tLk8lUpK71VdhaHwos8vgALkRB1rdYsY8CDti2NDh0KIjybwWy74mxwff-gSVyi5QmXmxzznA8yh6r8WomNe-msQW_asZpV8tqqJllLfv7QbPxvz9dh1eJMdl5PjA1oYLEJK3Pqg5uwZNifcrwFXzX1sKx5cazMGcFC1sO0YOdF-UZQHceM0C27GJWVYp2hEfJmw4LdpYViD9VHnkpkAyQMXms0M32_r_HwaPiJil3ac1io1RO-WIoju9FSjdvw2LkaXHQdeyyDI30_nDgi4xT1YMwzwj4puXskGJAqjFAhPcoyN_S8VEsmyVBIdFUs2jnPAo0VdVLV34HFoixwF1ikCG8EgU-LAhkwdeNMECATcajZogH6TTiZGip5r9U3EhO1uCLRVk20VRNr1SZs6YGfNbRj3oSDqWkT-3-OE08rp2nxQHfv77f2YVl_u6b6HcDi5KPCQ4Ifk-zIzLtvC9TVhg
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5iIDR22PixibIOfOCESEkT54ePVbdSoO2BtohblNgvUzVIEG0u1f54nh23QrDDblHiKJaf4_c9v-99BjjlUgXk6GInSCPl8IgCFAIh3BF5jii5FNwoMQ1HYX_Kr--D-w04X9fCIKIhn2FLX5pcviplpbfKLuJQeJHHP8AW4eo4rKu11jkDHrRtcXToUBjh2Rxm2xUXk8vbsaZxiZYnXG6yzK-8kDlW5d1abBxM7wsMV12reSV_WtUia8nlG9XG_-37Lny2SJN16qmxBxtY7MOnV_qD-7Bt-J9yfgB_a_JhWTPjWJkzAoZsiGnBOkX5SGAd54zwLes-lJVivZmR8mazgg3SQrFx9ZynEtkECYXXKs1M3x9pRPwwW6JiP-1JLNTqDn9bkiO70mKNX2Ha-zXp9h17MIMjfT9cOCLjFPdgzDNCPyk5fCQgkCqMUCE9yjI39LxUiybJUEh0VSzaOc8CjRZ1WtX_BptFWeAhsEgR4ggCn5YFMmDqxpkgSCbiUPNFA_QbcLYyVPJU628kJm5xRaKtmmirJtaqDTjQA79uaMe8Ac2VaRP7h84TT2unaflA9-jfb53Ax_5kOEgGV6Ob77Cjv1MT_5qwuXiu8AeBkUV2bObgC17W2NE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+of+the+Mean+Anomalies+for+Cloud+Filling+in+Land+Surface+Temperature+and+Normalized+Difference+Vegetation+Index&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Militino%2C+Ana+F.&rft.au=Ugarte%2C+M.+Dolores&rft.au=Perez-Goya%2C+Unai&rft.au=Genton%2C+Marc+G.&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=57&rft.issue=8&rft.spage=6068&rft.epage=6078&rft_id=info:doi/10.1109%2FTGRS.2019.2904193&rft.externalDocID=8692724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon