Author Duan, Jinqiao
Ervin, Vincent J.
Author_xml – sequence: 1
  givenname: Jinqiao
  surname: Duan
  fullname: Duan, Jinqiao
  email: duan@math.clemson.edu
– sequence: 2
  givenname: Vincent J.
  surname: Ervin
  fullname: Ervin, Vincent J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5681127$$DView record in Pascal Francis
BookMark eNqFkM1KAzEURoNUsK0-gjALF7oYTSaTTIILkVJ_sNBFFboLdzIJjbYzNUkL3fkOvqFPYn-kCzdd3c05H9zTQa26qQ1C5wRfE0z4zQhTnqUs5-NLKa8wzphMx0eoTURBU5YR1kLtPXKCOiG8Y4xJQXkbkWGdxIlJQmz0BEJ0OnlZeJg1sfn5-h65JYSJq8PHKjGfC4iuqU_RsYVpMGd_t4veHvqvvad0MHx87t0PUk0pj6mUzBhrraQUDK00lDkuSymYLoTQ1ORWMqhywm2Ry8xKCxw4rkqthQBrBO2ii93uHIKGqfVQaxfU3LsZ-JViXBCSFWuM7TDtmxC8sXuCYLXJo7Z51OZ3JaXa5lHjtXf7z9Mubh-MHtz0oH23s826wNIZr4J2ptamct7oqKrGHVj4BcrshCw
CODEN NOANDD
CitedBy_id crossref_primary_10_1016_j_spl_2013_12_022
crossref_primary_10_1016_j_compchemeng_2004_09_006
crossref_primary_10_1051_cocv_2022014
crossref_primary_10_1142_S0219493701000126
crossref_primary_10_1142_S0219493705001523
crossref_primary_10_1142_S021949372250023X
crossref_primary_10_1142_S0219493707002104
crossref_primary_10_1016_j_spl_2017_03_024
crossref_primary_10_1016_j_physd_2017_02_011
crossref_primary_10_1017_S0956792512000125
crossref_primary_10_1016_j_na_2013_01_005
crossref_primary_10_1016_S1468_1218_01_00013_X
crossref_primary_10_1080_07362990701857335
crossref_primary_10_1080_07362994_2019_1709503
crossref_primary_10_1142_S0219493716500192
crossref_primary_10_1007_s40072_018_0116_y
crossref_primary_10_4236_jamp_2018_611198
crossref_primary_10_1016_j_jmaa_2006_07_091
crossref_primary_10_1007_s10255_018_0769_3
crossref_primary_10_1016_j_rinam_2023_100383
crossref_primary_10_1142_S0219493722400378
crossref_primary_10_1016_j_physa_2019_123582
crossref_primary_10_1142_S0219477522500511
Cites_doi 10.1007/BF01048261
10.1006/jdeq.1997.3371
10.1002/cpa.3160470304
10.1007/978-1-4612-5561-1
10.1007/978-1-4684-0313-8
10.1017/CBO9780511666223
10.1103/PhysRevLett.75.4464
10.1006/jmaa.1998.6128
10.1103/PhysRevE.54.3577
10.1016/0375-9601(94)90775-7
10.1007/978-1-4612-0981-2
10.1007/BF02097064
10.1007/BF02429875
10.1016/0167-2789(90)90046-R
10.57262/die/1370267723
10.1017/CBO9780511662829
10.1080/03605308908820597
ContentType Journal Article
Copyright 2001 Elsevier Science B.V.
Copyright_xml – notice: 2001 Elsevier Science B.V.
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0362-546X(99)00259-X
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1873-5215
EndPage 216
ExternalDocumentID 5681127
10_1016_S0362_546X_99_00259_X
S0362546X9900259X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c336t-995eefff933ae3dcab40bb985c788c3e4f95ad416f7492f9fa6a60dbcc88afe83
IEDL.DBID AIKHN
ISSN 0362-546X
IngestDate Mon Jul 21 09:15:54 EDT 2025
Thu Apr 24 23:02:09 EDT 2025
Tue Jul 01 01:34:31 EDT 2025
Fri Feb 23 02:22:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Random forcing
Kuramoto–Sivashinsky
Random noise
Existence condition
Dynamical systems
Uniqueness theorem
Bounded solution
Non linear operator
Dirichlet domain
Fixed point theorem
Solutions
Differential equations
Infinite dimension
Kuramoto Sivashinsky equation
Wiener processes
Stochastic equation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-995eefff933ae3dcab40bb985c788c3e4f95ad416f7492f9fa6a60dbcc88afe83
PageCount 12
ParticipantIDs pascalfrancis_primary_5681127
crossref_primary_10_1016_S0362_546X_99_00259_X
crossref_citationtrail_10_1016_S0362_546X_99_00259_X
elsevier_sciencedirect_doi_10_1016_S0362_546X_99_00259_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-04-01
PublicationDateYYYYMMDD 2001-04-01
PublicationDate_xml – month: 04
  year: 2001
  text: 2001-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Nonlinear analysis
PublicationYear 2001
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Foias, Nicolaenko, Sell, Temam (BIB10) 1988; 67
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer, New York, 1990.
Cuerno, Makse, Tomassone, Harrington, Stanley (BIB4) 1995; 75
G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.
R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
Collet, Eckmann, Epstein, Stubbe (BIB3) 1993; 152
Temam, Wang (BIB19) 1994; 7
Il'yashenko (BIB12) 1992; 4
Jolly, Kevrekidis, Titi (BIB13) 1990; 44
Nicolaenko, Scheurer, Temam (BIB15) 1989; 14
Ercolani, McLaughlin, Poitner (BIB9) 1993; 3
G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
Goodman (BIB11) 1994; 47
Lauritsen, Cuerno, Makse (BIB14) 1996; 54
Duan, Ervin (BIB7) 1998; 2
Robinson (BIB17) 1994; 184
Brannan, Duan, Wanner (BIB2) 1998; 228
J. Duan, H.V. Ly, E.S. Titi, The effect of dispersion on the dynamics of the Kuramoto–Sivashinsky equation, preprint, 1995.
10.1016/S0362-546X(99)00259-X_BIB1
Lauritsen (10.1016/S0362-546X(99)00259-X_BIB14) 1996; 54
Collet (10.1016/S0362-546X(99)00259-X_BIB3) 1993; 152
Robinson (10.1016/S0362-546X(99)00259-X_BIB17) 1994; 184
Goodman (10.1016/S0362-546X(99)00259-X_BIB11) 1994; 47
10.1016/S0362-546X(99)00259-X_BIB20
Foias (10.1016/S0362-546X(99)00259-X_BIB10) 1988; 67
Jolly (10.1016/S0362-546X(99)00259-X_BIB13) 1990; 44
Temam (10.1016/S0362-546X(99)00259-X_BIB19) 1994; 7
Il'yashenko (10.1016/S0362-546X(99)00259-X_BIB12) 1992; 4
Ercolani (10.1016/S0362-546X(99)00259-X_BIB9) 1993; 3
10.1016/S0362-546X(99)00259-X_BIB18
10.1016/S0362-546X(99)00259-X_BIB16
Duan (10.1016/S0362-546X(99)00259-X_BIB7) 1998; 2
Cuerno (10.1016/S0362-546X(99)00259-X_BIB4) 1995; 75
Nicolaenko (10.1016/S0362-546X(99)00259-X_BIB15) 1989; 14
Brannan (10.1016/S0362-546X(99)00259-X_BIB2) 1998; 228
10.1016/S0362-546X(99)00259-X_BIB8
10.1016/S0362-546X(99)00259-X_BIB6
10.1016/S0362-546X(99)00259-X_BIB5
References_xml – volume: 152
  start-page: 203
  year: 1993
  end-page: 214
  ident: BIB3
  article-title: A global attracting set for the Kuramoto–Sivashinsky equation
  publication-title: Comm. Math. Phys.
– volume: 2
  start-page: 243
  year: 1998
  end-page: 266
  ident: BIB7
  article-title: Dynamics of a nonlocal Kuramoto–Sivashinsky equation
  publication-title: J. Differential Equations
– volume: 14
  start-page: 245
  year: 1989
  end-page: 297
  ident: BIB15
  article-title: Some global dynamical properties of a class of pattern formation equations
  publication-title: Comm. PDEs
– reference: J. Duan, H.V. Ly, E.S. Titi, The effect of dispersion on the dynamics of the Kuramoto–Sivashinsky equation, preprint, 1995.
– volume: 67
  start-page: 197
  year: 1988
  end-page: 226
  ident: BIB10
  article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension
  publication-title: J. Math. Pures Appl.
– volume: 47
  start-page: 293
  year: 1994
  end-page: 306
  ident: BIB11
  article-title: Stability of the Kuramoto–Sivashinsky and related systems
  publication-title: Comm. Pure Appl. Math.
– volume: 44
  start-page: 38
  year: 1990
  end-page: 60
  ident: BIB13
  article-title: Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations
  publication-title: Physica D
– volume: 75
  start-page: 4464
  year: 1995
  end-page: 4467
  ident: BIB4
  article-title: Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 3577
  year: 1996
  end-page: 3580
  ident: BIB14
  article-title: Noisy Kuramoto–Sivashinsky equation for an erosion model
  publication-title: Phys. Rev. E
– reference: R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
– volume: 7
  start-page: 1095
  year: 1994
  end-page: 1108
  ident: BIB19
  article-title: Estimates on the lowest dimension of inertial manifolds for the Kuramoto–Sivashinsky equation in the general case
  publication-title: Differential Integral Equations
– reference: E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer, New York, 1990.
– volume: 4
  start-page: 585
  year: 1992
  end-page: 615
  ident: BIB12
  article-title: Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation
  publication-title: J. Dynamics Differential Equations
– reference: G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
– reference: A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.
– volume: 228
  start-page: 221
  year: 1998
  end-page: 233
  ident: BIB2
  article-title: Dissipative quasigeostrophic dynamics under random forcing
  publication-title: J. Math. Anal. Appl.
– reference: G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
– volume: 3
  start-page: 477
  year: 1993
  end-page: 539
  ident: BIB9
  article-title: Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis
  publication-title: J. Nonlinear Sci.
– volume: 184
  start-page: 190
  year: 1994
  end-page: 193
  ident: BIB17
  article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation
  publication-title: Phys. Lett. A
– reference: R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
– volume: 4
  start-page: 585
  year: 1992
  ident: 10.1016/S0362-546X(99)00259-X_BIB12
  article-title: Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation
  publication-title: J. Dynamics Differential Equations
  doi: 10.1007/BF01048261
– volume: 2
  start-page: 243
  year: 1998
  ident: 10.1016/S0362-546X(99)00259-X_BIB7
  article-title: Dynamics of a nonlocal Kuramoto–Sivashinsky equation
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1997.3371
– volume: 47
  start-page: 293
  year: 1994
  ident: 10.1016/S0362-546X(99)00259-X_BIB11
  article-title: Stability of the Kuramoto–Sivashinsky and related systems
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160470304
– ident: 10.1016/S0362-546X(99)00259-X_BIB16
  doi: 10.1007/978-1-4612-5561-1
– ident: 10.1016/S0362-546X(99)00259-X_BIB18
  doi: 10.1007/978-1-4684-0313-8
– ident: 10.1016/S0362-546X(99)00259-X_BIB5
  doi: 10.1017/CBO9780511666223
– volume: 75
  start-page: 4464
  year: 1995
  ident: 10.1016/S0362-546X(99)00259-X_BIB4
  article-title: Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4464
– volume: 228
  start-page: 221
  year: 1998
  ident: 10.1016/S0362-546X(99)00259-X_BIB2
  article-title: Dissipative quasigeostrophic dynamics under random forcing
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1998.6128
– volume: 54
  start-page: 3577
  year: 1996
  ident: 10.1016/S0362-546X(99)00259-X_BIB14
  article-title: Noisy Kuramoto–Sivashinsky equation for an erosion model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.3577
– volume: 184
  start-page: 190
  year: 1994
  ident: 10.1016/S0362-546X(99)00259-X_BIB17
  article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(94)90775-7
– ident: 10.1016/S0362-546X(99)00259-X_BIB20
  doi: 10.1007/978-1-4612-0981-2
– volume: 152
  start-page: 203
  year: 1993
  ident: 10.1016/S0362-546X(99)00259-X_BIB3
  article-title: A global attracting set for the Kuramoto–Sivashinsky equation
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF02097064
– volume: 3
  start-page: 477
  year: 1993
  ident: 10.1016/S0362-546X(99)00259-X_BIB9
  article-title: Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02429875
– volume: 67
  start-page: 197
  year: 1988
  ident: 10.1016/S0362-546X(99)00259-X_BIB10
  article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension
  publication-title: J. Math. Pures Appl.
– ident: 10.1016/S0362-546X(99)00259-X_BIB8
– volume: 44
  start-page: 38
  year: 1990
  ident: 10.1016/S0362-546X(99)00259-X_BIB13
  article-title: Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90046-R
– volume: 7
  start-page: 1095
  year: 1994
  ident: 10.1016/S0362-546X(99)00259-X_BIB19
  article-title: Estimates on the lowest dimension of inertial manifolds for the Kuramoto–Sivashinsky equation in the general case
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1370267723
– ident: 10.1016/S0362-546X(99)00259-X_BIB1
– ident: 10.1016/S0362-546X(99)00259-X_BIB6
  doi: 10.1017/CBO9780511662829
– volume: 14
  start-page: 245
  year: 1989
  ident: 10.1016/S0362-546X(99)00259-X_BIB15
  article-title: Some global dynamical properties of a class of pattern formation equations
  publication-title: Comm. PDEs
  doi: 10.1080/03605308908820597
SSID ssj0001736
Score 1.7695106
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 205
SubjectTerms Exact sciences and technology
Function theory, analysis
Kuramoto–Sivashinsky
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Partial differential equations
Physics
Probability theory, stochastic processes, and statistics
Random forcing
Stochastic processes
Title On the stochastic Kuramoto–Sivashinsky equation
URI https://dx.doi.org/10.1016/S0362-546X(99)00259-X
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5Bu4AQb0R5KQMDDKG0TpzcWFVUBQQMgJQtsh1bVKC29IHEgvgP_EN-CefEbWFASIy2dJfo7Hz3OTp_B3BIFEPHMhM-ZTP0Ay6Vj0ZnviaKFCpueCTtD_2ra96-Dy6SMJmD5uQujC2rdNhfYHqO1m6m6qJZ7Xc61VuLvWHAE8JTStyYzEO5zpDHJSg3zi_b11NArkWMT1SkrMHsIk_hJJ88QjzO_fjJbylqqS-GFDhTdLz4loZaq7Ds-KPXKF5xDeZ0dx1WHJf03Jc6XIfFb0KDNLqaqrMON6B20_Vo6BHvUw_CCjV7l-OBoEXrfb5_3HZe8gZLw8dXTz8XSuCbcN86u2u2fdc6wVeM8ZGPGGptjEHGhGaZEjI4lRLjUNGRVzEdGAxFRmTMRAHWDRrBBT_NpFJxLIyO2RaUur2u3gZP1nXIjIzoKEvcCcmVwlgybsXRtBayAsEkWqlyuuK2vcVTOisgoyCnNsgpYpoHOU0qcDI16xfCGn8ZxJOlSH_skJTA_y_T_R9LN32gVV-r1aOd_7vehYWiKs3W8uxBaTQY632iKSN5APMnb7UDtxm_AL6F5Ig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgBCPAqI8szAAEMorRMnHqsKVCgtAyBls2zHFhWolD6Q2PgP_EN-CefELTCgSoy2dJfo7Hz3OTp_B3CEFEPHMhU-ZjPmB1Qqnxmd-hopUqiooZG0P_TbHdq8D66SMClAY3IXxpZVOuzPMT1DazdTcdGs9Lvdyq3F3jCgCeIpJm6WzMG8VacKijBfv2w1O1NArkaETlSkrMH3RZ7cSTZ5zNhJ5sdP_kpRy30xxMCZvOPFjzR0sQYrjj969fwV16GgeyVYdVzSc1_qsARLP4QGcdSeqrMON6B60_Nw6CHvUw_CCjV7rfFA4KI9f75_3HZfswZLw8c3T7_kSuCbcH9xftdo-q51gq8IoSOfsVBrYwwjRGiSKiGDMylZHCo88iqiA8NCkSIZM1HAaoYZQQU9S6VScSyMjskWFHvPPb0NnqzpkBgZ4VEWuRNDV4rFklArjqa1kGUIJtHiyumK2_YWT_y7gAyDzG2QOWM8CzJPynA6NevnwhqzDOLJUvBfO4Qj-M8y3f-1dNMHWvW1ai3a-b_rQ1ho3rWv-fVlp7ULi3mFmq3r2YPiaDDW-0hZRvLAbckvKNfmcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stochastic+Kuramoto%E2%80%93Sivashinsky+equation&rft.jtitle=Nonlinear+analysis&rft.au=Duan%2C+Jinqiao&rft.au=Ervin%2C+Vincent+J.&rft.date=2001-04-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=44&rft.issue=2&rft.spage=205&rft.epage=216&rft_id=info:doi/10.1016%2FS0362-546X%2899%2900259-X&rft.externalDocID=S0362546X9900259X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon