Numerical investigation of silted-up dam-break flow with different silted-up sediment heights
The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical simulation of the silted-up dam-break flow is carried out. In this paper, simulations of three-dimensional silted-up dam-break flow are carried...
Saved in:
Published in | Water science & technology. Water supply Vol. 23; no. 2; pp. 599 - 614 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IWA Publishing
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical simulation of the silted-up dam-break flow is carried out. In this paper, simulations of three-dimensional silted-up dam-break flow are carried out. A kind of Eulerian–Eulerian two-fluid model (TFM), coupled level set and volume of fluid (CLSVOF) methods, is presented. In order to calculate the motions of the air–water interface and the sediment simultaneously, kinetic particle theory (KPT) and computational fluid dynamics (CFD) are combined. The rheology-based constitutive equations of sediment are also considered to simulate scouring and deposition. In addition, a partial-slip boundary condition (BC) for the velocity of the sediment phase at stationary walls is implemented. The simulation results of the benchmark case demonstrate that the proposed model can effectively simulate the silted-up dam-break flow while taking into account multi-interface capturing problems. Subsequently, the simulations of the silted-up dam-break flow over dry are investigated numerically in a three-dimensional long channel. The simulated results reveal that, in the dam-break flows, the silted-up sediment height has a significant influence on wave propagation, dynamic pressure loads, sediment transport, and sediment deposition. |
---|---|
AbstractList | The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical simulation of the silted-up dam-break flow is carried out. In this paper, simulations of three-dimensional silted-up dam-break flow are carried out. A kind of Eulerian–Eulerian two-fluid model (TFM), coupled level set and volume of fluid (CLSVOF) methods, is presented. In order to calculate the motions of the air–water interface and the sediment simultaneously, kinetic particle theory (KPT) and computational fluid dynamics (CFD) are combined. The rheology-based constitutive equations of sediment are also considered to simulate scouring and deposition. In addition, a partial-slip boundary condition (BC) for the velocity of the sediment phase at stationary walls is implemented. The simulation results of the benchmark case demonstrate that the proposed model can effectively simulate the silted-up dam-break flow while taking into account multi-interface capturing problems. Subsequently, the simulations of the silted-up dam-break flow over dry are investigated numerically in a three-dimensional long channel. The simulated results reveal that, in the dam-break flows, the silted-up sediment height has a significant influence on wave propagation, dynamic pressure loads, sediment transport, and sediment deposition. HIGHLIGHTS Three-dimensional simulation of silted-up dam-break flow is carried out.; The air–water interface movement is captured by CLSVOF method.; A Eulerian–Eulerian multiphase model coupling kinetic particle theory and computational fluid dynamics is used.; The rheology-based constitutive equations of sediment are considered.; The effect of the silted-up sediment height during a dam-break flow is investigated.; The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical simulation of the silted-up dam-break flow is carried out. In this paper, simulations of three-dimensional silted-up dam-break flow are carried out. A kind of Eulerian–Eulerian two-fluid model (TFM), coupled level set and volume of fluid (CLSVOF) methods, is presented. In order to calculate the motions of the air–water interface and the sediment simultaneously, kinetic particle theory (KPT) and computational fluid dynamics (CFD) are combined. The rheology-based constitutive equations of sediment are also considered to simulate scouring and deposition. In addition, a partial-slip boundary condition (BC) for the velocity of the sediment phase at stationary walls is implemented. The simulation results of the benchmark case demonstrate that the proposed model can effectively simulate the silted-up dam-break flow while taking into account multi-interface capturing problems. Subsequently, the simulations of the silted-up dam-break flow over dry are investigated numerically in a three-dimensional long channel. The simulated results reveal that, in the dam-break flows, the silted-up sediment height has a significant influence on wave propagation, dynamic pressure loads, sediment transport, and sediment deposition. |
Author | Wang, Tinghui Meng, Wenkang Yu, Ching-hao An, Ruidong Gu, Zhenghua |
Author_xml | – sequence: 1 givenname: Zhenghua surname: Gu fullname: Gu, Zhenghua – sequence: 2 givenname: Tinghui surname: Wang fullname: Wang, Tinghui – sequence: 3 givenname: Wenkang surname: Meng fullname: Meng, Wenkang – sequence: 4 givenname: Ching-hao surname: Yu fullname: Yu, Ching-hao – sequence: 5 givenname: Ruidong orcidid: 0000-0002-9520-6444 surname: An fullname: An, Ruidong |
BookMark | eNptkM1KAzEYRYMo2FZXvsDsZWqSmSSTpRR_CkU33UrIb5s6MylJavHt7bQiIq6-j8u9Z3HG4LwPvQXgBsEpRpTe7dMUQ1xNIWRnYIQoZCVkvDk__rTkrOaXYJzSBkLMGMIj8Pay62z0WraF7z9syn4lsw99EVyRfJutKXfbwsiuVNHK98K1YV_sfV4Xxjtno-3zr16yxndDtLZ-tc7pClw42SZ7_X0nYPn4sJw9l4vXp_nsflHqqqK5bGrHCVHIKWQ5YhgRRzmDDSbE6EqTQ0SJrDRiNSJGNs5AzpVShjemkbiagPkJa4LciG30nYyfIkgvjkGIKyFj9rq1ApkGcVxDpLmpoVLcwtoqqRh3VHI0sG5PLB1DStG6Hx6CYpAs9kkMksVB8qGN_rS1z0eBOUrf_rv5AgnIgpI |
CitedBy_id | crossref_primary_10_2478_johh_2023_0040 |
Cites_doi | 10.1007/s42241-021-0100-2 10.1007/978-3-642-56026-2 10.1016/j.jhydrol.2012.02.035 10.1080/19942060.2013.11015492 10.1016/j.jhydrol.2015.03.040 10.1016/j.advwatres.2019.05.006 10.1063/1.4986502 10.18321/ectj109 10.1016/j.jher.2012.12.001 10.1061/(ASCE)HY.1943-7900.0000444 10.1007/s10652-013-9286-3 10.1016/j.advwatres.2017.12.012 10.2166/ws.2022.031 10.1016/j.cnsns.2019.104934 10.1002/aic.15534 10.1063/1.5145051 10.1016/j.compfluid.2015.03.010 10.1061/(ASCE)HY.1943-7900.0000401 10.2166/ws.2022.210 10.29252/jafm.09.06.25969 10.1017/jfm.2020.838 10.1016/j.oceaneng.2022.112042 10.1080/10407790.2020.1746601 10.1016/j.ijmultiphaseflow.2012.03.006 10.1063/5.0067840 10.1016/j.jhydrol.2017.02.055 10.1080/00221686.2011.649838 10.1080/10407790.2021.1872234 10.1016/j.jfluidstructs.2014.03.009 10.1016/j.jhydrol.2020.124598 10.1080/10407790.2020.1793543 10.1061/(ASCE)HY.1943-7900.0000782 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.2166/ws.2023.007 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1607-0798 |
EndPage | 614 |
ExternalDocumentID | oai_doaj_org_article_1d8192401c9d40bb9e04ebab79f6a912 10_2166_ws_2023_007 |
GroupedDBID | --- 0R~ 123 4.4 8CJ 8FE 8FG 8FH AAFWJ AAJVE AAYXX ABFYC ABJCF ABLGR ACIWK AECGI AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J DU5 GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L6V M7S O9- OK1 PCBAR PHGZM PHGZT PTHSS RHI ~02 PQGLB PUEGO |
ID | FETCH-LOGICAL-c336t-84f955b1fb1e917215f69708255dc3c517265a3c17415da8fd099bbbd98d8a23 |
IEDL.DBID | DOA |
ISSN | 1606-9749 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Tue Jul 01 03:33:11 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-84f955b1fb1e917215f69708255dc3c517265a3c17415da8fd099bbbd98d8a23 |
ORCID | 0000-0002-9520-6444 |
OpenAccessLink | https://doaj.org/article/1d8192401c9d40bb9e04ebab79f6a912 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d8192401c9d40bb9e04ebab79f6a912 crossref_primary_10_2166_ws_2023_007 crossref_citationtrail_10_2166_ws_2023_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Water science & technology. Water supply |
PublicationYear | 2023 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | key-10.2166/ws.2023.007-30 key-10.2166/ws.2023.007-28 key-10.2166/ws.2023.007-29 key-10.2166/ws.2023.007-20 key-10.2166/ws.2023.007-21 key-10.2166/ws.2023.007-22 key-10.2166/ws.2023.007-23 key-10.2166/ws.2023.007-24 key-10.2166/ws.2023.007-25 key-10.2166/ws.2023.007-26 key-10.2166/ws.2023.007-27 key-10.2166/ws.2023.007-3 key-10.2166/ws.2023.007-2 key-10.2166/ws.2023.007-5 key-10.2166/ws.2023.007-4 Mohamed (key-10.2166/ws.2023.007-18) 2018; 86 key-10.2166/ws.2023.007-6 key-10.2166/ws.2023.007-9 key-10.2166/ws.2023.007-8 key-10.2166/ws.2023.007-17 key-10.2166/ws.2023.007-19 Ferziger (key-10.2166/ws.2023.007-7) 2002 key-10.2166/ws.2023.007-31 key-10.2166/ws.2023.007-10 key-10.2166/ws.2023.007-32 key-10.2166/ws.2023.007-11 key-10.2166/ws.2023.007-33 key-10.2166/ws.2023.007-12 key-10.2166/ws.2023.007-13 key-10.2166/ws.2023.007-14 key-10.2166/ws.2023.007-1 key-10.2166/ws.2023.007-15 key-10.2166/ws.2023.007-16 |
References_xml | – ident: key-10.2166/ws.2023.007-15 doi: 10.1007/s42241-021-0100-2 – volume-title: Computational Methods for Fluid Dynamics year: 2002 ident: key-10.2166/ws.2023.007-7 doi: 10.1007/978-3-642-56026-2 – ident: key-10.2166/ws.2023.007-9 doi: 10.1016/j.jhydrol.2012.02.035 – ident: key-10.2166/ws.2023.007-24 doi: 10.1080/19942060.2013.11015492 – ident: key-10.2166/ws.2023.007-10 doi: 10.1016/j.jhydrol.2015.03.040 – ident: key-10.2166/ws.2023.007-27 doi: 10.1016/j.advwatres.2019.05.006 – ident: key-10.2166/ws.2023.007-28 doi: 10.1063/1.4986502 – ident: key-10.2166/ws.2023.007-22 doi: 10.18321/ectj109 – ident: key-10.2166/ws.2023.007-25 doi: 10.1016/j.jher.2012.12.001 – ident: key-10.2166/ws.2023.007-6 doi: 10.1061/(ASCE)HY.1943-7900.0000444 – ident: key-10.2166/ws.2023.007-21 doi: 10.1007/s10652-013-9286-3 – ident: key-10.2166/ws.2023.007-12 doi: 10.1016/j.advwatres.2017.12.012 – ident: key-10.2166/ws.2023.007-14 doi: 10.2166/ws.2022.031 – volume: 86 start-page: 185 year: 2018 ident: key-10.2166/ws.2023.007-18 article-title: Experimental study of the interaction of dam break with a vertical cylinder publication-title: Journal of Fluids and Structures – ident: key-10.2166/ws.2023.007-32 doi: 10.1016/j.cnsns.2019.104934 – ident: key-10.2166/ws.2023.007-30 doi: 10.1002/aic.15534 – ident: key-10.2166/ws.2023.007-19 doi: 10.1063/1.5145051 – ident: key-10.2166/ws.2023.007-20 doi: 10.1016/j.compfluid.2015.03.010 – ident: key-10.2166/ws.2023.007-4 doi: 10.1061/(ASCE)HY.1943-7900.0000401 – ident: key-10.2166/ws.2023.007-8 doi: 10.2166/ws.2022.210 – ident: key-10.2166/ws.2023.007-33 doi: 10.29252/jafm.09.06.25969 – ident: key-10.2166/ws.2023.007-11 doi: 10.1017/jfm.2020.838 – ident: key-10.2166/ws.2023.007-17 doi: 10.1016/j.oceaneng.2022.112042 – ident: key-10.2166/ws.2023.007-2 doi: 10.1080/10407790.2020.1746601 – ident: key-10.2166/ws.2023.007-26 doi: 10.1016/j.ijmultiphaseflow.2012.03.006 – ident: key-10.2166/ws.2023.007-16 doi: 10.1063/5.0067840 – ident: key-10.2166/ws.2023.007-31 doi: 10.1016/j.jhydrol.2017.02.055 – ident: key-10.2166/ws.2023.007-23 doi: 10.1080/00221686.2011.649838 – ident: key-10.2166/ws.2023.007-1 doi: 10.1080/10407790.2021.1872234 – ident: key-10.2166/ws.2023.007-13 doi: 10.1016/j.jfluidstructs.2014.03.009 – ident: key-10.2166/ws.2023.007-29 doi: 10.1016/j.jhydrol.2020.124598 – ident: key-10.2166/ws.2023.007-3 doi: 10.1080/10407790.2020.1793543 – ident: key-10.2166/ws.2023.007-5 doi: 10.1061/(ASCE)HY.1943-7900.0000782 |
SSID | ssj0027712 |
Score | 2.2856426 |
Snippet | The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 599 |
SubjectTerms | dam-break multiphase flow rheology-based flow sediment transport silted-up sediment |
Title | Numerical investigation of silted-up dam-break flow with different silted-up sediment heights |
URI | https://doaj.org/article/1d8192401c9d40bb9e04ebab79f6a912 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOexJCLttkzQ5qrgsgntaYS9S8mhwsbaL7bJ_30wfawXBi9cwlPClMN83k3yD0JBprq1RlnClNaGBZUTCyDARGO6E59fcQEf3ecanL_RpwRa9UV9wJ6yxB26AGwUWLLu8CjDS0rHWMh3TVCsdS8eVrOcLhz7ndWKqk1px0-f09Jx4xiybl3lhwPloAybdIfiaxj9yUc-yv84tk0N00JJCfNds5gjtpPkx2u9ZBZ6g19m66a1kePltjVHkuHC4XGaeN5L1Clv1QbzGVe_YZcUGQ5EVdyNQql5c6VMWlAXxW10ZLU_RfPI4f5iSdjQCMVHEKyKok4zpwOkglaDimOMyBrnHrIkM80ucqcgEQBisEs56Jqi1tlJYocLoDO3mRZ6eIxxxIzWzzFHqKAtSQQWNaGo0FZL5FDdAtx1GiWltw2F6RZZ4-QCAJpsyAUATD-gADbfBq8Yt4_ewewB7GwIW1_WCP_ikPfjkr4O_-I-PXKI92FRzDfsK7Vaf6_Tas4xK39Q_1BeIac7P |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+silted-up+dam-break+flow+with+different+silted-up+sediment+heights&rft.jtitle=Water+science+%26+technology.+Water+supply&rft.au=Gu%2C+Zhenghua&rft.au=Wang%2C+Tinghui&rft.au=Meng%2C+Wenkang&rft.au=Yu%2C+Ching-hao&rft.date=2023-02-01&rft.issn=1606-9749&rft.eissn=1607-0798&rft.volume=23&rft.issue=2&rft.spage=599&rft.epage=614&rft_id=info:doi/10.2166%2Fws.2023.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_ws_2023_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1606-9749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1606-9749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1606-9749&client=summon |