Early prediction of dementia using fMRI data with a graph convolutional network approach
Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration...
Saved in:
Published in | Journal of neural engineering Vol. 21; no. 1; pp. 16013 - 16028 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/ad1e22 |
Cover
Loading…
Abstract | Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN . |
---|---|
AbstractList | Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN . . Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN. Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs).Approach. Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance. Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN.Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs).Approach. Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance. Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN. |
Author | Zhao, Kanhao Solé-Casals, Jordi Zhang, Yu Duan, Feng Han, Shuning Sun, Zhe Caiafa, Cesar F |
Author_xml | – sequence: 1 givenname: Shuning surname: Han fullname: Han, Shuning organization: Image Processing Research Group, RIKEN Center for Advanced Photonics, RIKEN , Wako-Shi, Saitama, Japan – sequence: 2 givenname: Zhe orcidid: 0000-0002-6531-0769 surname: Sun fullname: Sun, Zhe organization: Faculty of Health Data Science, Juntendo University , Urayasu, Chiba, Japan – sequence: 3 givenname: Kanhao surname: Zhao fullname: Zhao, Kanhao organization: Department of Bioengineering, Lehigh University , Bethlehem, PA 18015, United States of America – sequence: 4 givenname: Feng surname: Duan fullname: Duan, Feng organization: Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, Nankai University , Tianjin, People’s Republic of China – sequence: 5 givenname: Cesar F orcidid: 0000-0001-5437-6095 surname: Caiafa fullname: Caiafa, Cesar F organization: Riken AIP Tensor Learning Team, Tokyo, Tokyo 103-0027, Japan – sequence: 6 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Department of Electrical and Computer Engineering, Lehigh University , Bethlehem, PA 18015, United States of America – sequence: 7 givenname: Jordi orcidid: 0000-0002-6534-1979 surname: Solé-Casals fullname: Solé-Casals, Jordi organization: University of Cambridge Department of Psychiatry, Cambridge CB20SZ, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38215493$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKxDAUQIOM6PjYu5IsXTiaR9M2S5HxAYogCu7CbZI60U5Tk9TBv7dl1IWgq4TknBtydtCk9a1F6ICSE0rK8pQWGZ0xIdgpGGoZ20DTn6PJzz4n22gnxhdCOC0k2ULbvGRUZJJP0dMcQvOBu2CN08n5FvsaG7u0bXKA--jaZ1zf3l9jAwnwyqUFBvwcoFtg7dt33_SjBA1ubVr58Iqh64IHvdhDmzU00e5_rbvo8WL-cH41u7m7vD4_u5lpzvM0k5mWTAoLZW1KWlekIFlOa6FNacq8AJsD5Xa4p5XgstCM1wUzQhZ5VeUZJXwXHa3nDs--9TYmtXRR26aB1vo-KiapLLJMEDGgh19oXy2tUV1wSwgf6rvGAORrQAcfY7C10i7B-MEUwDWKEjVmV2NXNTZW6-yDSH6J37P_UY7XivOdevF9GCLGv_FPHBuSEg |
CODEN | JNEOBH |
CitedBy_id | crossref_primary_10_1155_2024_8862647 crossref_primary_10_3390_cells13231965 crossref_primary_10_3389_fmed_2025_1540297 crossref_primary_10_7717_peerj_cs_2302 crossref_primary_10_1016_j_cmpb_2024_108419 crossref_primary_10_3389_fpsyt_2025_1485286 |
Cites_doi | 10.1007/s12021-023-09625-7 10.1371/journal.pcbi.0010042 10.1016/j.neuroimage.2021.118774 10.1117/12.387617 10.1023/A:1009715923555 10.1016/j.ijpsycho.2014.04.001 10.1073/pnas.0135058100 10.2174/157015913804999487 10.1002/alz.13412 10.1109/TNN.2008.2005605 10.1007/s40708-015-0019-x 10.1016/j.patcog.2022.109106 10.1093/cercor/bhx179 10.1109/TNNLS.2022.3220220 10.1016/j.neuroimage.2017.12.052 10.3389/fnsys.2010.00147 10.1007/s12559-019-09688-2 10.1007/s12559-021-09946-2 10.3389/fnagi.2019.00113 10.1088/1741-2560/13/4/046008 10.1016/j.aiopen.2021.01.001 10.1101/2019.12.13.19014902 10.1038/s44220-023-00049-5 10.1007/s11682-021-00585-7 10.1038/nrn2575 10.1162/netn_a_00171 10.1016/j.nicl.2017.08.017 10.1371/journal.pone.0068910 10.1007/s00415-018-9016-3 10.1111/jon.13063 10.1007/s00221-003-1398-4 10.1016/j.bspc.2021.103015 10.1016/j.nicl.2019.101929 10.1016/j.neurobiolaging.2011.12.029 10.3389/fnagi.2017.00143 10.1038/s41592-018-0235-4 10.1016/S0072-9752(07)01219-5 10.1016/j.neuroimage.2009.06.060 10.1152/jn.00339.2011 10.1016/j.neuroimage.2015.02.064 10.1016/j.media.2007.06.004 10.1136/bmj.h3029 10.7717/peerj.135 10.1038/nrn755 10.1016/j.ejmech.2021.113320 10.1002/hbm.22689 10.1016/j.neulet.2014.11.050 10.1109/TNN.2008.2010350 10.3390/molecules25245789 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. 2024 IOP Publishing Ltd. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: 2024 IOP Publishing Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/ad1e22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 38215493 10_1088_1741_2552_ad1e22 jnead1e22 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: PICT grantid: 2020-SERIEA-00457 – fundername: Experimental Sciences and Technology at the University of Vic - Central University of Catalonia grantid: doctoral programme – fundername: PIP grantid: 112202101 00284CO (Argentina) – fundername: Tianjin Municipal Science and Technology Program grantid: 22PTZWHZ00040 funderid: http://dx.doi.org/10.13039/501100019065 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c336t-94c9295ea8fd81fb070461f5cd8d867ae6a13e5ea1b5397c23f72d5976bb64103 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri Sep 05 00:48:00 EDT 2025 Sun Jun 15 01:31:10 EDT 2025 Thu Jul 03 08:20:48 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jun 17 22:16:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | graph convolutional network mild cognitive impairment functional connectivity Alzheimer’s disease functional magnetic resonance imaging analysis |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2024 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-94c9295ea8fd81fb070461f5cd8d867ae6a13e5ea1b5397c23f72d5976bb64103 |
Notes | JNE-106834.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6531-0769 0000-0001-5437-6095 0000-0002-6534-1979 |
PMID | 38215493 |
PQID | 2919744505 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1088_1741_2552_ad1e22 crossref_primary_10_1088_1741_2552_ad1e22 iop_journals_10_1088_1741_2552_ad1e22 proquest_miscellaneous_2919744505 pubmed_primary_38215493 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Devika (jnead1e22bib16) 2021 Xia (jnead1e22bib50) 2013; 8 Esteban (jnead1e22bib29) 2019; 16 Errica (jnead1e22bib44) 2020 Liu (jnead1e22bib8) 2015; 2 López (jnead1e22bib3) 2008; 89 Illakiya (jnead1e22bib12) 2023; 21 Sólon Heinsfeld (jnead1e22bib36) 2018; 17 Li (jnead1e22bib53) 2015; 36 Bi (jnead1e22bib9) 2020; 12 Wein (jnead1e22bib22) 2023 LaMontagne (jnead1e22bib28) 2019 Greve (jnead1e22bib32) 2009; 48 Buckner (jnead1e22bib51) 2011; 106 Bullmore (jnead1e22bib11) 2009; 10 Cao (jnead1e22bib35) 2021; 70 Wu (jnead1e22bib60) 2019; 11 Zhang (jnead1e22bib59) 2015; 585 Stam (jnead1e22bib37) 2014; 92 Chandra (jnead1e22bib7) 2019; 266 Kingma (jnead1e22bib48) 2015 Zhang (jnead1e22bib31) 2000; 3979 Warren (jnead1e22bib13) 2023; 33 Schaefer (jnead1e22bib34) 2018; 28 Ira Ktena (jnead1e22bib24) 2018; 169 Helaly (jnead1e22bib17) 2022; 14 Tang (jnead1e22bib26) 2022 He (jnead1e22bib52) 2012; 33 Srivastava (jnead1e22bib2) 2021; 216 Karakaya (jnead1e22bib5) 2013; 11 Parisot (jnead1e22bib23) 2017 Borchert (jnead1e22bib15) 2023; 19 Hanik (jnead1e22bib40) 2022; 16 Fey (jnead1e22bib45) 2019 Zhang (jnead1e22bib14) 2023; 1 Russ (jnead1e22bib55) 2003; 149 Wang (jnead1e22bib25) 2021; 5 The Alzheimer’s Disease Neuroimage Initiative (jnead1e22bib4) 2019; 23 Burges (jnead1e22bib49) 1998; 2 Breijyeh (jnead1e22bib1) 2020; 25 Zhou (jnead1e22bib39) 2020; 1 Alexander-Bloch (jnead1e22bib38) 2010; 4 Suprano (jnead1e22bib42) 2019 Corbetta (jnead1e22bib54) 2002; 3 Scarselli (jnead1e22bib21) 2008; 20 Avants (jnead1e22bib30) 2008; 12 Greicius (jnead1e22bib10) 2003; 100 Sporns (jnead1e22bib41) 2005; 1 Lei (jnead1e22bib27) 2023; 134 Pruim (jnead1e22bib33) 2015; 112 Zheng (jnead1e22bib56) 2017; 9 Morris (jnead1e22bib46) 2019; vol 33 Micheli (jnead1e22bib43) 2009; 20 Zhao (jnead1e22bib19) 2022; 246 Esposito (jnead1e22bib58) 2013; 1 Robinson (jnead1e22bib6) 2015; 350 Nair (jnead1e22bib47) 2010 Zhu (jnead1e22bib57) 2016; 13 Ebrahimi-Ghahnavieh (jnead1e22bib18) 2019 Niepert (jnead1e22bib20) 2016 |
References_xml | – volume: 21 start-page: 339 year: 2023 ident: jnead1e22bib12 article-title: Automatic detection of Alzheimer’s disease using deep learning models and neuro-imaging: current trends and future perspectives publication-title: Neuroinformatics doi: 10.1007/s12021-023-09625-7 – volume: 1 start-page: e42 year: 2005 ident: jnead1e22bib41 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 246 year: 2022 ident: jnead1e22bib19 article-title: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118774 – volume: 3979 start-page: 1126 year: 2000 ident: jnead1e22bib31 article-title: Hidden Markov random field model for segmentation of brain MR image publication-title: Proc. SPIE doi: 10.1117/12.387617 – volume: 2 start-page: 121 year: 1998 ident: jnead1e22bib49 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowledge Discovery doi: 10.1023/A:1009715923555 – volume: 92 start-page: 129 year: 2014 ident: jnead1e22bib37 article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.04.001 – volume: 100 start-page: 253 year: 2003 ident: jnead1e22bib10 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0135058100 – volume: 11 start-page: 102 year: 2013 ident: jnead1e22bib5 article-title: Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer’s disease publication-title: Curr. Neuropharmacol. doi: 10.2174/157015913804999487 – volume: 19 start-page: 5885 year: 2023 ident: jnead1e22bib15 article-title: Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: a systematic review publication-title: Alzheimer’s Dementia doi: 10.1002/alz.13412 – volume: 20 start-page: 61 year: 2008 ident: jnead1e22bib21 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 2 start-page: 167 year: 2015 ident: jnead1e22bib8 article-title: Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders publication-title: Brain Inf. doi: 10.1007/s40708-015-0019-x – volume: 134 year: 2023 ident: jnead1e22bib27 article-title: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109106 – volume: 28 start-page: 3095 year: 2018 ident: jnead1e22bib34 article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx179 – year: 2019 ident: jnead1e22bib45 article-title: Fast graph representation learning with PyTorch geometric – start-page: 1 year: 2022 ident: jnead1e22bib26 article-title: Contrastive brain network learning via hierarchical signed graph pooling model publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3220220 – start-page: pp 177 year: 2017 ident: jnead1e22bib23 article-title: Spectral graph convolutions for population-based disease prediction – volume: 169 start-page: 431 year: 2018 ident: jnead1e22bib24 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.052 – volume: 4 start-page: 147 year: 2010 ident: jnead1e22bib38 article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00147 – volume: 12 start-page: 513 year: 2020 ident: jnead1e22bib9 article-title: Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine publication-title: Cogn. Comput. doi: 10.1007/s12559-019-09688-2 – volume: 14 start-page: 1711 year: 2022 ident: jnead1e22bib17 article-title: Deep learning approach for early detection of Alzheimer’s disease publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09946-2 – volume: 11 start-page: 113 year: 2019 ident: jnead1e22bib60 article-title: Yingchun Zhang and Alzheimer’s disease neuroimaging initiative. Effects of brain parcellation on the characterization of topological deterioration in Alzheimer’s disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00113 – volume: 13 year: 2016 ident: jnead1e22bib57 article-title: Changes of intranetwork and internetwork functional connectivity in Alzheimer’s disease and mild cognitive impairment publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/4/046008 – volume: 1 start-page: 57 year: 2020 ident: jnead1e22bib39 article-title: Graph neural networks: a review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – year: 2019 ident: jnead1e22bib28 article-title: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease doi: 10.1101/2019.12.13.19014902 – volume: 1 start-page: 284 year: 2023 ident: jnead1e22bib14 article-title: Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD publication-title: Nat. Mental Health doi: 10.1038/s44220-023-00049-5 – volume: 16 start-page: 1123 year: 2022 ident: jnead1e22bib40 article-title: Predicting cognitive scores with graph neural networks through sample selection learning publication-title: Brain Imaging Behav. doi: 10.1007/s11682-021-00585-7 – volume: 10 start-page: 186 year: 2009 ident: jnead1e22bib11 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 5 start-page: 83 year: 2021 ident: jnead1e22bib25 article-title: Graph convolutional network for fMRI analysis based on connectivity neighborhood publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00171 – volume: 17 start-page: 16 year: 2018 ident: jnead1e22bib36 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2017.08.017 – volume: 8 year: 2013 ident: jnead1e22bib50 article-title: Brainnet viewer: a network visualization tool for human brain connectomics publication-title: PLoS One doi: 10.1371/journal.pone.0068910 – volume: 266 start-page: 1293 year: 2019 ident: jnead1e22bib7 article-title: Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment publication-title: J. Neurol. doi: 10.1007/s00415-018-9016-3 – year: 2023 ident: jnead1e22bib22 article-title: Applications of spatio-temporal graph neural network models for brain connectivity analysis – volume: 33 start-page: 5 year: 2023 ident: jnead1e22bib13 article-title: Functional magnetic resonance imaging, deep learning and Alzheimer’s disease: a systematic review publication-title: J. Neuroimaging doi: 10.1111/jon.13063 – volume: 149 start-page: 497 year: 2003 ident: jnead1e22bib55 article-title: Enactment effect in memory: evidence concerning the function of the supramarginal gyrus publication-title: Exp. Brain Res. doi: 10.1007/s00221-003-1398-4 – volume: 70 year: 2021 ident: jnead1e22bib35 article-title: Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103015 – volume: 23 year: 2019 ident: jnead1e22bib4 article-title: Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.101929 – start-page: pp 494 year: 2021 ident: jnead1e22bib16 article-title: A machine learning approach for diagnosing neurological disorders using longitudinal resting-state fMRI – start-page: pp 2014 year: 2016 ident: jnead1e22bib20 article-title: Learning convolutional neural networks for graphs – volume: 33 start-page: 2612 year: 2012 ident: jnead1e22bib52 article-title: Influence of functional connectivity and structural MRI measures on episodic memory publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.12.029 – start-page: pp 1 year: 2015 ident: jnead1e22bib48 article-title: Adam: a method for stochastic optimization – volume: 9 start-page: 143 year: 2017 ident: jnead1e22bib56 article-title: Altered functional connectivity of cognitive-related cerebellar subregions in Alzheimer’s disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00143 – volume: 16 start-page: 111 year: 2019 ident: jnead1e22bib29 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI publication-title: Nat. Methods doi: 10.1038/s41592-018-0235-4 – volume: vol 33 start-page: pp 4602 year: 2019 ident: jnead1e22bib46 article-title: Weisfeiler and Leman go neural: higher-order graph neural networks – volume: 89 start-page: 207 year: 2008 ident: jnead1e22bib3 article-title: Clinical symptoms in Alzheimer’s disease publication-title: Handb Clin Neurol doi: 10.1016/S0072-9752(07)01219-5 – volume: 48 start-page: 63 year: 2009 ident: jnead1e22bib32 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 106 start-page: 2322 year: 2011 ident: jnead1e22bib51 article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00339.2011 – year: 2010 ident: jnead1e22bib47 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 112 start-page: 267 year: 2015 ident: jnead1e22bib33 article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.064 – volume: 12 start-page: 26 year: 2008 ident: jnead1e22bib30 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 350 start-page: h3029 year: 2015 ident: jnead1e22bib6 article-title: Dementia: timely diagnosis and early intervention publication-title: BMJ doi: 10.1136/bmj.h3029 – volume: 1 start-page: e135 year: 2013 ident: jnead1e22bib58 article-title: Characterization of resting state activity in MCI individuals publication-title: PeerJ doi: 10.7717/peerj.135 – volume: 3 start-page: 201 year: 2002 ident: jnead1e22bib54 article-title: Control of goal-directed and stimulus-driven attention in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn755 – start-page: pp 133 year: 2019 ident: jnead1e22bib18 article-title: Transfer learning for Alzheimer’s disease detection on MRI images – volume: 216 year: 2021 ident: jnead1e22bib2 article-title: Alzheimer’s disease and its treatment by different approaches: a review publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2021.113320 – volume: 36 start-page: 1217 year: 2015 ident: jnead1e22bib53 article-title: Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22689 – volume: 585 start-page: 160 year: 2015 ident: jnead1e22bib59 article-title: Functional degeneration in dorsal and ventral attention systems in amnestic mild cognitive impairment and Alzheimer’s disease: an fMRI study publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.11.050 – year: 2020 ident: jnead1e22bib44 article-title: A fair comparison of graph neural networks for graph classification – volume: 20 start-page: 498 year: 2009 ident: jnead1e22bib43 article-title: Neural network for graphs: a contextual constructive approach publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2010350 – volume: 25 start-page: 5789 year: 2020 ident: jnead1e22bib1 article-title: Comprehensive review on Alzheimer’s disease: causes and treatment publication-title: Molecules doi: 10.3390/molecules25245789 – year: 2019 ident: jnead1e22bib42 article-title: Cerebral connectivity study by functional and diffusion MRI in intelligence |
SSID | ssj0031790 |
Score | 2.4521117 |
Snippet | Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to... . Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect... Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16013 |
SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer’s disease Brain Brain Mapping - methods Cognitive Dysfunction - diagnostic imaging Dementia - diagnostic imaging functional connectivity functional magnetic resonance imaging analysis graph convolutional network Humans Magnetic Resonance Imaging - methods mild cognitive impairment |
Title | Early prediction of dementia using fMRI data with a graph convolutional network approach |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad1e22 https://www.ncbi.nlm.nih.gov/pubmed/38215493 https://www.proquest.com/docview/2919744505 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eXnzxNi_zRgQVfOi2XJpm-CTicMJUxMEehNKkiYjajV0e9Nd70rQDRYf4VuhpT3uSnHwn5-QLQkdEswbVURSEOuUBt6ENpLUaYh7Nm0QlWjfdfufOjbjq8ute2JtDZ9O9MP1B4fprcOmJgr0Ji4I4WQcMTQJAwrSepMRQ8L-LTArhzm1o396Vbpg56im_G9JJi0aRo_zpDV_mpHnQ-zvczKed1gp6LD_YV5u81CZjVdMf37gc__lHq2i5gKP43IuuoTmTraPKeQah-Ns7PsF5gWi-8l5BvZwMGQ-GLrfj2hP3LU7z5cXnBLsC-idsO_dt7KpOsVvgxQnOCbGxq20v-jhoy3zpOS75zDdQt3X5cHEVFAczBJoxMQ6aXAOqCk0ibSqJVeA2uCDW8QykUkSJEQlhBu4TFQLe0ZTZiKYQugilBCcNtokWsn5mthG2XHAriLTKRFylRFFuATGlEIUBtjCiiupl08S6YC13h2e8xnn2XMrYGS92xou98arodPrEwDN2zJA9hjaJi2E7miF3WPaHGIafy6kkmelPRjFtEojIOODIKtryHWWqlUnqCPDYzh-17KIlCpDJ14TvoYXxcGL2AfKM1UHetT8BJ3f3fA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEupVAeCy0YCZA4ZHf9iOM9VoVVF2ipEJX2ZuIXQoXsqt09wK9n_EglEFRI3CLFziTjsfONZ_wNwDNq-ZjZpqlq60QlQh0qFYJFn8eKCTWttZN43vnoWB6eijfzel7qnKazMItlWfqHeJmJgrMKS0KcGiGGphUiYTZqHfWMjZYubMD1mkseSxjM3p_0SzGP9FP5RGTsIcclTvmnp_zyX9pA2X-HnOnXM70Fn_qXzhknZ8P1ygztj9_4HP_jq7Zhq8BSsp-b34ZrvrsDO_sduuTfvpMXJCWKph34HZgnUmSyPI8xnjiuZBGIS9uMX1oSE-k_k3D0YUZi9imJG72kJYkYm8Qc92LrKK3LKeik5zW_C6fT1x8PDqtSoKGynMtVNREW0VXtWxWcosHg8iEkDZFvwCnZtF62lHu8T02NuMcyHhrm0IWRxkhBx_webHaLzj8AEoQUQVIVjG-EcdQwERA5OfTGEGN4OYBRPzzaFvbyWETjq05RdKV0VKCOCtRZgQN4edljmZk7rmj7HMdFl-l7cUW7p71NaJyGMbbSdn6xvtBsQtEzE4gnB3A_G8ulVK5YJMLjD_9RyhO4cfJqqt_Njt8-gpsMUVROE9-FzdX52u8hClqZx8nSfwL-tPzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+prediction+of+dementia+using+fMRI+data+with+a+graph+convolutional+network+approach&rft.jtitle=Journal+of+neural+engineering&rft.au=Han%2C+Shuning&rft.au=Sun%2C+Zhe&rft.au=Zhao%2C+Kanhao&rft.au=Duan%2C+Feng&rft.date=2024-02-01&rft.eissn=1741-2552&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Fad1e22&rft_id=info%3Apmid%2F38215493&rft.externalDocID=38215493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |