On self-learning finite element codes based on monitored response of structures

In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tes...

Full description

Saved in:
Bibliographic Details
Published inComputers and geotechnics Vol. 27; no. 3; pp. 161 - 178
Main Authors Shin, H.S., Pande, G.N.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2000
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tests, training is accomplished here with stresses and strains at certain calibrating points in tests on structures where the stress/strain states are not homogenous. This strategy has a distinct advantage since a considerable effort is devoted by the experimentalists to achieve as homogenous state of stress/strain as possible. In many situations this is impractical for many reasons such as the samples being too small, precious or may require expensive methods of preparation.The methodology of self-learning finite element codes is illustrated by the solution of two heuristic boundary value problems. The first is a two-bar structure in which one of the bars is made of an ideally plastic or a strain softening material whilst the second bar is linear elastic. Computed load–deformation data of the structure are used for training of the neural network based constitutive model (NNCM) for the non-linear bar. It is shown that NNCM is capable of simulating the ideal plastic as well as the strain softening behaviour. The second problem simulates a plane stress panel of linear elastic material subjected to a concentrated vertical load at the top. The displacements at a number of monitoring points are used to train a NNCM. It is shown that the choice of the position of monitoring points affects the training programme and consequently the convergence of the NNCM predictions to standard solutions. The position of the load is then changed to demonstrate that the NNCM has been adequately trained to be able to perform analysis of any boundary value problem in which the material law corresponds to the trained NNCM. It is believed that the proposed technique of self-learning finite element codes will make a crucial impact on the methodology of engineering analyses and condition monitoring of structures.
AbstractList In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tests, training is accomplished here with stresses and strains at certain calibrating points in tests on structures where the stress/strain states are not homogenous. This strategy has a distinct advantage since a considerable effort is devoted by the experimentalists to achieve as homogenous state of stress/strain as possible. In many situations this is impractical for many reasons such as the samples being too small, precious or may require expensive methods of preparation.The methodology of self-learning finite element codes is illustrated by the solution of two heuristic boundary value problems. The first is a two-bar structure in which one of the bars is made of an ideally plastic or a strain softening material whilst the second bar is linear elastic. Computed load–deformation data of the structure are used for training of the neural network based constitutive model (NNCM) for the non-linear bar. It is shown that NNCM is capable of simulating the ideal plastic as well as the strain softening behaviour. The second problem simulates a plane stress panel of linear elastic material subjected to a concentrated vertical load at the top. The displacements at a number of monitoring points are used to train a NNCM. It is shown that the choice of the position of monitoring points affects the training programme and consequently the convergence of the NNCM predictions to standard solutions. The position of the load is then changed to demonstrate that the NNCM has been adequately trained to be able to perform analysis of any boundary value problem in which the material law corresponds to the trained NNCM. It is believed that the proposed technique of self-learning finite element codes will make a crucial impact on the methodology of engineering analyses and condition monitoring of structures.
Author Shin, H.S.
Pande, G.N.
Author_xml – sequence: 1
  givenname: H.S.
  surname: Shin
  fullname: Shin, H.S.
– sequence: 2
  givenname: G.N.
  surname: Pande
  fullname: Pande, G.N.
  email: g.n.pande@swan.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6197538$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsFZ_gpCDBz2sJhvydRIpfkGhBxW8hWwykcg2KclW8N-7baVXT8PMPO8M73uKJiknQOiCkhtKqLh9Ja0QDePtxxUh14SMs4YeoSlVkjVSMDZB0wNygk5r_doyWukpWi4TrtCHpgdbUkyfOMQUB8DQwwrSgF32UHFnK3icE17lcZvL2BSo65wq4BxwHcrGDZtxdIaOg-0rnP_VGXp_fHibPzeL5dPL_H7ROMbE0GjuW8u9B9450AAyMGWZ4qKzwTFuNQVpaQuUd56pVgnJNJGyC6CpV9yyGeL7u67kWgsEsy5xZcuPocRsUzG7VMzWsiHE7FIxdNRd7nVrW53tQ7HJxXoQC6olZ2rE7vYYjB6-IxRTXYTkwMcCbjA-x38e_QKvCHnP
CitedBy_id crossref_primary_10_1007_s10706_020_01511_2
crossref_primary_10_1088_1757_899X_10_1_012233
crossref_primary_10_3389_fmats_2021_824958
crossref_primary_10_1016_j_compgeo_2008_09_003
crossref_primary_10_1016_j_compositesb_2021_109152
crossref_primary_10_1061__ASCE_GT_1943_5606_0001351
crossref_primary_10_1007_s00466_019_01716_0
crossref_primary_10_1016_j_compstruc_2006_02_015
crossref_primary_10_1017_S089006040707014X
crossref_primary_10_1016_S0266_352X_01_00011_8
crossref_primary_10_1016_j_aei_2009_06_008
crossref_primary_10_1016_j_mechmat_2021_104175
crossref_primary_10_1139_T09_015
crossref_primary_10_1002_nag_2747
crossref_primary_10_1016_j_compstruc_2013_06_012
crossref_primary_10_1016_j_ijplas_2021_103046
crossref_primary_10_1016_j_compgeo_2005_06_002
crossref_primary_10_1016_j_mechrescom_2019_01_004
crossref_primary_10_1007_s11440_022_01656_9
crossref_primary_10_1016_j_tust_2011_11_008
crossref_primary_10_1016_j_ijsolstr_2007_09_033
crossref_primary_10_1080_17415977_2014_954111
crossref_primary_10_1016_j_ijplas_2019_11_003
crossref_primary_10_1002_nme_905
crossref_primary_10_1016_j_tws_2018_06_035
crossref_primary_10_1080_17415977_2014_968149
crossref_primary_10_7734_COSEIK_2012_25_4_363
crossref_primary_10_1007_s00466_006_0146_6
crossref_primary_10_3390_app11146483
crossref_primary_10_1016_S0266_352X_03_00058_2
crossref_primary_10_1061__ASCE_GT_1943_5606_0000201
crossref_primary_10_1016_j_engstruct_2006_12_017
crossref_primary_10_1016_S0266_352X_03_00056_9
crossref_primary_10_12989_gae_2009_1_1_053
crossref_primary_10_1016_j_compgeo_2004_03_001
crossref_primary_10_1016_j_engstruct_2010_01_022
crossref_primary_10_1016_j_ijengsci_2020_103319
crossref_primary_10_1016_j_compgeo_2009_11_005
crossref_primary_10_32604_cmes_2021_016172
crossref_primary_10_1061__ASCE_0733_9399_2008_134_11_961
crossref_primary_10_1061__ASCE_1090_0241_2006_132_8_1019
crossref_primary_10_1016_j_finel_2012_04_005
crossref_primary_10_1016_j_compgeo_2007_05_008
crossref_primary_10_1016_j_eswa_2008_05_055
crossref_primary_10_1108_02644401111118132
crossref_primary_10_1080_13632460601123180
crossref_primary_10_1002_nag_707
crossref_primary_10_1016_j_mechrescom_2021_103817
crossref_primary_10_1016_j_soildyn_2007_06_008
crossref_primary_10_1016_S0045_7825_03_00350_5
crossref_primary_10_1061__ASCE_GT_1943_5606_0000050
crossref_primary_10_1016_j_compgeo_2022_105120
crossref_primary_10_1080_17415970802082831
crossref_primary_10_1016_j_cma_2008_12_036
crossref_primary_10_1002_smsc_202300185
crossref_primary_10_1007_s12205_008_0165_2
crossref_primary_10_1007_s11831_023_10009_y
crossref_primary_10_1016_j_cma_2008_01_021
crossref_primary_10_1016_S0266_352X_03_00062_4
Cites_doi 10.1016/0148-9062(91)91130-J
10.1061/(ASCE)0733-9410(1995)121:5(429)
10.1061/(ASCE)0733-9410(1996)122:1(50)
10.2514/3.11810
10.1179/mst.1998.14.2.136
10.1016/0020-7683(88)90018-2
10.1016/0167-8442(94)00050-B
10.1016/0148-9062(94)90472-3
10.1109/ICNN.1994.374770
10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
10.1016/0045-7949(95)00200-Z
10.1002/(SICI)1097-4628(19960627)60:13<2329::AID-APP4>3.0.CO;2-G
10.1016/S0266-352X(97)00034-7
10.1016/0045-7949(95)00361-4
10.1007/BF00452947
10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
10.1016/S0045-7949(96)00304-5
ContentType Journal Article
Copyright 2000 Elsevier Science Ltd
Copyright_xml – notice: 2000 Elsevier Science Ltd
DBID IQODW
AAYXX
CITATION
DOI 10.1016/S0266-352X(00)00016-1
DatabaseName Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7633
EndPage 178
ExternalDocumentID 10_1016_S0266_352X_00_00016_1
6197538
S0266352X00000161
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSV
SSZ
T5K
TN5
WH7
WUQ
ZMT
ZY4
~02
~G-
ABPIF
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c336t-95d2a5dde5bce9ee7f38a3856bafc35a91e7a12e15bd38286739077bfe91d85a3
IEDL.DBID .~1
ISSN 0266-352X
IngestDate Thu Sep 26 15:28:29 EDT 2024
Sun Oct 29 17:07:24 EDT 2023
Fri Feb 23 02:19:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords structures
finite element analysis
displacements
neural networks
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-95d2a5dde5bce9ee7f38a3856bafc35a91e7a12e15bd38286739077bfe91d85a3
PageCount 18
ParticipantIDs crossref_primary_10_1016_S0266_352X_00_00016_1
pascalfrancis_primary_6197538
elsevier_sciencedirect_doi_10_1016_S0266_352X_00_00016_1
PublicationCentury 2000
PublicationDate 2000-01-01
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – month: 01
  year: 2000
  text: 2000-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers and geotechnics
PublicationYear 2000
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Furukawa, Yagawa (BIB19) 1998; 43
Pietruszczak, Jiang, Mirza (BIB4) 1988; 24
Rumelhart, McClelland (BIB23) 1988
Logar, Turk (BIB9) 1997; 77
Xu, Pietruszczak (BIB5) 1997; 63
Ghaboussi, Sidata (BIB8) 1998; 22
Wu (BIB12) 1997
Mast, Nash, Michopoulos, Thomas, Badaliance, Wolock (BIB22) 1995; 22
Ellis, Yao, Zhao, Penumadu (BIB7) 1995; 121
Sankarasubramanian, Rajasekaran (BIB16) 1996; 58
Zienkiewicz, Chan, Paster, Schrefler, Shiomi (BIB1) 1999
Najjar, Basheer (BIB10) 1996; 14
Penumadu D, Jin-Nan L, Chameau JL, Arumugam S. Rate dependant behavior of clays using neural networks. In: Proc. 13th Conference of Int. Soc. Soil Mechanics and Foundation Engineering, Vol. 4. IBH Pub. Co., New Delhi/Oxford, 1994. p. 1445–8.
Lee, Pande, Middleton, Kralj (BIB6) 1996; 61
Pietruszczak S, Pande GN. Constitutive relations for partially saturated soils containing gas inclusions. Journal of Geotechnical Engineering, ASCE 1996; January:50–9.
Pidaparti, Palakal (BIB18) 1993; 31
Millar D, Clarici E. Investigation of backpropagation artificial neural networks in modeling the stress–strain behavior of sandstone rock. In: Piscataway NJ, editor. Proc. 1994 IEEE International Conference on Neural Networks, IEEE Service Center, 1994. p. 3326–31.
Millar DL, Calderbank PA. On the investigation of a multilayer feedforward neural-network model of rock deformability behavior. In: Fujii, editor. Proc. 8th International Congress on Rock Mechanics. Tokyo/Rotterdam: Balkema, 1995. p. 933–8.
Chen, Pande (BIB3) 1994; 31
Ghaboussi, Pecknold, Zhang, Haj-ali (BIB17) 1998; 42
Keshavaraj, Tock, Haycook (BIB21) 1996; 60
Pao YH. Adaptive pattern recognition and neural networks. Addison-Wesley Publishing Company Inc., 1989.
Li, Wu, Zhang (BIB20) 1998; 14
Zhang, Song, Nie (BIB15) 1991; 28
Sankarasubramanian (10.1016/S0266-352X(00)00016-1_BIB16) 1996; 58
10.1016/S0266-352X(00)00016-1_BIB11
Wu (10.1016/S0266-352X(00)00016-1_BIB12) 1997
10.1016/S0266-352X(00)00016-1_BIB14
10.1016/S0266-352X(00)00016-1_BIB13
10.1016/S0266-352X(00)00016-1_BIB24
Pietruszczak (10.1016/S0266-352X(00)00016-1_BIB4) 1988; 24
Ellis (10.1016/S0266-352X(00)00016-1_BIB7) 1995; 121
Chen (10.1016/S0266-352X(00)00016-1_BIB3) 1994; 31
Ghaboussi (10.1016/S0266-352X(00)00016-1_BIB17) 1998; 42
Rumelhart (10.1016/S0266-352X(00)00016-1_BIB23) 1988
Zienkiewicz (10.1016/S0266-352X(00)00016-1_BIB1) 1999
Mast (10.1016/S0266-352X(00)00016-1_BIB22) 1995; 22
Ghaboussi (10.1016/S0266-352X(00)00016-1_BIB8) 1998; 22
Furukawa (10.1016/S0266-352X(00)00016-1_BIB19) 1998; 43
Logar (10.1016/S0266-352X(00)00016-1_BIB9) 1997; 77
10.1016/S0266-352X(00)00016-1_BIB2
Keshavaraj (10.1016/S0266-352X(00)00016-1_BIB21) 1996; 60
Xu (10.1016/S0266-352X(00)00016-1_BIB5) 1997; 63
Zhang (10.1016/S0266-352X(00)00016-1_BIB15) 1991; 28
Pidaparti (10.1016/S0266-352X(00)00016-1_BIB18) 1993; 31
Najjar (10.1016/S0266-352X(00)00016-1_BIB10) 1996; 14
Li (10.1016/S0266-352X(00)00016-1_BIB20) 1998; 14
Lee (10.1016/S0266-352X(00)00016-1_BIB6) 1996; 61
References_xml – volume: 22
  start-page: 71
  year: 1995
  end-page: 96
  ident: BIB22
  article-title: Characterization of strain-induced damage in composites based on the dissipated energy density; Part I. Basic scheme and formulation, Part II. Composite specimens and naval structures, Part III. General material constitutive relation
  publication-title: Theoretical and Applied Fracture Mechanics
  contributor:
    fullname: Wolock
– year: 1988
  ident: BIB23
  article-title: Parallel distributed processing, vols. 1 and 2
  contributor:
    fullname: McClelland
– volume: 61
  start-page: 735
  year: 1996
  end-page: 745
  ident: BIB6
  article-title: Numerical modelling of brick masonry panels subject to lateral loadings
  publication-title: Computers & Structures
  contributor:
    fullname: Kralj
– volume: 58
  start-page: 1003
  year: 1996
  end-page: 1014
  ident: BIB16
  article-title: Constitutive modelling of concrete using a new failure criterion
  publication-title: Computers & Structures
  contributor:
    fullname: Rajasekaran
– volume: 22
  start-page: 29
  year: 1998
  end-page: 52
  ident: BIB8
  article-title: New nested adaptive neural networks (NANN) for constitutive modelling
  publication-title: Computers and Geotechnics
  contributor:
    fullname: Sidata
– volume: 60
  start-page: 2329
  year: 1996
  end-page: 2338
  ident: BIB21
  article-title: Airbag fabric material modelling of nylon and polyester fabrics using a very simple neural network architecture
  publication-title: Journal of Applied Polymer Science
  contributor:
    fullname: Haycook
– year: 1999
  ident: BIB1
  article-title: Computational geomechanics with special reference to earthquake engineering
  contributor:
    fullname: Shiomi
– volume: 77
  start-page: S195
  year: 1997
  end-page: 196
  ident: BIB9
  article-title: Neural network as a constitutive model of soil
  publication-title: Zeitschrift Fur Angewandte Mathematik Und Mechanik
  contributor:
    fullname: Turk
– volume: 14
  start-page: 136
  year: 1998
  end-page: 138
  ident: BIB20
  article-title: Approach to constitutive relationships of a Ti–5Al–2Sn–2Zr–4Cr–4Mo alloy by artificial neural networks
  publication-title: Materials Science and Technology
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 535
  year: 1991
  end-page: 540
  ident: BIB15
  article-title: Application of neural network models to rock mechanics and rock engineering
  publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr
  contributor:
    fullname: Nie
– start-page: 613
  year: 1997
  end-page: 617
  ident: BIB12
  article-title: Constitutive relation modelling for soil using finite element–neural network hybrid algorithms
  publication-title: Computer methods and advances in geomechanics
  contributor:
    fullname: Wu
– volume: 24
  start-page: 705
  year: 1988
  end-page: 722
  ident: BIB4
  article-title: An elastoplastic constitutive model for concrete
  publication-title: Int. J. Solid Structures
  contributor:
    fullname: Mirza
– volume: 43
  start-page: 195
  year: 1998
  end-page: 219
  ident: BIB19
  article-title: Implicit constitutive modelling for viscoplasticity using neural networks
  publication-title: Int. J. Numer. Meth. Engng
  contributor:
    fullname: Yagawa
– volume: 42
  start-page: 105
  year: 1998
  end-page: 126
  ident: BIB17
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int. J. Numer. Meth. Engng
  contributor:
    fullname: Haj-ali
– volume: 31
  start-page: 273
  year: 1994
  end-page: 277
  ident: BIB3
  article-title: Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts
  publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr
  contributor:
    fullname: Pande
– volume: 121
  start-page: 429
  year: 1995
  end-page: 435
  ident: BIB7
  article-title: Stress-strain modeling of sands using artificial neural networks
  publication-title: Journal of Geotechnical Engineering, ASCE
  contributor:
    fullname: Penumadu
– volume: 14
  start-page: 193
  year: 1996
  end-page: 212
  ident: BIB10
  article-title: Utilizing computational neural networks for evaluating the permeability of compacted clay liners
  publication-title: Geotechnical & Geological Engineering
  contributor:
    fullname: Basheer
– volume: 63
  start-page: 497
  year: 1997
  end-page: 509
  ident: BIB5
  article-title: Numerical analysis of concrete fracture based on a homogenization technique
  publication-title: Computers & Structures
  contributor:
    fullname: Pietruszczak
– volume: 31
  start-page: 1533
  year: 1993
  end-page: 1535
  ident: BIB18
  article-title: Material model for composites using neural networks
  publication-title: AIAA Journal
  contributor:
    fullname: Palakal
– volume: 28
  start-page: 535
  issue: 6
  year: 1991
  ident: 10.1016/S0266-352X(00)00016-1_BIB15
  article-title: Application of neural network models to rock mechanics and rock engineering
  publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr
  doi: 10.1016/0148-9062(91)91130-J
  contributor:
    fullname: Zhang
– volume: 121
  start-page: 429
  issue: 5
  year: 1995
  ident: 10.1016/S0266-352X(00)00016-1_BIB7
  article-title: Stress-strain modeling of sands using artificial neural networks
  publication-title: Journal of Geotechnical Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9410(1995)121:5(429)
  contributor:
    fullname: Ellis
– ident: 10.1016/S0266-352X(00)00016-1_BIB2
  doi: 10.1061/(ASCE)0733-9410(1996)122:1(50)
– volume: 31
  start-page: 1533
  issue: 8
  year: 1993
  ident: 10.1016/S0266-352X(00)00016-1_BIB18
  article-title: Material model for composites using neural networks
  publication-title: AIAA Journal
  doi: 10.2514/3.11810
  contributor:
    fullname: Pidaparti
– start-page: 613
  year: 1997
  ident: 10.1016/S0266-352X(00)00016-1_BIB12
  article-title: Constitutive relation modelling for soil using finite element–neural network hybrid algorithms
  contributor:
    fullname: Wu
– volume: 14
  start-page: 136
  year: 1998
  ident: 10.1016/S0266-352X(00)00016-1_BIB20
  article-title: Approach to constitutive relationships of a Ti–5Al–2Sn–2Zr–4Cr–4Mo alloy by artificial neural networks
  publication-title: Materials Science and Technology
  doi: 10.1179/mst.1998.14.2.136
  contributor:
    fullname: Li
– ident: 10.1016/S0266-352X(00)00016-1_BIB24
– volume: 24
  start-page: 705
  issue: 7
  year: 1988
  ident: 10.1016/S0266-352X(00)00016-1_BIB4
  article-title: An elastoplastic constitutive model for concrete
  publication-title: Int. J. Solid Structures
  doi: 10.1016/0020-7683(88)90018-2
  contributor:
    fullname: Pietruszczak
– volume: 22
  start-page: 71
  year: 1995
  ident: 10.1016/S0266-352X(00)00016-1_BIB22
  article-title: Characterization of strain-induced damage in composites based on the dissipated energy density; Part I. Basic scheme and formulation, Part II. Composite specimens and naval structures, Part III. General material constitutive relation
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/0167-8442(94)00050-B
  contributor:
    fullname: Mast
– volume: 31
  start-page: 273
  issue: 3
  year: 1994
  ident: 10.1016/S0266-352X(00)00016-1_BIB3
  article-title: Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts
  publication-title: Int. J. Rock Mech. Min. Sci. & Geomech. Abstr
  doi: 10.1016/0148-9062(94)90472-3
  contributor:
    fullname: Chen
– ident: 10.1016/S0266-352X(00)00016-1_BIB13
  doi: 10.1109/ICNN.1994.374770
– volume: 43
  start-page: 195
  year: 1998
  ident: 10.1016/S0266-352X(00)00016-1_BIB19
  article-title: Implicit constitutive modelling for viscoplasticity using neural networks
  publication-title: Int. J. Numer. Meth. Engng
  doi: 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
  contributor:
    fullname: Furukawa
– year: 1988
  ident: 10.1016/S0266-352X(00)00016-1_BIB23
  contributor:
    fullname: Rumelhart
– volume: 77
  start-page: S195
  issue: S1
  year: 1997
  ident: 10.1016/S0266-352X(00)00016-1_BIB9
  article-title: Neural network as a constitutive model of soil
  publication-title: Zeitschrift Fur Angewandte Mathematik Und Mechanik
  contributor:
    fullname: Logar
– volume: 58
  start-page: 1003
  issue: 5
  year: 1996
  ident: 10.1016/S0266-352X(00)00016-1_BIB16
  article-title: Constitutive modelling of concrete using a new failure criterion
  publication-title: Computers & Structures
  doi: 10.1016/0045-7949(95)00200-Z
  contributor:
    fullname: Sankarasubramanian
– volume: 60
  start-page: 2329
  year: 1996
  ident: 10.1016/S0266-352X(00)00016-1_BIB21
  article-title: Airbag fabric material modelling of nylon and polyester fabrics using a very simple neural network architecture
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/(SICI)1097-4628(19960627)60:13<2329::AID-APP4>3.0.CO;2-G
  contributor:
    fullname: Keshavaraj
– volume: 22
  start-page: 29
  issue: 1
  year: 1998
  ident: 10.1016/S0266-352X(00)00016-1_BIB8
  article-title: New nested adaptive neural networks (NANN) for constitutive modelling
  publication-title: Computers and Geotechnics
  doi: 10.1016/S0266-352X(97)00034-7
  contributor:
    fullname: Ghaboussi
– volume: 61
  start-page: 735
  issue: 4
  year: 1996
  ident: 10.1016/S0266-352X(00)00016-1_BIB6
  article-title: Numerical modelling of brick masonry panels subject to lateral loadings
  publication-title: Computers & Structures
  doi: 10.1016/0045-7949(95)00361-4
  contributor:
    fullname: Lee
– volume: 14
  start-page: 193
  issue: 3
  year: 1996
  ident: 10.1016/S0266-352X(00)00016-1_BIB10
  article-title: Utilizing computational neural networks for evaluating the permeability of compacted clay liners
  publication-title: Geotechnical & Geological Engineering
  doi: 10.1007/BF00452947
  contributor:
    fullname: Najjar
– year: 1999
  ident: 10.1016/S0266-352X(00)00016-1_BIB1
  contributor:
    fullname: Zienkiewicz
– volume: 42
  start-page: 105
  year: 1998
  ident: 10.1016/S0266-352X(00)00016-1_BIB17
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int. J. Numer. Meth. Engng
  doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
  contributor:
    fullname: Ghaboussi
– volume: 63
  start-page: 497
  issue: 3
  year: 1997
  ident: 10.1016/S0266-352X(00)00016-1_BIB5
  article-title: Numerical analysis of concrete fracture based on a homogenization technique
  publication-title: Computers & Structures
  doi: 10.1016/S0045-7949(96)00304-5
  contributor:
    fullname: Xu
– ident: 10.1016/S0266-352X(00)00016-1_BIB14
– ident: 10.1016/S0266-352X(00)00016-1_BIB11
SSID ssj0016989
Score 1.8893285
Snippet In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive...
SourceID crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 161
SubjectTerms Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Title On self-learning finite element codes based on monitored response of structures
URI https://dx.doi.org/10.1016/S0266-352X(00)00016-1
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsoAQ4ikKtPLAAIPb2I7zGKuKqoBoB6jULbJTG1WCtGrLym_nbKevASEx5pRcos_J3X3OPRC6FUYopllCDPANEqYmICrKA8JAqiPgQcy1FHrpR71h-DQSowrqrGphbFplafu9TXfWupS0SjRbs8mk9QrsAbwlG7k4lzoKFIL7g3e6-b1O86B2QKLfZ4mIPXtTxeM1OOFdENw7JYT-5p8OZ3IBqBk_7mLLB3WP0VEZPOK2f74TVNHFKTrYail4hgaDAi_0hyHlOIh3bCY2rMTa54ljW8O-wNZ5jfG0wJ_um57Dwdxny2o8Ndh3lf0C0Tkadh_eOj1SDk0gOefRkqRizKQAoyVUrlOtY8MTyRMRKWlyLmRKdSwp01SoMbc15DEHfhwro1M6ToTkF6haTAt9ibAMZMJDFSdG0lBGYcpDUMmEzJmSEFrUUHMFVTbzvTGyTdIYYJtZbLMgcH-4o4zWULICNNtZ5Azs91-X1ncWYH1DIIDAuJKr_6u-Rvu-vt7uq9ygKiCs6xBpLFXDvUoNtNd-fO71fwBlNs7L
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgCEEE9RoOCBAQbTxI7zGKuKKqWvgVbqFtmpjSpBWrXl_3OO09eAkBhzki_R5_juPvvujNAj11xSRUOigW8QL9IOkX7qEApS5QMPonlLoV7fj0fe25iPS6i5roUxaZWF7bc2PbfWhaReoFmfT6f1d2AP4C3pOI9zXUOBKhANRLA6K412J-5vDhPMHYl2q8UnZsC2kMcqyYVPjvOc6yHuby7qeC6WAJy2N17suKHWKTop4kfcsJ94hkoqO0dHO10FL9BgkOGl-tSkuBHiA-upiSyxsqni2JSxL7HxXxM8y_BXvqwX8LCwCbMKzzS2jWW_QXSJRq3XYTMmxb0JJGXMX5GIT6jgYLe4TFWkVKBZKFjIfSl0yriIXBUIlyqXywkzZeQBA4ocSK0idxJywa5QOZtl6hph4YiQeTIItXA94XsR80Al5SKlUkB0UUUva6iSuW2PkWzzxgDbxGCbOE5-yO0nbhWFa0CTvXlOwIT_NbS2NwGbFwIHBNIV3vxf9QM6iIe9btJt9zu36NCW25ttljtUBrRVDQKPlbwvfqwfnNvRfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+self-learning+finite+element+codes+based+on+monitored+response+of+structures&rft.jtitle=Computers+and+geotechnics&rft.au=Shin%2C+H.S.&rft.au=Pande%2C+G.N.&rft.date=2000-01-01&rft.pub=Elsevier+Ltd&rft.issn=0266-352X&rft.eissn=1873-7633&rft.volume=27&rft.issue=3&rft.spage=161&rft.epage=178&rft_id=info:doi/10.1016%2FS0266-352X%2800%2900016-1&rft.externalDocID=S0266352X00000161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon