On the stochastic Kuramoto–Sivashinsky equation
Saved in:
Published in | Nonlinear analysis Vol. 44; no. 2; pp. 205 - 216 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2001
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0362-546X 1873-5215 |
DOI | 10.1016/S0362-546X(99)00259-X |
Cover
Loading…
Author | Duan, Jinqiao Ervin, Vincent J. |
---|---|
Author_xml | – sequence: 1 givenname: Jinqiao surname: Duan fullname: Duan, Jinqiao email: duan@math.clemson.edu – sequence: 2 givenname: Vincent J. surname: Ervin fullname: Ervin, Vincent J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5681127$$DView record in Pascal Francis |
BookMark | eNqFkM1KAzEURoNUsK0-gjALF7oYTSaTTIILkVJ_sNBFFboLdzIJjbYzNUkL3fkOvqFPYn-kCzdd3c05H9zTQa26qQ1C5wRfE0z4zQhTnqUs5-NLKa8wzphMx0eoTURBU5YR1kLtPXKCOiG8Y4xJQXkbkWGdxIlJQmz0BEJ0OnlZeJg1sfn5-h65JYSJq8PHKjGfC4iuqU_RsYVpMGd_t4veHvqvvad0MHx87t0PUk0pj6mUzBhrraQUDK00lDkuSymYLoTQ1ORWMqhywm2Ry8xKCxw4rkqthQBrBO2ii93uHIKGqfVQaxfU3LsZ-JViXBCSFWuM7TDtmxC8sXuCYLXJo7Z51OZ3JaXa5lHjtXf7z9Mubh-MHtz0oH23s826wNIZr4J2ptamct7oqKrGHVj4BcrshCw |
CODEN | NOANDD |
CitedBy_id | crossref_primary_10_1016_j_spl_2013_12_022 crossref_primary_10_1016_j_compchemeng_2004_09_006 crossref_primary_10_1051_cocv_2022014 crossref_primary_10_1142_S0219493701000126 crossref_primary_10_1142_S0219493705001523 crossref_primary_10_1142_S021949372250023X crossref_primary_10_1142_S0219493707002104 crossref_primary_10_1016_j_spl_2017_03_024 crossref_primary_10_1016_j_physd_2017_02_011 crossref_primary_10_1017_S0956792512000125 crossref_primary_10_1016_j_na_2013_01_005 crossref_primary_10_1016_S1468_1218_01_00013_X crossref_primary_10_1080_07362990701857335 crossref_primary_10_1080_07362994_2019_1709503 crossref_primary_10_1142_S0219493716500192 crossref_primary_10_1007_s40072_018_0116_y crossref_primary_10_4236_jamp_2018_611198 crossref_primary_10_1016_j_jmaa_2006_07_091 crossref_primary_10_1007_s10255_018_0769_3 crossref_primary_10_1016_j_rinam_2023_100383 crossref_primary_10_1142_S0219493722400378 crossref_primary_10_1016_j_physa_2019_123582 crossref_primary_10_1142_S0219477522500511 |
Cites_doi | 10.1007/BF01048261 10.1006/jdeq.1997.3371 10.1002/cpa.3160470304 10.1007/978-1-4612-5561-1 10.1007/978-1-4684-0313-8 10.1017/CBO9780511666223 10.1103/PhysRevLett.75.4464 10.1006/jmaa.1998.6128 10.1103/PhysRevE.54.3577 10.1016/0375-9601(94)90775-7 10.1007/978-1-4612-0981-2 10.1007/BF02097064 10.1007/BF02429875 10.1016/0167-2789(90)90046-R 10.57262/die/1370267723 10.1017/CBO9780511662829 10.1080/03605308908820597 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science B.V. |
Copyright_xml | – notice: 2001 Elsevier Science B.V. |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/S0362-546X(99)00259-X |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics Physics |
EISSN | 1873-5215 |
EndPage | 216 |
ExternalDocumentID | 5681127 10_1016_S0362_546X_99_00259_X S0362546X9900259X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HMJ HVGLF HZ~ IHE J1W JJJVA KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SST SSW SSZ T5K TN5 WUQ XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c336t-995eefff933ae3dcab40bb985c788c3e4f95ad416f7492f9fa6a60dbcc88afe83 |
IEDL.DBID | AIKHN |
ISSN | 0362-546X |
IngestDate | Mon Jul 21 09:15:54 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 Tue Jul 01 01:34:31 EDT 2025 Fri Feb 23 02:22:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Random forcing Kuramoto–Sivashinsky Random noise Existence condition Dynamical systems Uniqueness theorem Bounded solution Non linear operator Dirichlet domain Fixed point theorem Solutions Differential equations Infinite dimension Kuramoto Sivashinsky equation Wiener processes Stochastic equation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-995eefff933ae3dcab40bb985c788c3e4f95ad416f7492f9fa6a60dbcc88afe83 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_5681127 crossref_primary_10_1016_S0362_546X_99_00259_X crossref_citationtrail_10_1016_S0362_546X_99_00259_X elsevier_sciencedirect_doi_10_1016_S0362_546X_99_00259_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-04-01 |
PublicationDateYYYYMMDD | 2001-04-01 |
PublicationDate_xml | – month: 04 year: 2001 text: 2001-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Nonlinear analysis |
PublicationYear | 2001 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Foias, Nicolaenko, Sell, Temam (BIB10) 1988; 67 R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer, New York, 1990. Cuerno, Makse, Tomassone, Harrington, Stanley (BIB4) 1995; 75 G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. R. Adams, Sobolev Spaces, Academic Press, New York, 1975. Collet, Eckmann, Epstein, Stubbe (BIB3) 1993; 152 Temam, Wang (BIB19) 1994; 7 Il'yashenko (BIB12) 1992; 4 Jolly, Kevrekidis, Titi (BIB13) 1990; 44 Nicolaenko, Scheurer, Temam (BIB15) 1989; 14 Ercolani, McLaughlin, Poitner (BIB9) 1993; 3 G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Goodman (BIB11) 1994; 47 Lauritsen, Cuerno, Makse (BIB14) 1996; 54 Duan, Ervin (BIB7) 1998; 2 Robinson (BIB17) 1994; 184 Brannan, Duan, Wanner (BIB2) 1998; 228 J. Duan, H.V. Ly, E.S. Titi, The effect of dispersion on the dynamics of the Kuramoto–Sivashinsky equation, preprint, 1995. 10.1016/S0362-546X(99)00259-X_BIB1 Lauritsen (10.1016/S0362-546X(99)00259-X_BIB14) 1996; 54 Collet (10.1016/S0362-546X(99)00259-X_BIB3) 1993; 152 Robinson (10.1016/S0362-546X(99)00259-X_BIB17) 1994; 184 Goodman (10.1016/S0362-546X(99)00259-X_BIB11) 1994; 47 10.1016/S0362-546X(99)00259-X_BIB20 Foias (10.1016/S0362-546X(99)00259-X_BIB10) 1988; 67 Jolly (10.1016/S0362-546X(99)00259-X_BIB13) 1990; 44 Temam (10.1016/S0362-546X(99)00259-X_BIB19) 1994; 7 Il'yashenko (10.1016/S0362-546X(99)00259-X_BIB12) 1992; 4 Ercolani (10.1016/S0362-546X(99)00259-X_BIB9) 1993; 3 10.1016/S0362-546X(99)00259-X_BIB18 10.1016/S0362-546X(99)00259-X_BIB16 Duan (10.1016/S0362-546X(99)00259-X_BIB7) 1998; 2 Cuerno (10.1016/S0362-546X(99)00259-X_BIB4) 1995; 75 Nicolaenko (10.1016/S0362-546X(99)00259-X_BIB15) 1989; 14 Brannan (10.1016/S0362-546X(99)00259-X_BIB2) 1998; 228 10.1016/S0362-546X(99)00259-X_BIB8 10.1016/S0362-546X(99)00259-X_BIB6 10.1016/S0362-546X(99)00259-X_BIB5 |
References_xml | – volume: 152 start-page: 203 year: 1993 end-page: 214 ident: BIB3 article-title: A global attracting set for the Kuramoto–Sivashinsky equation publication-title: Comm. Math. Phys. – volume: 2 start-page: 243 year: 1998 end-page: 266 ident: BIB7 article-title: Dynamics of a nonlocal Kuramoto–Sivashinsky equation publication-title: J. Differential Equations – volume: 14 start-page: 245 year: 1989 end-page: 297 ident: BIB15 article-title: Some global dynamical properties of a class of pattern formation equations publication-title: Comm. PDEs – reference: J. Duan, H.V. Ly, E.S. Titi, The effect of dispersion on the dynamics of the Kuramoto–Sivashinsky equation, preprint, 1995. – volume: 67 start-page: 197 year: 1988 end-page: 226 ident: BIB10 article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension publication-title: J. Math. Pures Appl. – volume: 47 start-page: 293 year: 1994 end-page: 306 ident: BIB11 article-title: Stability of the Kuramoto–Sivashinsky and related systems publication-title: Comm. Pure Appl. Math. – volume: 44 start-page: 38 year: 1990 end-page: 60 ident: BIB13 article-title: Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations publication-title: Physica D – volume: 75 start-page: 4464 year: 1995 end-page: 4467 ident: BIB4 article-title: Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology publication-title: Phys. Rev. Lett. – volume: 54 start-page: 3577 year: 1996 end-page: 3580 ident: BIB14 article-title: Noisy Kuramoto–Sivashinsky equation for an erosion model publication-title: Phys. Rev. E – reference: R. Adams, Sobolev Spaces, Academic Press, New York, 1975. – volume: 7 start-page: 1095 year: 1994 end-page: 1108 ident: BIB19 article-title: Estimates on the lowest dimension of inertial manifolds for the Kuramoto–Sivashinsky equation in the general case publication-title: Differential Integral Equations – reference: E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer, New York, 1990. – volume: 4 start-page: 585 year: 1992 end-page: 615 ident: BIB12 article-title: Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation publication-title: J. Dynamics Differential Equations – reference: G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. – reference: A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. – volume: 228 start-page: 221 year: 1998 end-page: 233 ident: BIB2 article-title: Dissipative quasigeostrophic dynamics under random forcing publication-title: J. Math. Anal. Appl. – reference: G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. – volume: 3 start-page: 477 year: 1993 end-page: 539 ident: BIB9 article-title: Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis publication-title: J. Nonlinear Sci. – volume: 184 start-page: 190 year: 1994 end-page: 193 ident: BIB17 article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation publication-title: Phys. Lett. A – reference: R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. – volume: 4 start-page: 585 year: 1992 ident: 10.1016/S0362-546X(99)00259-X_BIB12 article-title: Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation publication-title: J. Dynamics Differential Equations doi: 10.1007/BF01048261 – volume: 2 start-page: 243 year: 1998 ident: 10.1016/S0362-546X(99)00259-X_BIB7 article-title: Dynamics of a nonlocal Kuramoto–Sivashinsky equation publication-title: J. Differential Equations doi: 10.1006/jdeq.1997.3371 – volume: 47 start-page: 293 year: 1994 ident: 10.1016/S0362-546X(99)00259-X_BIB11 article-title: Stability of the Kuramoto–Sivashinsky and related systems publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160470304 – ident: 10.1016/S0362-546X(99)00259-X_BIB16 doi: 10.1007/978-1-4612-5561-1 – ident: 10.1016/S0362-546X(99)00259-X_BIB18 doi: 10.1007/978-1-4684-0313-8 – ident: 10.1016/S0362-546X(99)00259-X_BIB5 doi: 10.1017/CBO9780511666223 – volume: 75 start-page: 4464 year: 1995 ident: 10.1016/S0362-546X(99)00259-X_BIB4 article-title: Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4464 – volume: 228 start-page: 221 year: 1998 ident: 10.1016/S0362-546X(99)00259-X_BIB2 article-title: Dissipative quasigeostrophic dynamics under random forcing publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1998.6128 – volume: 54 start-page: 3577 year: 1996 ident: 10.1016/S0362-546X(99)00259-X_BIB14 article-title: Noisy Kuramoto–Sivashinsky equation for an erosion model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.54.3577 – volume: 184 start-page: 190 year: 1994 ident: 10.1016/S0362-546X(99)00259-X_BIB17 article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(94)90775-7 – ident: 10.1016/S0362-546X(99)00259-X_BIB20 doi: 10.1007/978-1-4612-0981-2 – volume: 152 start-page: 203 year: 1993 ident: 10.1016/S0362-546X(99)00259-X_BIB3 article-title: A global attracting set for the Kuramoto–Sivashinsky equation publication-title: Comm. Math. Phys. doi: 10.1007/BF02097064 – volume: 3 start-page: 477 year: 1993 ident: 10.1016/S0362-546X(99)00259-X_BIB9 article-title: Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis publication-title: J. Nonlinear Sci. doi: 10.1007/BF02429875 – volume: 67 start-page: 197 year: 1988 ident: 10.1016/S0362-546X(99)00259-X_BIB10 article-title: Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension publication-title: J. Math. Pures Appl. – ident: 10.1016/S0362-546X(99)00259-X_BIB8 – volume: 44 start-page: 38 year: 1990 ident: 10.1016/S0362-546X(99)00259-X_BIB13 article-title: Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations publication-title: Physica D doi: 10.1016/0167-2789(90)90046-R – volume: 7 start-page: 1095 year: 1994 ident: 10.1016/S0362-546X(99)00259-X_BIB19 article-title: Estimates on the lowest dimension of inertial manifolds for the Kuramoto–Sivashinsky equation in the general case publication-title: Differential Integral Equations doi: 10.57262/die/1370267723 – ident: 10.1016/S0362-546X(99)00259-X_BIB1 – ident: 10.1016/S0362-546X(99)00259-X_BIB6 doi: 10.1017/CBO9780511662829 – volume: 14 start-page: 245 year: 1989 ident: 10.1016/S0362-546X(99)00259-X_BIB15 article-title: Some global dynamical properties of a class of pattern formation equations publication-title: Comm. PDEs doi: 10.1080/03605308908820597 |
SSID | ssj0001736 |
Score | 1.7695106 |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 205 |
SubjectTerms | Exact sciences and technology Function theory, analysis Kuramoto–Sivashinsky Mathematical methods in physics Numerical approximation and analysis Ordinary and partial differential equations, boundary value problems Partial differential equations Physics Probability theory, stochastic processes, and statistics Random forcing Stochastic processes |
Title | On the stochastic Kuramoto–Sivashinsky equation |
URI | https://dx.doi.org/10.1016/S0362-546X(99)00259-X |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5Bu4AQb0R5KQMDDKG0TpzcWFVUBQQMgJQtsh1bVKC29IHEgvgP_EN-CefEbWFASIy2dJfo7Hz3OTp_B3BIFEPHMhM-ZTP0Ay6Vj0ZnviaKFCpueCTtD_2ra96-Dy6SMJmD5uQujC2rdNhfYHqO1m6m6qJZ7Xc61VuLvWHAE8JTStyYzEO5zpDHJSg3zi_b11NArkWMT1SkrMHsIk_hJJ88QjzO_fjJbylqqS-GFDhTdLz4loZaq7Ds-KPXKF5xDeZ0dx1WHJf03Jc6XIfFb0KDNLqaqrMON6B20_Vo6BHvUw_CCjV7l-OBoEXrfb5_3HZe8gZLw8dXTz8XSuCbcN86u2u2fdc6wVeM8ZGPGGptjEHGhGaZEjI4lRLjUNGRVzEdGAxFRmTMRAHWDRrBBT_NpFJxLIyO2RaUur2u3gZP1nXIjIzoKEvcCcmVwlgybsXRtBayAsEkWqlyuuK2vcVTOisgoyCnNsgpYpoHOU0qcDI16xfCGn8ZxJOlSH_skJTA_y_T_R9LN32gVV-r1aOd_7vehYWiKs3W8uxBaTQY632iKSN5APMnb7UDtxm_AL6F5Ig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgBCPAqI8szAAEMorRMnHqsKVCgtAyBls2zHFhWolD6Q2PgP_EN-CefELTCgSoy2dJfo7Hz3OTp_B3CEFEPHMhU-ZjPmB1Qqnxmd-hopUqiooZG0P_TbHdq8D66SMClAY3IXxpZVOuzPMT1DazdTcdGs9Lvdyq3F3jCgCeIpJm6WzMG8VacKijBfv2w1O1NArkaETlSkrMH3RZ7cSTZ5zNhJ5sdP_kpRy30xxMCZvOPFjzR0sQYrjj969fwV16GgeyVYdVzSc1_qsARLP4QGcdSeqrMON6B60_Nw6CHvUw_CCjV7rfFA4KI9f75_3HZfswZLw8c3T7_kSuCbcH9xftdo-q51gq8IoSOfsVBrYwwjRGiSKiGDMylZHCo88iqiA8NCkSIZM1HAaoYZQQU9S6VScSyMjskWFHvPPb0NnqzpkBgZ4VEWuRNDV4rFklArjqa1kGUIJtHiyumK2_YWT_y7gAyDzG2QOWM8CzJPynA6NevnwhqzDOLJUvBfO4Qj-M8y3f-1dNMHWvW1ai3a-b_rQ1ho3rWv-fVlp7ULi3mFmq3r2YPiaDDW-0hZRvLAbckvKNfmcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stochastic+Kuramoto%E2%80%93Sivashinsky+equation&rft.jtitle=Nonlinear+analysis&rft.au=Duan%2C+Jinqiao&rft.au=Ervin%2C+Vincent+J.&rft.date=2001-04-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=44&rft.issue=2&rft.spage=205&rft.epage=216&rft_id=info:doi/10.1016%2FS0362-546X%2899%2900259-X&rft.externalDocID=S0362546X9900259X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon |