On self-learning finite element codes based on monitored response of structures
In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tes...
Saved in:
Published in | Computers and geotechnics Vol. 27; no. 3; pp. 161 - 178 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2000
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tests, training is accomplished here with stresses and strains at certain calibrating points in tests on structures where the stress/strain states are not homogenous. This strategy has a distinct advantage since a considerable effort is devoted by the experimentalists to achieve as homogenous state of stress/strain as possible. In many situations this is impractical for many reasons such as the samples being too small, precious or may require expensive methods of preparation.The methodology of self-learning finite element codes is illustrated by the solution of two heuristic boundary value problems. The first is a two-bar structure in which one of the bars is made of an ideally plastic or a strain softening material whilst the second bar is linear elastic. Computed load–deformation data of the structure are used for training of the neural network based constitutive model (NNCM) for the non-linear bar. It is shown that NNCM is capable of simulating the ideal plastic as well as the strain softening behaviour. The second problem simulates a plane stress panel of linear elastic material subjected to a concentrated vertical load at the top. The displacements at a number of monitoring points are used to train a NNCM. It is shown that the choice of the position of monitoring points affects the training programme and consequently the convergence of the NNCM predictions to standard solutions. The position of the load is then changed to demonstrate that the NNCM has been adequately trained to be able to perform analysis of any boundary value problem in which the material law corresponds to the trained NNCM. It is believed that the proposed technique of self-learning finite element codes will make a crucial impact on the methodology of engineering analyses and condition monitoring of structures. |
---|---|
AbstractList | In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tests, training is accomplished here with stresses and strains at certain calibrating points in tests on structures where the stress/strain states are not homogenous. This strategy has a distinct advantage since a considerable effort is devoted by the experimentalists to achieve as homogenous state of stress/strain as possible. In many situations this is impractical for many reasons such as the samples being too small, precious or may require expensive methods of preparation.The methodology of self-learning finite element codes is illustrated by the solution of two heuristic boundary value problems. The first is a two-bar structure in which one of the bars is made of an ideally plastic or a strain softening material whilst the second bar is linear elastic. Computed load–deformation data of the structure are used for training of the neural network based constitutive model (NNCM) for the non-linear bar. It is shown that NNCM is capable of simulating the ideal plastic as well as the strain softening behaviour. The second problem simulates a plane stress panel of linear elastic material subjected to a concentrated vertical load at the top. The displacements at a number of monitoring points are used to train a NNCM. It is shown that the choice of the position of monitoring points affects the training programme and consequently the convergence of the NNCM predictions to standard solutions. The position of the load is then changed to demonstrate that the NNCM has been adequately trained to be able to perform analysis of any boundary value problem in which the material law corresponds to the trained NNCM. It is believed that the proposed technique of self-learning finite element codes will make a crucial impact on the methodology of engineering analyses and condition monitoring of structures. |
Author | Shin, H.S. Pande, G.N. |
Author_xml | – sequence: 1 givenname: H.S. surname: Shin fullname: Shin, H.S. – sequence: 2 givenname: G.N. surname: Pande fullname: Pande, G.N. email: g.n.pande@swan.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6197538$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsFZ_gpCDBz2sJhvydRIpfkGhBxW8hWwykcg2KclW8N-7baVXT8PMPO8M73uKJiknQOiCkhtKqLh9Ja0QDePtxxUh14SMs4YeoSlVkjVSMDZB0wNygk5r_doyWukpWi4TrtCHpgdbUkyfOMQUB8DQwwrSgF32UHFnK3icE17lcZvL2BSo65wq4BxwHcrGDZtxdIaOg-0rnP_VGXp_fHibPzeL5dPL_H7ROMbE0GjuW8u9B9450AAyMGWZ4qKzwTFuNQVpaQuUd56pVgnJNJGyC6CpV9yyGeL7u67kWgsEsy5xZcuPocRsUzG7VMzWsiHE7FIxdNRd7nVrW53tQ7HJxXoQC6olZ2rE7vYYjB6-IxRTXYTkwMcCbjA-x38e_QKvCHnP |
CitedBy_id | crossref_primary_10_1007_s10706_020_01511_2 crossref_primary_10_1088_1757_899X_10_1_012233 crossref_primary_10_3389_fmats_2021_824958 crossref_primary_10_1016_j_compgeo_2008_09_003 crossref_primary_10_1016_j_compositesb_2021_109152 crossref_primary_10_1061__ASCE_GT_1943_5606_0001351 crossref_primary_10_1007_s00466_019_01716_0 crossref_primary_10_1016_j_compstruc_2006_02_015 crossref_primary_10_1017_S089006040707014X crossref_primary_10_1016_S0266_352X_01_00011_8 crossref_primary_10_1016_j_aei_2009_06_008 crossref_primary_10_1016_j_mechmat_2021_104175 crossref_primary_10_1139_T09_015 crossref_primary_10_1002_nag_2747 crossref_primary_10_1016_j_compstruc_2013_06_012 crossref_primary_10_1016_j_ijplas_2021_103046 crossref_primary_10_1016_j_compgeo_2005_06_002 crossref_primary_10_1016_j_mechrescom_2019_01_004 crossref_primary_10_1007_s11440_022_01656_9 crossref_primary_10_1016_j_tust_2011_11_008 crossref_primary_10_1016_j_ijsolstr_2007_09_033 crossref_primary_10_1080_17415977_2014_954111 crossref_primary_10_1016_j_ijplas_2019_11_003 crossref_primary_10_1002_nme_905 crossref_primary_10_1016_j_tws_2018_06_035 crossref_primary_10_1080_17415977_2014_968149 crossref_primary_10_7734_COSEIK_2012_25_4_363 crossref_primary_10_1007_s00466_006_0146_6 crossref_primary_10_3390_app11146483 crossref_primary_10_1016_S0266_352X_03_00058_2 crossref_primary_10_1061__ASCE_GT_1943_5606_0000201 crossref_primary_10_1016_j_engstruct_2006_12_017 crossref_primary_10_1016_S0266_352X_03_00056_9 crossref_primary_10_12989_gae_2009_1_1_053 crossref_primary_10_1016_j_compgeo_2004_03_001 crossref_primary_10_1016_j_engstruct_2010_01_022 crossref_primary_10_1016_j_ijengsci_2020_103319 crossref_primary_10_1016_j_compgeo_2009_11_005 crossref_primary_10_32604_cmes_2021_016172 crossref_primary_10_1061__ASCE_0733_9399_2008_134_11_961 crossref_primary_10_1061__ASCE_1090_0241_2006_132_8_1019 crossref_primary_10_1016_j_finel_2012_04_005 crossref_primary_10_1016_j_compgeo_2007_05_008 crossref_primary_10_1016_j_eswa_2008_05_055 crossref_primary_10_1108_02644401111118132 crossref_primary_10_1080_13632460601123180 crossref_primary_10_1002_nag_707 crossref_primary_10_1016_j_mechrescom_2021_103817 crossref_primary_10_1016_j_soildyn_2007_06_008 crossref_primary_10_1016_S0045_7825_03_00350_5 crossref_primary_10_1061__ASCE_GT_1943_5606_0000050 crossref_primary_10_1016_j_compgeo_2022_105120 crossref_primary_10_1080_17415970802082831 crossref_primary_10_1016_j_cma_2008_12_036 crossref_primary_10_1002_smsc_202300185 crossref_primary_10_1007_s12205_008_0165_2 crossref_primary_10_1007_s11831_023_10009_y crossref_primary_10_1016_j_cma_2008_01_021 crossref_primary_10_1016_S0266_352X_03_00062_4 |
Cites_doi | 10.1016/0148-9062(91)91130-J 10.1061/(ASCE)0733-9410(1995)121:5(429) 10.1061/(ASCE)0733-9410(1996)122:1(50) 10.2514/3.11810 10.1179/mst.1998.14.2.136 10.1016/0020-7683(88)90018-2 10.1016/0167-8442(94)00050-B 10.1016/0148-9062(94)90472-3 10.1109/ICNN.1994.374770 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6 10.1016/0045-7949(95)00200-Z 10.1002/(SICI)1097-4628(19960627)60:13<2329::AID-APP4>3.0.CO;2-G 10.1016/S0266-352X(97)00034-7 10.1016/0045-7949(95)00361-4 10.1007/BF00452947 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V 10.1016/S0045-7949(96)00304-5 |
ContentType | Journal Article |
Copyright | 2000 Elsevier Science Ltd |
Copyright_xml | – notice: 2000 Elsevier Science Ltd |
DBID | IQODW AAYXX CITATION |
DOI | 10.1016/S0266-352X(00)00016-1 |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7633 |
EndPage | 178 |
ExternalDocumentID | 10_1016_S0266_352X_00_00016_1 6197538 S0266352X00000161 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SES SET SEW SPC SPCBC SSE SST SSV SSZ T5K TN5 WH7 WUQ ZMT ZY4 ~02 ~G- ABPIF IQODW AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c336t-95d2a5dde5bce9ee7f38a3856bafc35a91e7a12e15bd38286739077bfe91d85a3 |
IEDL.DBID | .~1 |
ISSN | 0266-352X |
IngestDate | Thu Sep 26 15:28:29 EDT 2024 Sun Oct 29 17:07:24 EDT 2023 Fri Feb 23 02:19:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | structures finite element analysis displacements neural networks |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-95d2a5dde5bce9ee7f38a3856bafc35a91e7a12e15bd38286739077bfe91d85a3 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1016_S0266_352X_00_00016_1 pascalfrancis_primary_6197538 elsevier_sciencedirect_doi_10_1016_S0266_352X_00_00016_1 |
PublicationCentury | 2000 |
PublicationDate | 2000-01-01 |
PublicationDateYYYYMMDD | 2000-01-01 |
PublicationDate_xml | – month: 01 year: 2000 text: 2000-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers and geotechnics |
PublicationYear | 2000 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Furukawa, Yagawa (BIB19) 1998; 43 Pietruszczak, Jiang, Mirza (BIB4) 1988; 24 Rumelhart, McClelland (BIB23) 1988 Logar, Turk (BIB9) 1997; 77 Xu, Pietruszczak (BIB5) 1997; 63 Ghaboussi, Sidata (BIB8) 1998; 22 Wu (BIB12) 1997 Mast, Nash, Michopoulos, Thomas, Badaliance, Wolock (BIB22) 1995; 22 Ellis, Yao, Zhao, Penumadu (BIB7) 1995; 121 Sankarasubramanian, Rajasekaran (BIB16) 1996; 58 Zienkiewicz, Chan, Paster, Schrefler, Shiomi (BIB1) 1999 Najjar, Basheer (BIB10) 1996; 14 Penumadu D, Jin-Nan L, Chameau JL, Arumugam S. Rate dependant behavior of clays using neural networks. In: Proc. 13th Conference of Int. Soc. Soil Mechanics and Foundation Engineering, Vol. 4. IBH Pub. Co., New Delhi/Oxford, 1994. p. 1445–8. Lee, Pande, Middleton, Kralj (BIB6) 1996; 61 Pietruszczak S, Pande GN. Constitutive relations for partially saturated soils containing gas inclusions. Journal of Geotechnical Engineering, ASCE 1996; January:50–9. Pidaparti, Palakal (BIB18) 1993; 31 Millar D, Clarici E. Investigation of backpropagation artificial neural networks in modeling the stress–strain behavior of sandstone rock. In: Piscataway NJ, editor. Proc. 1994 IEEE International Conference on Neural Networks, IEEE Service Center, 1994. p. 3326–31. Millar DL, Calderbank PA. On the investigation of a multilayer feedforward neural-network model of rock deformability behavior. In: Fujii, editor. Proc. 8th International Congress on Rock Mechanics. Tokyo/Rotterdam: Balkema, 1995. p. 933–8. Chen, Pande (BIB3) 1994; 31 Ghaboussi, Pecknold, Zhang, Haj-ali (BIB17) 1998; 42 Keshavaraj, Tock, Haycook (BIB21) 1996; 60 Pao YH. Adaptive pattern recognition and neural networks. Addison-Wesley Publishing Company Inc., 1989. Li, Wu, Zhang (BIB20) 1998; 14 Zhang, Song, Nie (BIB15) 1991; 28 Sankarasubramanian (10.1016/S0266-352X(00)00016-1_BIB16) 1996; 58 10.1016/S0266-352X(00)00016-1_BIB11 Wu (10.1016/S0266-352X(00)00016-1_BIB12) 1997 10.1016/S0266-352X(00)00016-1_BIB14 10.1016/S0266-352X(00)00016-1_BIB13 10.1016/S0266-352X(00)00016-1_BIB24 Pietruszczak (10.1016/S0266-352X(00)00016-1_BIB4) 1988; 24 Ellis (10.1016/S0266-352X(00)00016-1_BIB7) 1995; 121 Chen (10.1016/S0266-352X(00)00016-1_BIB3) 1994; 31 Ghaboussi (10.1016/S0266-352X(00)00016-1_BIB17) 1998; 42 Rumelhart (10.1016/S0266-352X(00)00016-1_BIB23) 1988 Zienkiewicz (10.1016/S0266-352X(00)00016-1_BIB1) 1999 Mast (10.1016/S0266-352X(00)00016-1_BIB22) 1995; 22 Ghaboussi (10.1016/S0266-352X(00)00016-1_BIB8) 1998; 22 Furukawa (10.1016/S0266-352X(00)00016-1_BIB19) 1998; 43 Logar (10.1016/S0266-352X(00)00016-1_BIB9) 1997; 77 10.1016/S0266-352X(00)00016-1_BIB2 Keshavaraj (10.1016/S0266-352X(00)00016-1_BIB21) 1996; 60 Xu (10.1016/S0266-352X(00)00016-1_BIB5) 1997; 63 Zhang (10.1016/S0266-352X(00)00016-1_BIB15) 1991; 28 Pidaparti (10.1016/S0266-352X(00)00016-1_BIB18) 1993; 31 Najjar (10.1016/S0266-352X(00)00016-1_BIB10) 1996; 14 Li (10.1016/S0266-352X(00)00016-1_BIB20) 1998; 14 Lee (10.1016/S0266-352X(00)00016-1_BIB6) 1996; 61 |
References_xml | – volume: 22 start-page: 71 year: 1995 end-page: 96 ident: BIB22 article-title: Characterization of strain-induced damage in composites based on the dissipated energy density; Part I. Basic scheme and formulation, Part II. Composite specimens and naval structures, Part III. General material constitutive relation publication-title: Theoretical and Applied Fracture Mechanics contributor: fullname: Wolock – year: 1988 ident: BIB23 article-title: Parallel distributed processing, vols. 1 and 2 contributor: fullname: McClelland – volume: 61 start-page: 735 year: 1996 end-page: 745 ident: BIB6 article-title: Numerical modelling of brick masonry panels subject to lateral loadings publication-title: Computers & Structures contributor: fullname: Kralj – volume: 58 start-page: 1003 year: 1996 end-page: 1014 ident: BIB16 article-title: Constitutive modelling of concrete using a new failure criterion publication-title: Computers & Structures contributor: fullname: Rajasekaran – volume: 22 start-page: 29 year: 1998 end-page: 52 ident: BIB8 article-title: New nested adaptive neural networks (NANN) for constitutive modelling publication-title: Computers and Geotechnics contributor: fullname: Sidata – volume: 60 start-page: 2329 year: 1996 end-page: 2338 ident: BIB21 article-title: Airbag fabric material modelling of nylon and polyester fabrics using a very simple neural network architecture publication-title: Journal of Applied Polymer Science contributor: fullname: Haycook – year: 1999 ident: BIB1 article-title: Computational geomechanics with special reference to earthquake engineering contributor: fullname: Shiomi – volume: 77 start-page: S195 year: 1997 end-page: 196 ident: BIB9 article-title: Neural network as a constitutive model of soil publication-title: Zeitschrift Fur Angewandte Mathematik Und Mechanik contributor: fullname: Turk – volume: 14 start-page: 136 year: 1998 end-page: 138 ident: BIB20 article-title: Approach to constitutive relationships of a Ti–5Al–2Sn–2Zr–4Cr–4Mo alloy by artificial neural networks publication-title: Materials Science and Technology contributor: fullname: Zhang – volume: 28 start-page: 535 year: 1991 end-page: 540 ident: BIB15 article-title: Application of neural network models to rock mechanics and rock engineering publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr contributor: fullname: Nie – start-page: 613 year: 1997 end-page: 617 ident: BIB12 article-title: Constitutive relation modelling for soil using finite element–neural network hybrid algorithms publication-title: Computer methods and advances in geomechanics contributor: fullname: Wu – volume: 24 start-page: 705 year: 1988 end-page: 722 ident: BIB4 article-title: An elastoplastic constitutive model for concrete publication-title: Int. J. Solid Structures contributor: fullname: Mirza – volume: 43 start-page: 195 year: 1998 end-page: 219 ident: BIB19 article-title: Implicit constitutive modelling for viscoplasticity using neural networks publication-title: Int. J. Numer. Meth. Engng contributor: fullname: Yagawa – volume: 42 start-page: 105 year: 1998 end-page: 126 ident: BIB17 article-title: Autoprogressive training of neural network constitutive models publication-title: Int. J. Numer. Meth. Engng contributor: fullname: Haj-ali – volume: 31 start-page: 273 year: 1994 end-page: 277 ident: BIB3 article-title: Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr contributor: fullname: Pande – volume: 121 start-page: 429 year: 1995 end-page: 435 ident: BIB7 article-title: Stress-strain modeling of sands using artificial neural networks publication-title: Journal of Geotechnical Engineering, ASCE contributor: fullname: Penumadu – volume: 14 start-page: 193 year: 1996 end-page: 212 ident: BIB10 article-title: Utilizing computational neural networks for evaluating the permeability of compacted clay liners publication-title: Geotechnical & Geological Engineering contributor: fullname: Basheer – volume: 63 start-page: 497 year: 1997 end-page: 509 ident: BIB5 article-title: Numerical analysis of concrete fracture based on a homogenization technique publication-title: Computers & Structures contributor: fullname: Pietruszczak – volume: 31 start-page: 1533 year: 1993 end-page: 1535 ident: BIB18 article-title: Material model for composites using neural networks publication-title: AIAA Journal contributor: fullname: Palakal – volume: 28 start-page: 535 issue: 6 year: 1991 ident: 10.1016/S0266-352X(00)00016-1_BIB15 article-title: Application of neural network models to rock mechanics and rock engineering publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr doi: 10.1016/0148-9062(91)91130-J contributor: fullname: Zhang – volume: 121 start-page: 429 issue: 5 year: 1995 ident: 10.1016/S0266-352X(00)00016-1_BIB7 article-title: Stress-strain modeling of sands using artificial neural networks publication-title: Journal of Geotechnical Engineering, ASCE doi: 10.1061/(ASCE)0733-9410(1995)121:5(429) contributor: fullname: Ellis – ident: 10.1016/S0266-352X(00)00016-1_BIB2 doi: 10.1061/(ASCE)0733-9410(1996)122:1(50) – volume: 31 start-page: 1533 issue: 8 year: 1993 ident: 10.1016/S0266-352X(00)00016-1_BIB18 article-title: Material model for composites using neural networks publication-title: AIAA Journal doi: 10.2514/3.11810 contributor: fullname: Pidaparti – start-page: 613 year: 1997 ident: 10.1016/S0266-352X(00)00016-1_BIB12 article-title: Constitutive relation modelling for soil using finite element–neural network hybrid algorithms contributor: fullname: Wu – volume: 14 start-page: 136 year: 1998 ident: 10.1016/S0266-352X(00)00016-1_BIB20 article-title: Approach to constitutive relationships of a Ti–5Al–2Sn–2Zr–4Cr–4Mo alloy by artificial neural networks publication-title: Materials Science and Technology doi: 10.1179/mst.1998.14.2.136 contributor: fullname: Li – ident: 10.1016/S0266-352X(00)00016-1_BIB24 – volume: 24 start-page: 705 issue: 7 year: 1988 ident: 10.1016/S0266-352X(00)00016-1_BIB4 article-title: An elastoplastic constitutive model for concrete publication-title: Int. J. Solid Structures doi: 10.1016/0020-7683(88)90018-2 contributor: fullname: Pietruszczak – volume: 22 start-page: 71 year: 1995 ident: 10.1016/S0266-352X(00)00016-1_BIB22 article-title: Characterization of strain-induced damage in composites based on the dissipated energy density; Part I. Basic scheme and formulation, Part II. Composite specimens and naval structures, Part III. General material constitutive relation publication-title: Theoretical and Applied Fracture Mechanics doi: 10.1016/0167-8442(94)00050-B contributor: fullname: Mast – volume: 31 start-page: 273 issue: 3 year: 1994 ident: 10.1016/S0266-352X(00)00016-1_BIB3 article-title: Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr doi: 10.1016/0148-9062(94)90472-3 contributor: fullname: Chen – ident: 10.1016/S0266-352X(00)00016-1_BIB13 doi: 10.1109/ICNN.1994.374770 – volume: 43 start-page: 195 year: 1998 ident: 10.1016/S0266-352X(00)00016-1_BIB19 article-title: Implicit constitutive modelling for viscoplasticity using neural networks publication-title: Int. J. Numer. Meth. Engng doi: 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6 contributor: fullname: Furukawa – year: 1988 ident: 10.1016/S0266-352X(00)00016-1_BIB23 contributor: fullname: Rumelhart – volume: 77 start-page: S195 issue: S1 year: 1997 ident: 10.1016/S0266-352X(00)00016-1_BIB9 article-title: Neural network as a constitutive model of soil publication-title: Zeitschrift Fur Angewandte Mathematik Und Mechanik contributor: fullname: Logar – volume: 58 start-page: 1003 issue: 5 year: 1996 ident: 10.1016/S0266-352X(00)00016-1_BIB16 article-title: Constitutive modelling of concrete using a new failure criterion publication-title: Computers & Structures doi: 10.1016/0045-7949(95)00200-Z contributor: fullname: Sankarasubramanian – volume: 60 start-page: 2329 year: 1996 ident: 10.1016/S0266-352X(00)00016-1_BIB21 article-title: Airbag fabric material modelling of nylon and polyester fabrics using a very simple neural network architecture publication-title: Journal of Applied Polymer Science doi: 10.1002/(SICI)1097-4628(19960627)60:13<2329::AID-APP4>3.0.CO;2-G contributor: fullname: Keshavaraj – volume: 22 start-page: 29 issue: 1 year: 1998 ident: 10.1016/S0266-352X(00)00016-1_BIB8 article-title: New nested adaptive neural networks (NANN) for constitutive modelling publication-title: Computers and Geotechnics doi: 10.1016/S0266-352X(97)00034-7 contributor: fullname: Ghaboussi – volume: 61 start-page: 735 issue: 4 year: 1996 ident: 10.1016/S0266-352X(00)00016-1_BIB6 article-title: Numerical modelling of brick masonry panels subject to lateral loadings publication-title: Computers & Structures doi: 10.1016/0045-7949(95)00361-4 contributor: fullname: Lee – volume: 14 start-page: 193 issue: 3 year: 1996 ident: 10.1016/S0266-352X(00)00016-1_BIB10 article-title: Utilizing computational neural networks for evaluating the permeability of compacted clay liners publication-title: Geotechnical & Geological Engineering doi: 10.1007/BF00452947 contributor: fullname: Najjar – year: 1999 ident: 10.1016/S0266-352X(00)00016-1_BIB1 contributor: fullname: Zienkiewicz – volume: 42 start-page: 105 year: 1998 ident: 10.1016/S0266-352X(00)00016-1_BIB17 article-title: Autoprogressive training of neural network constitutive models publication-title: Int. J. Numer. Meth. Engng doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V contributor: fullname: Ghaboussi – volume: 63 start-page: 497 issue: 3 year: 1997 ident: 10.1016/S0266-352X(00)00016-1_BIB5 article-title: Numerical analysis of concrete fracture based on a homogenization technique publication-title: Computers & Structures doi: 10.1016/S0045-7949(96)00304-5 contributor: fullname: Xu – ident: 10.1016/S0266-352X(00)00016-1_BIB14 – ident: 10.1016/S0266-352X(00)00016-1_BIB11 |
SSID | ssj0016989 |
Score | 1.8893285 |
Snippet | In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive... |
SourceID | crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 161 |
SubjectTerms | Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology |
Title | On self-learning finite element codes based on monitored response of structures |
URI | https://dx.doi.org/10.1016/S0266-352X(00)00016-1 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsoAQ4ikKtPLAAIPb2I7zGKuKqoBoB6jULbJTG1WCtGrLym_nbKevASEx5pRcos_J3X3OPRC6FUYopllCDPANEqYmICrKA8JAqiPgQcy1FHrpR71h-DQSowrqrGphbFplafu9TXfWupS0SjRbs8mk9QrsAbwlG7k4lzoKFIL7g3e6-b1O86B2QKLfZ4mIPXtTxeM1OOFdENw7JYT-5p8OZ3IBqBk_7mLLB3WP0VEZPOK2f74TVNHFKTrYail4hgaDAi_0hyHlOIh3bCY2rMTa54ljW8O-wNZ5jfG0wJ_um57Dwdxny2o8Ndh3lf0C0Tkadh_eOj1SDk0gOefRkqRizKQAoyVUrlOtY8MTyRMRKWlyLmRKdSwp01SoMbc15DEHfhwro1M6ToTkF6haTAt9ibAMZMJDFSdG0lBGYcpDUMmEzJmSEFrUUHMFVTbzvTGyTdIYYJtZbLMgcH-4o4zWULICNNtZ5Azs91-X1ncWYH1DIIDAuJKr_6u-Rvu-vt7uq9ygKiCs6xBpLFXDvUoNtNd-fO71fwBlNs7L |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgCEEE9RoOCBAQbTxI7zGKuKKqWvgVbqFtmpjSpBWrXl_3OO09eAkBhzki_R5_juPvvujNAj11xSRUOigW8QL9IOkX7qEApS5QMPonlLoV7fj0fe25iPS6i5roUxaZWF7bc2PbfWhaReoFmfT6f1d2AP4C3pOI9zXUOBKhANRLA6K412J-5vDhPMHYl2q8UnZsC2kMcqyYVPjvOc6yHuby7qeC6WAJy2N17suKHWKTop4kfcsJ94hkoqO0dHO10FL9BgkOGl-tSkuBHiA-upiSyxsqni2JSxL7HxXxM8y_BXvqwX8LCwCbMKzzS2jWW_QXSJRq3XYTMmxb0JJGXMX5GIT6jgYLe4TFWkVKBZKFjIfSl0yriIXBUIlyqXywkzZeQBA4ocSK0idxJywa5QOZtl6hph4YiQeTIItXA94XsR80Al5SKlUkB0UUUva6iSuW2PkWzzxgDbxGCbOE5-yO0nbhWFa0CTvXlOwIT_NbS2NwGbFwIHBNIV3vxf9QM6iIe9btJt9zu36NCW25ttljtUBrRVDQKPlbwvfqwfnNvRfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+self-learning+finite+element+codes+based+on+monitored+response+of+structures&rft.jtitle=Computers+and+geotechnics&rft.au=Shin%2C+H.S.&rft.au=Pande%2C+G.N.&rft.date=2000-01-01&rft.pub=Elsevier+Ltd&rft.issn=0266-352X&rft.eissn=1873-7633&rft.volume=27&rft.issue=3&rft.spage=161&rft.epage=178&rft_id=info:doi/10.1016%2FS0266-352X%2800%2900016-1&rft.externalDocID=S0266352X00000161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon |