Early prediction of dementia using fMRI data with a graph convolutional network approach

Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 1; pp. 16013 - 16028
Main Authors Han, Shuning, Sun, Zhe, Zhao, Kanhao, Duan, Feng, Caiafa, Cesar F, Zhang, Yu, Solé-Casals, Jordi
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.02.2024
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ad1e22

Cover

Loading…
Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
AbstractList Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN.
Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs).Approach. Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance. Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN.Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs).Approach. Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance. Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN.
Author Zhao, Kanhao
Solé-Casals, Jordi
Zhang, Yu
Duan, Feng
Han, Shuning
Sun, Zhe
Caiafa, Cesar F
Author_xml – sequence: 1
  givenname: Shuning
  surname: Han
  fullname: Han, Shuning
  organization: Image Processing Research Group, RIKEN Center for Advanced Photonics, RIKEN , Wako-Shi, Saitama, Japan
– sequence: 2
  givenname: Zhe
  orcidid: 0000-0002-6531-0769
  surname: Sun
  fullname: Sun, Zhe
  organization: Faculty of Health Data Science, Juntendo University , Urayasu, Chiba, Japan
– sequence: 3
  givenname: Kanhao
  surname: Zhao
  fullname: Zhao, Kanhao
  organization: Department of Bioengineering, Lehigh University , Bethlehem, PA 18015, United States of America
– sequence: 4
  givenname: Feng
  surname: Duan
  fullname: Duan, Feng
  organization: Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, Nankai University , Tianjin, People’s Republic of China
– sequence: 5
  givenname: Cesar F
  orcidid: 0000-0001-5437-6095
  surname: Caiafa
  fullname: Caiafa, Cesar F
  organization: Riken AIP Tensor Learning Team, Tokyo, Tokyo 103-0027, Japan
– sequence: 6
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Department of Electrical and Computer Engineering, Lehigh University , Bethlehem, PA 18015, United States of America
– sequence: 7
  givenname: Jordi
  orcidid: 0000-0002-6534-1979
  surname: Solé-Casals
  fullname: Solé-Casals, Jordi
  organization: University of Cambridge Department of Psychiatry, Cambridge CB20SZ, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38215493$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUQIOM6PjYu5IsXTiaR9M2S5HxAYogCu7CbZI60U5Tk9TBv7dl1IWgq4TknBtydtCk9a1F6ICSE0rK8pQWGZ0xIdgpGGoZ20DTn6PJzz4n22gnxhdCOC0k2ULbvGRUZJJP0dMcQvOBu2CN08n5FvsaG7u0bXKA--jaZ1zf3l9jAwnwyqUFBvwcoFtg7dt33_SjBA1ubVr58Iqh64IHvdhDmzU00e5_rbvo8WL-cH41u7m7vD4_u5lpzvM0k5mWTAoLZW1KWlekIFlOa6FNacq8AJsD5Xa4p5XgstCM1wUzQhZ5VeUZJXwXHa3nDs--9TYmtXRR26aB1vo-KiapLLJMEDGgh19oXy2tUV1wSwgf6rvGAORrQAcfY7C10i7B-MEUwDWKEjVmV2NXNTZW6-yDSH6J37P_UY7XivOdevF9GCLGv_FPHBuSEg
CODEN JNEOBH
CitedBy_id crossref_primary_10_1155_2024_8862647
crossref_primary_10_3390_cells13231965
crossref_primary_10_3389_fmed_2025_1540297
crossref_primary_10_7717_peerj_cs_2302
crossref_primary_10_1016_j_cmpb_2024_108419
crossref_primary_10_3389_fpsyt_2025_1485286
Cites_doi 10.1007/s12021-023-09625-7
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2021.118774
10.1117/12.387617
10.1023/A:1009715923555
10.1016/j.ijpsycho.2014.04.001
10.1073/pnas.0135058100
10.2174/157015913804999487
10.1002/alz.13412
10.1109/TNN.2008.2005605
10.1007/s40708-015-0019-x
10.1016/j.patcog.2022.109106
10.1093/cercor/bhx179
10.1109/TNNLS.2022.3220220
10.1016/j.neuroimage.2017.12.052
10.3389/fnsys.2010.00147
10.1007/s12559-019-09688-2
10.1007/s12559-021-09946-2
10.3389/fnagi.2019.00113
10.1088/1741-2560/13/4/046008
10.1016/j.aiopen.2021.01.001
10.1101/2019.12.13.19014902
10.1038/s44220-023-00049-5
10.1007/s11682-021-00585-7
10.1038/nrn2575
10.1162/netn_a_00171
10.1016/j.nicl.2017.08.017
10.1371/journal.pone.0068910
10.1007/s00415-018-9016-3
10.1111/jon.13063
10.1007/s00221-003-1398-4
10.1016/j.bspc.2021.103015
10.1016/j.nicl.2019.101929
10.1016/j.neurobiolaging.2011.12.029
10.3389/fnagi.2017.00143
10.1038/s41592-018-0235-4
10.1016/S0072-9752(07)01219-5
10.1016/j.neuroimage.2009.06.060
10.1152/jn.00339.2011
10.1016/j.neuroimage.2015.02.064
10.1016/j.media.2007.06.004
10.1136/bmj.h3029
10.7717/peerj.135
10.1038/nrn755
10.1016/j.ejmech.2021.113320
10.1002/hbm.22689
10.1016/j.neulet.2014.11.050
10.1109/TNN.2008.2010350
10.3390/molecules25245789
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 IOP Publishing Ltd.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/ad1e22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 38215493
10_1088_1741_2552_ad1e22
jnead1e22
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: PICT
  grantid: 2020-SERIEA-00457
– fundername: Experimental Sciences and Technology at the University of Vic - Central University of Catalonia
  grantid: doctoral programme
– fundername: PIP
  grantid: 112202101 00284CO (Argentina)
– fundername: Tianjin Municipal Science and Technology Program
  grantid: 22PTZWHZ00040
  funderid: http://dx.doi.org/10.13039/501100019065
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c336t-94c9295ea8fd81fb070461f5cd8d867ae6a13e5ea1b5397c23f72d5976bb64103
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 00:48:00 EDT 2025
Sun Jun 15 01:31:10 EDT 2025
Thu Jul 03 08:20:48 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jun 17 22:16:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords graph convolutional network
mild cognitive impairment
functional connectivity
Alzheimer’s disease
functional magnetic resonance imaging analysis
Language English
License This article is available under the terms of the IOP-Standard License.
2024 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-94c9295ea8fd81fb070461f5cd8d867ae6a13e5ea1b5397c23f72d5976bb64103
Notes JNE-106834.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6531-0769
0000-0001-5437-6095
0000-0002-6534-1979
PMID 38215493
PQID 2919744505
PQPubID 23479
PageCount 16
ParticipantIDs crossref_citationtrail_10_1088_1741_2552_ad1e22
crossref_primary_10_1088_1741_2552_ad1e22
iop_journals_10_1088_1741_2552_ad1e22
proquest_miscellaneous_2919744505
pubmed_primary_38215493
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Devika (jnead1e22bib16) 2021
Xia (jnead1e22bib50) 2013; 8
Esteban (jnead1e22bib29) 2019; 16
Errica (jnead1e22bib44) 2020
Liu (jnead1e22bib8) 2015; 2
López (jnead1e22bib3) 2008; 89
Illakiya (jnead1e22bib12) 2023; 21
Sólon Heinsfeld (jnead1e22bib36) 2018; 17
Li (jnead1e22bib53) 2015; 36
Bi (jnead1e22bib9) 2020; 12
Wein (jnead1e22bib22) 2023
LaMontagne (jnead1e22bib28) 2019
Greve (jnead1e22bib32) 2009; 48
Buckner (jnead1e22bib51) 2011; 106
Bullmore (jnead1e22bib11) 2009; 10
Cao (jnead1e22bib35) 2021; 70
Wu (jnead1e22bib60) 2019; 11
Zhang (jnead1e22bib59) 2015; 585
Stam (jnead1e22bib37) 2014; 92
Chandra (jnead1e22bib7) 2019; 266
Kingma (jnead1e22bib48) 2015
Zhang (jnead1e22bib31) 2000; 3979
Warren (jnead1e22bib13) 2023; 33
Schaefer (jnead1e22bib34) 2018; 28
Ira Ktena (jnead1e22bib24) 2018; 169
Helaly (jnead1e22bib17) 2022; 14
Tang (jnead1e22bib26) 2022
He (jnead1e22bib52) 2012; 33
Srivastava (jnead1e22bib2) 2021; 216
Karakaya (jnead1e22bib5) 2013; 11
Parisot (jnead1e22bib23) 2017
Borchert (jnead1e22bib15) 2023; 19
Hanik (jnead1e22bib40) 2022; 16
Fey (jnead1e22bib45) 2019
Zhang (jnead1e22bib14) 2023; 1
Russ (jnead1e22bib55) 2003; 149
Wang (jnead1e22bib25) 2021; 5
The Alzheimer’s Disease Neuroimage Initiative (jnead1e22bib4) 2019; 23
Burges (jnead1e22bib49) 1998; 2
Breijyeh (jnead1e22bib1) 2020; 25
Zhou (jnead1e22bib39) 2020; 1
Alexander-Bloch (jnead1e22bib38) 2010; 4
Suprano (jnead1e22bib42) 2019
Corbetta (jnead1e22bib54) 2002; 3
Scarselli (jnead1e22bib21) 2008; 20
Avants (jnead1e22bib30) 2008; 12
Greicius (jnead1e22bib10) 2003; 100
Sporns (jnead1e22bib41) 2005; 1
Lei (jnead1e22bib27) 2023; 134
Pruim (jnead1e22bib33) 2015; 112
Zheng (jnead1e22bib56) 2017; 9
Morris (jnead1e22bib46) 2019; vol 33
Micheli (jnead1e22bib43) 2009; 20
Zhao (jnead1e22bib19) 2022; 246
Esposito (jnead1e22bib58) 2013; 1
Robinson (jnead1e22bib6) 2015; 350
Nair (jnead1e22bib47) 2010
Zhu (jnead1e22bib57) 2016; 13
Ebrahimi-Ghahnavieh (jnead1e22bib18) 2019
Niepert (jnead1e22bib20) 2016
References_xml – volume: 21
  start-page: 339
  year: 2023
  ident: jnead1e22bib12
  article-title: Automatic detection of Alzheimer’s disease using deep learning models and neuro-imaging: current trends and future perspectives
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-023-09625-7
– volume: 1
  start-page: e42
  year: 2005
  ident: jnead1e22bib41
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 246
  year: 2022
  ident: jnead1e22bib19
  article-title: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118774
– volume: 3979
  start-page: 1126
  year: 2000
  ident: jnead1e22bib31
  article-title: Hidden Markov random field model for segmentation of brain MR image
  publication-title: Proc. SPIE
  doi: 10.1117/12.387617
– volume: 2
  start-page: 121
  year: 1998
  ident: jnead1e22bib49
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 92
  start-page: 129
  year: 2014
  ident: jnead1e22bib37
  article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.04.001
– volume: 100
  start-page: 253
  year: 2003
  ident: jnead1e22bib10
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0135058100
– volume: 11
  start-page: 102
  year: 2013
  ident: jnead1e22bib5
  article-title: Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer’s disease
  publication-title: Curr. Neuropharmacol.
  doi: 10.2174/157015913804999487
– volume: 19
  start-page: 5885
  year: 2023
  ident: jnead1e22bib15
  article-title: Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: a systematic review
  publication-title: Alzheimer’s Dementia
  doi: 10.1002/alz.13412
– volume: 20
  start-page: 61
  year: 2008
  ident: jnead1e22bib21
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 2
  start-page: 167
  year: 2015
  ident: jnead1e22bib8
  article-title: Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders
  publication-title: Brain Inf.
  doi: 10.1007/s40708-015-0019-x
– volume: 134
  year: 2023
  ident: jnead1e22bib27
  article-title: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109106
– volume: 28
  start-page: 3095
  year: 2018
  ident: jnead1e22bib34
  article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx179
– year: 2019
  ident: jnead1e22bib45
  article-title: Fast graph representation learning with PyTorch geometric
– start-page: 1
  year: 2022
  ident: jnead1e22bib26
  article-title: Contrastive brain network learning via hierarchical signed graph pooling model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3220220
– start-page: pp 177
  year: 2017
  ident: jnead1e22bib23
  article-title: Spectral graph convolutions for population-based disease prediction
– volume: 169
  start-page: 431
  year: 2018
  ident: jnead1e22bib24
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.052
– volume: 4
  start-page: 147
  year: 2010
  ident: jnead1e22bib38
  article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2010.00147
– volume: 12
  start-page: 513
  year: 2020
  ident: jnead1e22bib9
  article-title: Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-019-09688-2
– volume: 14
  start-page: 1711
  year: 2022
  ident: jnead1e22bib17
  article-title: Deep learning approach for early detection of Alzheimer’s disease
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09946-2
– volume: 11
  start-page: 113
  year: 2019
  ident: jnead1e22bib60
  article-title: Yingchun Zhang and Alzheimer’s disease neuroimaging initiative. Effects of brain parcellation on the characterization of topological deterioration in Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00113
– volume: 13
  year: 2016
  ident: jnead1e22bib57
  article-title: Changes of intranetwork and internetwork functional connectivity in Alzheimer’s disease and mild cognitive impairment
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/4/046008
– volume: 1
  start-page: 57
  year: 2020
  ident: jnead1e22bib39
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– year: 2019
  ident: jnead1e22bib28
  article-title: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease
  doi: 10.1101/2019.12.13.19014902
– volume: 1
  start-page: 284
  year: 2023
  ident: jnead1e22bib14
  article-title: Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD
  publication-title: Nat. Mental Health
  doi: 10.1038/s44220-023-00049-5
– volume: 16
  start-page: 1123
  year: 2022
  ident: jnead1e22bib40
  article-title: Predicting cognitive scores with graph neural networks through sample selection learning
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-021-00585-7
– volume: 10
  start-page: 186
  year: 2009
  ident: jnead1e22bib11
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 5
  start-page: 83
  year: 2021
  ident: jnead1e22bib25
  article-title: Graph convolutional network for fMRI analysis based on connectivity neighborhood
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00171
– volume: 17
  start-page: 16
  year: 2018
  ident: jnead1e22bib36
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: 8
  year: 2013
  ident: jnead1e22bib50
  article-title: Brainnet viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068910
– volume: 266
  start-page: 1293
  year: 2019
  ident: jnead1e22bib7
  article-title: Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment
  publication-title: J. Neurol.
  doi: 10.1007/s00415-018-9016-3
– year: 2023
  ident: jnead1e22bib22
  article-title: Applications of spatio-temporal graph neural network models for brain connectivity analysis
– volume: 33
  start-page: 5
  year: 2023
  ident: jnead1e22bib13
  article-title: Functional magnetic resonance imaging, deep learning and Alzheimer’s disease: a systematic review
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.13063
– volume: 149
  start-page: 497
  year: 2003
  ident: jnead1e22bib55
  article-title: Enactment effect in memory: evidence concerning the function of the supramarginal gyrus
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-003-1398-4
– volume: 70
  year: 2021
  ident: jnead1e22bib35
  article-title: Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103015
– volume: 23
  year: 2019
  ident: jnead1e22bib4
  article-title: Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.101929
– start-page: pp 494
  year: 2021
  ident: jnead1e22bib16
  article-title: A machine learning approach for diagnosing neurological disorders using longitudinal resting-state fMRI
– start-page: pp 2014
  year: 2016
  ident: jnead1e22bib20
  article-title: Learning convolutional neural networks for graphs
– volume: 33
  start-page: 2612
  year: 2012
  ident: jnead1e22bib52
  article-title: Influence of functional connectivity and structural MRI measures on episodic memory
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.12.029
– start-page: pp 1
  year: 2015
  ident: jnead1e22bib48
  article-title: Adam: a method for stochastic optimization
– volume: 9
  start-page: 143
  year: 2017
  ident: jnead1e22bib56
  article-title: Altered functional connectivity of cognitive-related cerebellar subregions in Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00143
– volume: 16
  start-page: 111
  year: 2019
  ident: jnead1e22bib29
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0235-4
– volume: vol 33
  start-page: pp 4602
  year: 2019
  ident: jnead1e22bib46
  article-title: Weisfeiler and Leman go neural: higher-order graph neural networks
– volume: 89
  start-page: 207
  year: 2008
  ident: jnead1e22bib3
  article-title: Clinical symptoms in Alzheimer’s disease
  publication-title: Handb Clin Neurol
  doi: 10.1016/S0072-9752(07)01219-5
– volume: 48
  start-page: 63
  year: 2009
  ident: jnead1e22bib32
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.060
– volume: 106
  start-page: 2322
  year: 2011
  ident: jnead1e22bib51
  article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00339.2011
– year: 2010
  ident: jnead1e22bib47
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 112
  start-page: 267
  year: 2015
  ident: jnead1e22bib33
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 12
  start-page: 26
  year: 2008
  ident: jnead1e22bib30
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 350
  start-page: h3029
  year: 2015
  ident: jnead1e22bib6
  article-title: Dementia: timely diagnosis and early intervention
  publication-title: BMJ
  doi: 10.1136/bmj.h3029
– volume: 1
  start-page: e135
  year: 2013
  ident: jnead1e22bib58
  article-title: Characterization of resting state activity in MCI individuals
  publication-title: PeerJ
  doi: 10.7717/peerj.135
– volume: 3
  start-page: 201
  year: 2002
  ident: jnead1e22bib54
  article-title: Control of goal-directed and stimulus-driven attention in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn755
– start-page: pp 133
  year: 2019
  ident: jnead1e22bib18
  article-title: Transfer learning for Alzheimer’s disease detection on MRI images
– volume: 216
  year: 2021
  ident: jnead1e22bib2
  article-title: Alzheimer’s disease and its treatment by different approaches: a review
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2021.113320
– volume: 36
  start-page: 1217
  year: 2015
  ident: jnead1e22bib53
  article-title: Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22689
– volume: 585
  start-page: 160
  year: 2015
  ident: jnead1e22bib59
  article-title: Functional degeneration in dorsal and ventral attention systems in amnestic mild cognitive impairment and Alzheimer’s disease: an fMRI study
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.11.050
– year: 2020
  ident: jnead1e22bib44
  article-title: A fair comparison of graph neural networks for graph classification
– volume: 20
  start-page: 498
  year: 2009
  ident: jnead1e22bib43
  article-title: Neural network for graphs: a contextual constructive approach
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2010350
– volume: 25
  start-page: 5789
  year: 2020
  ident: jnead1e22bib1
  article-title: Comprehensive review on Alzheimer’s disease: causes and treatment
  publication-title: Molecules
  doi: 10.3390/molecules25245789
– year: 2019
  ident: jnead1e22bib42
  article-title: Cerebral connectivity study by functional and diffusion MRI in intelligence
SSID ssj0031790
Score 2.4521117
Snippet Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to...
. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect...
Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16013
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer’s disease
Brain
Brain Mapping - methods
Cognitive Dysfunction - diagnostic imaging
Dementia - diagnostic imaging
functional connectivity
functional magnetic resonance imaging analysis
graph convolutional network
Humans
Magnetic Resonance Imaging - methods
mild cognitive impairment
Title Early prediction of dementia using fMRI data with a graph convolutional network approach
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad1e22
https://www.ncbi.nlm.nih.gov/pubmed/38215493
https://www.proquest.com/docview/2919744505
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eXnzxNi_zRgQVfOi2XJpm-CTicMJUxMEehNKkiYjajV0e9Nd70rQDRYf4VuhpT3uSnHwn5-QLQkdEswbVURSEOuUBt6ENpLUaYh7Nm0QlWjfdfufOjbjq8ute2JtDZ9O9MP1B4fprcOmJgr0Ji4I4WQcMTQJAwrSepMRQ8L-LTArhzm1o396Vbpg56im_G9JJi0aRo_zpDV_mpHnQ-zvczKed1gp6LD_YV5u81CZjVdMf37gc__lHq2i5gKP43IuuoTmTraPKeQah-Ns7PsF5gWi-8l5BvZwMGQ-GLrfj2hP3LU7z5cXnBLsC-idsO_dt7KpOsVvgxQnOCbGxq20v-jhoy3zpOS75zDdQt3X5cHEVFAczBJoxMQ6aXAOqCk0ibSqJVeA2uCDW8QykUkSJEQlhBu4TFQLe0ZTZiKYQugilBCcNtokWsn5mthG2XHAriLTKRFylRFFuATGlEIUBtjCiiupl08S6YC13h2e8xnn2XMrYGS92xou98arodPrEwDN2zJA9hjaJi2E7miF3WPaHGIafy6kkmelPRjFtEojIOODIKtryHWWqlUnqCPDYzh-17KIlCpDJ14TvoYXxcGL2AfKM1UHetT8BJ3f3fA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEupVAeCy0YCZA4ZHf9iOM9VoVVF2ipEJX2ZuIXQoXsqt09wK9n_EglEFRI3CLFziTjsfONZ_wNwDNq-ZjZpqlq60QlQh0qFYJFn8eKCTWttZN43vnoWB6eijfzel7qnKazMItlWfqHeJmJgrMKS0KcGiGGphUiYTZqHfWMjZYubMD1mkseSxjM3p_0SzGP9FP5RGTsIcclTvmnp_zyX9pA2X-HnOnXM70Fn_qXzhknZ8P1ygztj9_4HP_jq7Zhq8BSsp-b34ZrvrsDO_sduuTfvpMXJCWKph34HZgnUmSyPI8xnjiuZBGIS9uMX1oSE-k_k3D0YUZi9imJG72kJYkYm8Qc92LrKK3LKeik5zW_C6fT1x8PDqtSoKGynMtVNREW0VXtWxWcosHg8iEkDZFvwCnZtF62lHu8T02NuMcyHhrm0IWRxkhBx_webHaLzj8AEoQUQVIVjG-EcdQwERA5OfTGEGN4OYBRPzzaFvbyWETjq05RdKV0VKCOCtRZgQN4edljmZk7rmj7HMdFl-l7cUW7p71NaJyGMbbSdn6xvtBsQtEzE4gnB3A_G8ulVK5YJMLjD_9RyhO4cfJqqt_Njt8-gpsMUVROE9-FzdX52u8hClqZx8nSfwL-tPzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+prediction+of+dementia+using+fMRI+data+with+a+graph+convolutional+network+approach&rft.jtitle=Journal+of+neural+engineering&rft.au=Han%2C+Shuning&rft.au=Sun%2C+Zhe&rft.au=Zhao%2C+Kanhao&rft.au=Duan%2C+Feng&rft.date=2024-02-01&rft.eissn=1741-2552&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Fad1e22&rft_id=info%3Apmid%2F38215493&rft.externalDocID=38215493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon