Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells
Formamidinium (FA)-based perovskite materials show an extended absorption spectrum to 840 nm, which enables high power conversion efficiencies of over 20% compared with normal-structure perovskite solar cells (PSCs). However, it is rarely possible to obtain high performance in inverted-structure PSC...
Saved in:
Published in | Energy & environmental science Vol. 10; no. 9; pp. 1942 - 1949 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Online Access | Get full text |
ISSN | 1754-5692 1754-5706 |
DOI | 10.1039/C7EE01675A |
Cover
Loading…
Abstract | Formamidinium (FA)-based perovskite materials show an extended absorption spectrum to 840 nm, which enables high power conversion efficiencies of over 20% compared with normal-structure perovskite solar cells (PSCs). However, it is rarely possible to obtain high performance in inverted-structure PSCs owing to the unbalanced electron–hole transport properties. To achieve desirable electronic qualities in a FA perovskite film, it is necessary to substantially improve the crystallinity of the perovskite films. A new perovskite growth method is presented here using methylammonium chloride (MACl) to assist vertical recrystallization in a formamidinium perovskite film. The obtained film consists of highly crystallized vertically-orientated grains, which minimize the vertical grain boundary and trap site in the films, and later contribute to a power conversion efficiency above 20% in inverted-structure PSCs. Most importantly, the highly crystalline, phase-pure morphology and low MA content in formamidinium perovskite films can contribute to the light-soaking stability and thermal stability up to 500 h in solar-cell devices. |
---|---|
AbstractList | Formamidinium (FA)-based perovskite materials show an extended absorption spectrum to 840 nm, which enables high power conversion efficiencies of over 20% compared with normal-structure perovskite solar cells (PSCs). However, it is rarely possible to obtain high performance in inverted-structure PSCs owing to the unbalanced electron–hole transport properties. To achieve desirable electronic qualities in a FA perovskite film, it is necessary to substantially improve the crystallinity of the perovskite films. A new perovskite growth method is presented here using methylammonium chloride (MACl) to assist vertical recrystallization in a formamidinium perovskite film. The obtained film consists of highly crystallized vertically-orientated grains, which minimize the vertical grain boundary and trap site in the films, and later contribute to a power conversion efficiency above 20% in inverted-structure PSCs. Most importantly, the highly crystalline, phase-pure morphology and low MA content in formamidinium perovskite films can contribute to the light-soaking stability and thermal stability up to 500 h in solar-cell devices. |
Author | Wu, Yongzhen Cai, Molang Yang, Xudong Xie, Fengxian Li, Xing Chen, Chun-Chao Han, Liyuan Liu, Xiao |
Author_xml | – sequence: 1 givenname: Fengxian orcidid: 0000-0002-6274-9290 surname: Xie fullname: Xie, Fengxian organization: Research Network and Facility Services Division, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan – sequence: 2 givenname: Chun-Chao surname: Chen fullname: Chen, Chun-Chao organization: State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan RD, Shanghai 200240, China – sequence: 3 givenname: Yongzhen surname: Wu fullname: Wu, Yongzhen organization: Research Network and Facility Services Division, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan – sequence: 4 givenname: Xing surname: Li fullname: Li, Xing organization: Research Network and Facility Services Division, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan – sequence: 5 givenname: Molang surname: Cai fullname: Cai, Molang organization: Research Network and Facility Services Division, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan – sequence: 6 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Research Network and Facility Services Division, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan – sequence: 7 givenname: Xudong orcidid: 0000-0002-7398-4229 surname: Yang fullname: Yang, Xudong organization: State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan RD, Shanghai 200240, China – sequence: 8 givenname: Liyuan orcidid: 0000-0001-9766-9015 surname: Han fullname: Han, Liyuan organization: Research Network and Facility Services Division, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan |
BookMark | eNptkF1LwzAUhoNMcJve-AtyLVSTJk3byzHmBwy8UW_LaXriomk7kmxYf72dHwji1Xvgfc578czIpOs7JOScs0vORHm1zFcrxlWeLY7IlOeZTLKcqcnPrcr0hMxCeGFMpSwvp-TtCX20Ghz1qP0QIjhn3yHavqOm93RjnzduoGiM1Ra7SKFr6EjVDg99C61tbGd3bVJDwIbabj8OYpOE6Hc67jzSLfp-H15tRBp6B55qdC6ckmMDLuDZd87J4_XqYXmbrO9v7paLdaKFUDEppGhqpVAwWRfQ8MxIlnNZZrIsIR0ZYzDHgmsGSksoRCEYZrUoijRlkKKYk4uvXe37EDyaauttC36oOKsOzqpfZyPM_sDaxk8Z0YN1_718ADUnc5g |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_9b04661 crossref_primary_10_1364_OE_519251 crossref_primary_10_1002_adfm_201902600 crossref_primary_10_1126_science_aay7044 crossref_primary_10_1016_j_nanoen_2018_11_021 crossref_primary_10_1002_solr_201900280 crossref_primary_10_1002_cssc_201903216 crossref_primary_10_1039_D4YA00527A crossref_primary_10_1002_solr_201800313 crossref_primary_10_1016_j_jpowsour_2021_230213 crossref_primary_10_1016_j_mtchem_2021_100686 crossref_primary_10_1039_D0EE02017F crossref_primary_10_1038_s41467_024_48552_2 crossref_primary_10_1039_C8RA03477J crossref_primary_10_1088_1674_4926_43_4_041106 crossref_primary_10_1002_smll_202001770 crossref_primary_10_1039_D0CS00573H crossref_primary_10_1016_j_joule_2020_11_020 crossref_primary_10_1002_adfm_201902974 crossref_primary_10_1021_acsenergylett_8b01507 crossref_primary_10_1038_s41467_018_07382_9 crossref_primary_10_1039_D0NR05739H crossref_primary_10_1038_s41586_023_05825_y crossref_primary_10_1016_j_solener_2020_11_043 crossref_primary_10_1002_adom_201901241 crossref_primary_10_1002_smtd_202000065 crossref_primary_10_1016_j_cej_2021_134367 crossref_primary_10_1039_D3CC02270F crossref_primary_10_3390_polym11010143 crossref_primary_10_1016_j_nanoen_2022_106924 crossref_primary_10_3390_molecules28041592 crossref_primary_10_1002_adfm_202002964 crossref_primary_10_1039_D3CP02476H crossref_primary_10_1002_anie_201800019 crossref_primary_10_1002_aenm_202302169 crossref_primary_10_1016_j_jmst_2020_05_073 crossref_primary_10_1039_C9TA05556H crossref_primary_10_1039_C8TA11977E crossref_primary_10_1039_D3RA01692G crossref_primary_10_1002_ange_202401260 crossref_primary_10_1002_solr_201900183 crossref_primary_10_1016_j_nanoen_2018_03_046 crossref_primary_10_1007_s13391_018_0075_5 crossref_primary_10_1039_D0TA05676F crossref_primary_10_35848_1347_4065_ab92bb crossref_primary_10_1039_D1CS00841B crossref_primary_10_1016_j_ceramint_2021_03_101 crossref_primary_10_1021_acs_jpclett_9b03414 crossref_primary_10_1063_5_0038959 crossref_primary_10_3390_nano12173003 crossref_primary_10_1039_D1TA01572A crossref_primary_10_1007_s00339_023_06749_0 crossref_primary_10_1002_solr_202300560 crossref_primary_10_1016_j_cej_2022_136622 crossref_primary_10_1002_aenm_202200111 crossref_primary_10_1002_pssa_201900337 crossref_primary_10_1021_acsami_4c11784 crossref_primary_10_1021_acs_jpcc_8b01177 crossref_primary_10_1021_acsnano_0c10647 crossref_primary_10_1002_smll_202501121 crossref_primary_10_1016_j_cej_2023_141788 crossref_primary_10_1021_acsenergylett_0c02642 crossref_primary_10_1002_solr_202000348 crossref_primary_10_1039_D0TC05010E crossref_primary_10_1002_ange_202319282 crossref_primary_10_1002_slct_202102172 crossref_primary_10_1016_j_xcrp_2020_100180 crossref_primary_10_1016_j_solener_2025_113291 crossref_primary_10_1016_j_cej_2022_136761 crossref_primary_10_1002_solr_201900190 crossref_primary_10_1016_j_nanoen_2018_02_014 crossref_primary_10_1016_j_nanoen_2020_105237 crossref_primary_10_1039_C8TA03953D crossref_primary_10_1021_acsaem_0c00061 crossref_primary_10_1002_adma_201805702 crossref_primary_10_1007_s12598_020_01691_z crossref_primary_10_1021_acs_chemrev_8b00336 crossref_primary_10_1021_acsaem_2c00393 crossref_primary_10_1002_aenm_202003119 crossref_primary_10_1016_j_solmat_2025_113522 crossref_primary_10_1016_j_jechem_2018_06_013 crossref_primary_10_1007_s11426_018_9386_5 crossref_primary_10_1039_C8TA01642A crossref_primary_10_1002_cjoc_201900219 crossref_primary_10_1002_adfm_202504424 crossref_primary_10_1002_er_8108 crossref_primary_10_1002_ange_201800019 crossref_primary_10_1016_j_jallcom_2021_160530 crossref_primary_10_1021_acsami_8b20933 crossref_primary_10_1016_j_heliyon_2024_e24689 crossref_primary_10_1039_D0TA04492J crossref_primary_10_1039_D4TC00843J crossref_primary_10_1002_adfm_201807565 crossref_primary_10_1002_smsc_202300020 crossref_primary_10_1016_j_joule_2019_06_014 crossref_primary_10_1016_j_jpowsour_2019_227386 crossref_primary_10_1021_acsenergylett_1c02651 crossref_primary_10_1039_C8TA00267C crossref_primary_10_1002_pssr_202100119 crossref_primary_10_1039_C9TA01319A crossref_primary_10_1007_s40843_020_1383_3 crossref_primary_10_1021_acsenergylett_1c00354 crossref_primary_10_1126_science_aaz5074 crossref_primary_10_7498_aps_67_20172600 crossref_primary_10_1016_j_mtcomm_2022_104653 crossref_primary_10_1038_s44160_024_00696_1 crossref_primary_10_1002_solr_202301025 crossref_primary_10_1016_j_solener_2022_01_064 crossref_primary_10_1088_1361_6528_ac328e crossref_primary_10_1021_acs_jpcc_0c06365 crossref_primary_10_1021_acsami_4c05838 crossref_primary_10_1002_adma_202007126 crossref_primary_10_1016_j_apmt_2018_12_011 crossref_primary_10_1016_j_seta_2022_102433 crossref_primary_10_1002_solr_202000410 crossref_primary_10_1016_j_nanoen_2017_11_014 crossref_primary_10_1039_D1MA00371B crossref_primary_10_1002_admi_201800882 crossref_primary_10_1002_solr_202300187 crossref_primary_10_1021_acs_chemmater_0c02100 crossref_primary_10_1039_C8NR08344D crossref_primary_10_1002_solr_201800146 crossref_primary_10_1002_solr_202000661 crossref_primary_10_3390_coatings11101184 crossref_primary_10_1016_j_jallcom_2021_159804 crossref_primary_10_1002_solr_202100391 crossref_primary_10_1002_advs_202300798 crossref_primary_10_1016_j_cej_2024_152118 crossref_primary_10_1002_adma_201800455 crossref_primary_10_1016_j_nanoen_2021_106141 crossref_primary_10_1038_s41467_023_36224_6 crossref_primary_10_1039_D2TA02084J crossref_primary_10_1016_j_electacta_2019_135266 crossref_primary_10_1016_j_mssp_2022_107129 crossref_primary_10_1021_acsaem_0c00884 crossref_primary_10_34133_2021_9765106 crossref_primary_10_1016_j_jpcs_2024_112016 crossref_primary_10_1039_D4SE00473F crossref_primary_10_1016_j_electacta_2018_06_078 crossref_primary_10_1039_C9CS00733D crossref_primary_10_3390_en13195092 crossref_primary_10_1039_C9TA00761J crossref_primary_10_1002_eom2_12127 crossref_primary_10_1016_j_cinorg_2024_100083 crossref_primary_10_1021_acsmaterialslett_3c00337 crossref_primary_10_1002_anie_202401260 crossref_primary_10_1021_acsami_9b09952 crossref_primary_10_1039_C8TA05291C crossref_primary_10_1002_solr_202100494 crossref_primary_10_1039_C8CS00853A crossref_primary_10_1002_smll_202207445 crossref_primary_10_1016_j_solener_2019_08_069 crossref_primary_10_1002_aenm_202002326 crossref_primary_10_1021_acssuschemeng_9b02031 crossref_primary_10_1021_acsenergylett_9b02063 crossref_primary_10_1088_1361_6528_abc50c crossref_primary_10_1002_cjoc_202300128 crossref_primary_10_1002_smll_202301110 crossref_primary_10_1002_adma_201800544 crossref_primary_10_1016_j_cej_2023_146825 crossref_primary_10_2139_ssrn_3992707 crossref_primary_10_1016_j_solmat_2020_110435 crossref_primary_10_1088_1361_6463_ab8511 crossref_primary_10_1038_s41560_023_01295_8 crossref_primary_10_1088_1361_6528_acdd0b crossref_primary_10_1016_j_apsusc_2021_151740 crossref_primary_10_1002_adfm_202200174 crossref_primary_10_1002_ente_202200544 crossref_primary_10_1002_solr_202100072 crossref_primary_10_1021_acsaem_3c00741 crossref_primary_10_1038_s41467_024_54113_4 crossref_primary_10_1016_j_jechem_2021_05_025 crossref_primary_10_1039_C7TA08824H crossref_primary_10_1002_advs_201800474 crossref_primary_10_1002_aenm_202304302 crossref_primary_10_1016_j_orgel_2018_04_008 crossref_primary_10_1039_C9TA08351K crossref_primary_10_1002_aenm_202002422 crossref_primary_10_1016_j_matt_2023_06_039 crossref_primary_10_1016_j_jechem_2022_12_029 crossref_primary_10_1016_j_solener_2018_10_025 crossref_primary_10_1002_adfm_202308577 crossref_primary_10_1021_acsaem_1c00413 crossref_primary_10_1002_adom_201901735 crossref_primary_10_1021_acscentsci_7b00454 crossref_primary_10_1016_j_solener_2019_07_073 crossref_primary_10_1016_j_joule_2022_08_006 crossref_primary_10_1021_acsenergylett_2c02576 crossref_primary_10_1016_j_mtsust_2023_100438 crossref_primary_10_1016_j_mssp_2020_105511 crossref_primary_10_1039_D0TC04624H crossref_primary_10_1002_adfm_202103807 crossref_primary_10_1002_solr_201800164 crossref_primary_10_1002_solr_202100295 crossref_primary_10_1002_adma_202406706 crossref_primary_10_1002_admi_201900474 crossref_primary_10_1016_j_egyr_2023_12_068 crossref_primary_10_1016_j_jallcom_2022_164722 crossref_primary_10_1016_j_mtener_2020_100449 crossref_primary_10_1002_aenm_201902650 crossref_primary_10_1039_D1TA04130D crossref_primary_10_1016_j_cej_2023_147208 crossref_primary_10_1016_j_cej_2021_130685 crossref_primary_10_1016_j_solmat_2020_110741 crossref_primary_10_1016_j_solener_2020_06_034 crossref_primary_10_1016_j_jpowsour_2018_07_014 crossref_primary_10_1016_j_jpowsour_2023_232753 crossref_primary_10_1021_acsenergylett_4c00100 crossref_primary_10_1016_j_jechem_2021_01_037 crossref_primary_10_1021_acsaem_1c01205 crossref_primary_10_1088_2752_5724_acb838 crossref_primary_10_1002_cssc_202401852 crossref_primary_10_1021_acsaem_4c00080 crossref_primary_10_1039_D0EE03839C crossref_primary_10_1021_acsaem_9b00486 crossref_primary_10_1016_j_nanoen_2024_110069 crossref_primary_10_1002_smtd_201900877 crossref_primary_10_1016_j_jmat_2021_02_004 crossref_primary_10_1002_adfm_202207177 crossref_primary_10_1002_adma_201801948 crossref_primary_10_1016_j_cej_2023_146587 crossref_primary_10_1002_adom_202102722 crossref_primary_10_1016_j_joule_2023_05_017 crossref_primary_10_1016_j_optmat_2021_111105 crossref_primary_10_1039_D1EE00062D crossref_primary_10_1002_solr_202000810 crossref_primary_10_1016_j_cej_2022_135196 crossref_primary_10_1039_D2EE03742D crossref_primary_10_1016_j_apsusc_2019_143990 crossref_primary_10_1002_cssc_202401629 crossref_primary_10_1016_j_ceramint_2021_01_187 crossref_primary_10_1002_solr_202200060 crossref_primary_10_1007_s10854_021_05420_9 crossref_primary_10_1002_solr_202000729 crossref_primary_10_1021_acsenergylett_1c00531 crossref_primary_10_1016_j_matpr_2021_02_728 crossref_primary_10_3390_polym12010129 crossref_primary_10_1016_j_cej_2019_123273 crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1016_j_mtchem_2022_101118 crossref_primary_10_35848_1882_0786_acbf02 crossref_primary_10_1016_j_jpowsour_2020_228505 crossref_primary_10_1016_j_jechem_2022_02_004 crossref_primary_10_1063_5_0248954 crossref_primary_10_3390_app112311324 crossref_primary_10_3390_polym13081281 crossref_primary_10_1007_s12274_023_5446_z crossref_primary_10_1039_D0SE00382D crossref_primary_10_1039_C8TA02584C crossref_primary_10_1039_D0EE02859B crossref_primary_10_1016_j_electacta_2018_07_029 crossref_primary_10_1016_j_solmat_2022_112157 crossref_primary_10_1016_j_vacuum_2022_111674 crossref_primary_10_1002_inf2_12369 crossref_primary_10_1002_ente_202200320 crossref_primary_10_1002_solr_202201039 crossref_primary_10_1002_ange_202112555 crossref_primary_10_1002_adfm_202313435 crossref_primary_10_1016_j_jechem_2020_07_050 crossref_primary_10_1021_acs_jpclett_1c04241 crossref_primary_10_1007_s40242_023_3146_6 crossref_primary_10_1016_j_orgel_2023_106966 crossref_primary_10_1002_aenm_202001759 crossref_primary_10_1002_adma_201900390 crossref_primary_10_1016_j_solener_2022_08_001 crossref_primary_10_1021_acs_jpclett_1c03399 crossref_primary_10_1002_smll_201906997 crossref_primary_10_1021_acsmaterialslett_4c01890 crossref_primary_10_1007_s40843_019_1186_4 crossref_primary_10_1039_C8EE02744G crossref_primary_10_1002_aenm_202401414 crossref_primary_10_1002_adma_202313524 crossref_primary_10_1002_ente_202201005 crossref_primary_10_1021_acsami_9b13259 crossref_primary_10_1002_smtd_201700387 crossref_primary_10_1021_acs_jpclett_2c03876 crossref_primary_10_1039_C8TA00931G crossref_primary_10_1021_acsami_0c09970 crossref_primary_10_1016_j_jechem_2020_06_044 crossref_primary_10_1002_anie_202112555 crossref_primary_10_1002_aenm_201703246 crossref_primary_10_1021_acsnano_4c11268 crossref_primary_10_1016_j_nanoen_2019_104036 crossref_primary_10_1002_aenm_202001610 crossref_primary_10_1016_j_jpowsour_2020_228676 crossref_primary_10_1002_smtd_202400887 crossref_primary_10_1021_jacs_2c13566 crossref_primary_10_1039_C9TA07238A crossref_primary_10_1039_C9TC04009A crossref_primary_10_1021_acs_chemrev_1c00181 crossref_primary_10_1002_aenm_202400225 crossref_primary_10_1039_D3RA07518D crossref_primary_10_1002_ange_202010987 crossref_primary_10_1007_s11426_019_9448_3 crossref_primary_10_1016_j_jallcom_2024_177188 crossref_primary_10_1016_j_orgel_2022_106465 crossref_primary_10_1002_aenm_201800715 crossref_primary_10_1002_anie_202010987 crossref_primary_10_1016_j_orgel_2024_107105 crossref_primary_10_1039_D0MA00945H crossref_primary_10_1039_D2TA05677A crossref_primary_10_1016_j_synthmet_2023_117535 crossref_primary_10_1002_adma_202311595 crossref_primary_10_1002_adfm_201804603 crossref_primary_10_1007_s11426_020_9870_4 crossref_primary_10_1016_j_rser_2021_111608 crossref_primary_10_1039_C8TA12206G crossref_primary_10_1039_D2MH00980C crossref_primary_10_1002_adfm_202106121 crossref_primary_10_1002_ente_202100952 crossref_primary_10_1016_j_carbon_2020_05_079 crossref_primary_10_1002_anie_202319282 crossref_primary_10_1007_s40843_019_1273_x crossref_primary_10_1016_j_solmat_2019_110052 crossref_primary_10_1021_acsami_3c11351 crossref_primary_10_1021_acs_jpcc_3c00080 crossref_primary_10_1039_D0TA10871E crossref_primary_10_1021_acs_chemrev_8b00318 crossref_primary_10_1021_acsami_1c12764 crossref_primary_10_1007_s11426_022_1403_6 crossref_primary_10_1002_aenm_201902492 crossref_primary_10_1002_smll_202100560 crossref_primary_10_1002_aenm_202001958 crossref_primary_10_31613_ceramist_2020_23_2_04 crossref_primary_10_1021_acsami_9b18197 crossref_primary_10_1002_adma_202409340 crossref_primary_10_1002_advs_201901591 crossref_primary_10_2139_ssrn_3992691 crossref_primary_10_1002_smtd_201900375 crossref_primary_10_1063_1_5098336 crossref_primary_10_1016_j_matlet_2020_127995 crossref_primary_10_1016_j_jechem_2018_11_011 crossref_primary_10_1002_smtd_202400039 crossref_primary_10_1002_adfm_201803269 crossref_primary_10_1039_C9SC05694G crossref_primary_10_23919_IEN_2023_0026 crossref_primary_10_1039_D2TC00283C crossref_primary_10_1002_sstr_202000130 crossref_primary_10_1002_adfm_202208694 crossref_primary_10_1039_C9TA13528F crossref_primary_10_1007_s11426_019_9461_1 crossref_primary_10_1002_adfm_201808843 crossref_primary_10_1002_aelm_201900244 crossref_primary_10_3390_nano12010112 crossref_primary_10_1007_s10853_022_07958_3 crossref_primary_10_1021_acsaem_1c03447 crossref_primary_10_1039_C9TC00812H crossref_primary_10_1002_aenm_201803766 crossref_primary_10_1007_s11664_020_08264_x crossref_primary_10_1039_D0RA04630B crossref_primary_10_1016_j_apsusc_2018_10_256 crossref_primary_10_1039_D1SE00013F crossref_primary_10_1016_j_jpowsour_2019_227623 crossref_primary_10_1038_s41467_024_51550_z crossref_primary_10_1039_C9EE02983D crossref_primary_10_1007_s40242_021_1340_y crossref_primary_10_1002_solr_201900215 crossref_primary_10_1002_aenm_201800007 crossref_primary_10_1002_aenm_201800249 crossref_primary_10_1021_acsenergylett_3c01952 crossref_primary_10_1002_aenm_202300566 crossref_primary_10_1039_D0TA08656H crossref_primary_10_1007_s40843_021_1653_y crossref_primary_10_1016_j_jpowsour_2020_228736 crossref_primary_10_1002_solr_202100514 crossref_primary_10_1021_acsaem_8b01964 crossref_primary_10_1002_smll_202407186 crossref_primary_10_7498_aps_70_20210836 crossref_primary_10_1002_solr_202200120 crossref_primary_10_1002_smtd_202200048 crossref_primary_10_1016_j_electacta_2022_141701 crossref_primary_10_1016_j_jechem_2024_05_012 crossref_primary_10_1007_s12274_022_4524_y crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1002_adma_201803019 crossref_primary_10_1002_adma_201805554 crossref_primary_10_1002_adma_202408101 crossref_primary_10_1016_j_cej_2023_146267 crossref_primary_10_1016_j_orgel_2019_01_040 crossref_primary_10_1002_smll_202201694 crossref_primary_10_1039_D3DT02930A crossref_primary_10_1002_solr_202200495 crossref_primary_10_1002_aenm_202203046 crossref_primary_10_1039_C8RA00384J crossref_primary_10_3390_en13102438 crossref_primary_10_1002_smll_201704443 crossref_primary_10_1007_s10008_021_05064_z crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1126_sciadv_abq0187 crossref_primary_10_1039_D0EE01767A crossref_primary_10_1002_aenm_202100690 crossref_primary_10_1021_acsami_0c15923 crossref_primary_10_1002_admt_202301760 crossref_primary_10_1039_C9TC05465K crossref_primary_10_1039_D0TA03376F crossref_primary_10_1016_j_solmat_2021_111011 crossref_primary_10_1002_adfm_202304659 crossref_primary_10_1039_D2RA05903G crossref_primary_10_1039_C8TC05484C crossref_primary_10_1002_aenm_201803600 crossref_primary_10_1007_s41939_024_00584_3 crossref_primary_10_1016_j_mtener_2020_100551 crossref_primary_10_1002_adem_202000162 crossref_primary_10_1002_aenm_202203250 crossref_primary_10_1002_cphc_201800032 crossref_primary_10_1002_smll_202501184 crossref_primary_10_1016_j_rsurfi_2024_100224 crossref_primary_10_1002_adma_202408686 crossref_primary_10_1007_s43207_024_00401_0 crossref_primary_10_1039_D4CS01231C crossref_primary_10_1088_2515_7655_ad658d crossref_primary_10_1002_solr_202200398 crossref_primary_10_1016_j_orgel_2023_106918 crossref_primary_10_1016_j_nanoen_2018_04_026 crossref_primary_10_1016_j_solmat_2021_111241 crossref_primary_10_1016_j_solmat_2021_111242 crossref_primary_10_1016_j_joei_2021_06_007 crossref_primary_10_3390_photonics11010087 crossref_primary_10_1039_D3DT02051G crossref_primary_10_1088_1674_4926_43_4_040202 |
Cites_doi | 10.1002/adma.201501489 10.1039/C4EE00942H 10.1038/nphoton.2014.134 10.1002/adma.201505002 10.1038/nenergy.2016.177 10.1126/science.aaf8060 10.1002/adma.201606806 10.1126/sciadv.1501170 10.1039/C5EE03874J 10.1039/C6EE00030D 10.7567/APEX.10.076601 10.1002/adma.201607039 10.1002/pip.2855 10.1039/C4CS00458B 10.1039/c3ee43822h 10.1038/nenergy.2016.142 10.1126/science.aaa9272 10.1002/adma.201502969 10.1021/acs.chemmater.5b03169 10.1126/science.aaa0472 10.1021/cm404006p 10.1038/nnano.2015.230 10.1038/nenergy.2016.148 10.1038/nnano.2015.90 10.1002/anie.201704188 10.1021/nn505978r 10.1021/nl400349b 10.1002/adfm.201404007 10.1038/nenergy.2016.152 10.1126/science.aad1015 10.1039/C6EE03014A 10.1002/anie.201606801 10.1002/smll.201402767 10.1002/adma.201405372 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/C7EE01675A |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1949 |
ExternalDocumentID | 10_1039_C7EE01675A |
GroupedDBID | 0-7 0R~ 29G 4.4 53G 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF CS3 EBS ECGLT EE0 EF- EJD FEDTE GGIMP GNO H13 HVGLF HZ~ H~N J3G J3H J3I L-8 M4U N9A O-G O9- P2P R56 RAOCF RCNCU ROL RPMJG RRC RSCEA RVUXY SKA SLH TOV |
ID | FETCH-LOGICAL-c336t-843db66e304b8ad15f4071495499a2c33ffe7e81c0a6c4a83830e5b388220a2e3 |
ISSN | 1754-5692 |
IngestDate | Tue Jul 01 01:45:39 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c336t-843db66e304b8ad15f4071495499a2c33ffe7e81c0a6c4a83830e5b388220a2e3 |
ORCID | 0000-0002-6274-9290 0000-0001-9766-9015 0000-0002-7398-4229 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_C7EE01675A crossref_citationtrail_10_1039_C7EE01675A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | Energy & environmental science |
PublicationYear | 2017 |
References | Yang (C7EE01675A-(cit9)/*[position()=1]) 2015; 348 You (C7EE01675A-(cit11)/*[position()=1]) 2016; 11 Noh (C7EE01675A-(cit30)/*[position()=1]) 2013; 13 Gao (C7EE01675A-(cit19)/*[position()=1]) 2014; 7 Nie (C7EE01675A-(cit33)/*[position()=1]) 2015; 347 Jung (C7EE01675A-(cit6)/*[position()=1]) 2015; 11 Liu (C7EE01675A-(cit31)/*[position()=1]) 2015; 27 Bi (C7EE01675A-(cit24)/*[position()=1]) 2016; 1 Rehman (C7EE01675A-(cit22)/*[position()=1]) 2015; 27 Li (C7EE01675A-(cit32)/*[position()=1]) 2016; 55 Xie (C7EE01675A-(cit29)/*[position()=1]) 2015; 9 McMeekin (C7EE01675A-(cit23)/*[position()=1]) 2017; 29 Li (C7EE01675A-(cit27)/*[position()=1]) 2017; 56 Park (C7EE01675A-(cit5)/*[position()=1]) 2016; 1 Zhang (C7EE01675A-(cit25)/*[position()=1]) 2017; 29 Wetzelaer (C7EE01675A-(cit34)/*[position()=1]) 2015; 27 Pang (C7EE01675A-(cit14)/*[position()=1]) 2014; 26 Rehman (C7EE01675A-(cit20)/*[position()=1]) 2017; 10 Yin (C7EE01675A-(cit13)/*[position()=1]) 2017; 10 Wang (C7EE01675A-(cit26)/*[position()=1]) 2015; 27 Jiang (C7EE01675A-(cit28)/*[position()=1]) 2016; 2 Eperon (C7EE01675A-(cit15)/*[position()=1]) 2014; 7 Green (C7EE01675A-(cit3)/*[position()=1]) 2014; 8 Li (C7EE01675A-(cit7)/*[position()=1]) 2016; 353 Stranks (C7EE01675A-(cit2)/*[position()=1]) 2015; 10 Bi (C7EE01675A-(cit8)/*[position()=1]) 2016; 2 Chen (C7EE01675A-(cit10)/*[position()=1]) 2015; 350 Han (C7EE01675A-(cit16)/*[position()=1]) 2016; 28 Saliba (C7EE01675A-(cit18)/*[position()=1]) 2016; 9 Green (C7EE01675A-(cit1)/*[position()=1]) 2017; 25 Jesper Jacobsson (C7EE01675A-(cit17)/*[position()=1]) 2016; 9 Zhao (C7EE01675A-(cit4)/*[position()=1]) 2016; 45 Wang (C7EE01675A-(cit21)/*[position()=1]) 2015; 25 Wu (C7EE01675A-(cit12)/*[position()=1]) 2016; 1 |
References_xml | – volume: 27 start-page: 4918 year: 2015 ident: C7EE01675A-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501489 – volume: 7 start-page: 2448 year: 2014 ident: C7EE01675A-(cit19)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00942H – volume: 8 start-page: 506 year: 2014 ident: C7EE01675A-(cit3)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.134 – volume: 28 start-page: 2253 year: 2016 ident: C7EE01675A-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505002 – volume: 2 start-page: 16177 year: 2016 ident: C7EE01675A-(cit28)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 353 start-page: 58 year: 2016 ident: C7EE01675A-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf8060 – volume: 29 start-page: 1606806 year: 2017 ident: C7EE01675A-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606806 – volume: 2 start-page: e1201170 year: 2016 ident: C7EE01675A-(cit8)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1501170 – volume: 9 start-page: 1989 year: 2016 ident: C7EE01675A-(cit18)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 9 start-page: 1706 year: 2016 ident: C7EE01675A-(cit17)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00030D – volume: 10 start-page: 076601 year: 2017 ident: C7EE01675A-(cit13)/*[position()=1] publication-title: Appl. Phys. Express doi: 10.7567/APEX.10.076601 – volume: 29 start-page: 1607039 year: 2017 ident: C7EE01675A-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201607039 – volume: 25 start-page: 3 year: 2017 ident: C7EE01675A-(cit1)/*[position()=1] publication-title: Prog. Photovoltaics doi: 10.1002/pip.2855 – volume: 45 start-page: 655 year: 2016 ident: C7EE01675A-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00458B – volume: 7 start-page: 982 year: 2014 ident: C7EE01675A-(cit15)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 1 start-page: 16142 year: 2016 ident: C7EE01675A-(cit24)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.142 – volume: 348 start-page: 1234 year: 2015 ident: C7EE01675A-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa9272 – volume: 27 start-page: 7938 year: 2015 ident: C7EE01675A-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502969 – volume: 27 start-page: 7149 year: 2015 ident: C7EE01675A-(cit26)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03169 – volume: 347 start-page: 522 year: 2015 ident: C7EE01675A-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa0472 – volume: 26 start-page: 1485 year: 2014 ident: C7EE01675A-(cit14)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm404006p – volume: 11 start-page: 75 year: 2016 ident: C7EE01675A-(cit11)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.230 – volume: 1 start-page: 16148 year: 2016 ident: C7EE01675A-(cit12)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.148 – volume: 10 start-page: 391 year: 2015 ident: C7EE01675A-(cit2)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.90 – volume: 56 start-page: 7674 year: 2017 ident: C7EE01675A-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704188 – volume: 9 start-page: 639 year: 2015 ident: C7EE01675A-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn505978r – volume: 13 start-page: 1764 year: 2013 ident: C7EE01675A-(cit30)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400349b – volume: 25 start-page: 1120 year: 2015 ident: C7EE01675A-(cit21)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404007 – volume: 1 start-page: 16152 year: 2016 ident: C7EE01675A-(cit5)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.152 – volume: 350 start-page: 944 year: 2015 ident: C7EE01675A-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.aad1015 – volume: 10 start-page: 361 year: 2017 ident: C7EE01675A-(cit20)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03014A – volume: 55 start-page: 13460 year: 2016 ident: C7EE01675A-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606801 – volume: 11 start-page: 10 year: 2015 ident: C7EE01675A-(cit6)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402767 – volume: 27 start-page: 1837 year: 2015 ident: C7EE01675A-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405372 |
SSID | ssj0062079 |
Score | 2.652255 |
Snippet | Formamidinium (FA)-based perovskite materials show an extended absorption spectrum to 840 nm, which enables high power conversion efficiencies of over 20%... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 1942 |
Title | Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLVCu4EF4ilKAVmCDapcnPGMZ7wso0DFa9VCdpE942kipRNEkqrtn_C33GvPwyVZFDajxPJEiu-Rr-_jHBPyJhLKFNwKpk2kIUARFdMiTpgpbYk80FKlSE7--k0en8afxsl4MPgddC2tV-awuN7KK_kfq8IY2BVZsv9g2e5HYQA-g33hCRaG561s_N01RTtp_uLXFZzz5vOGVum6B1GKeH6FLRszR3t0hQKYhWQpd1Y9n4Hnmq3PGfoyFGHCy5ltybyoLJYWUEb8YokZ3oMlBsEHmOhf3kjne_IgIiggzbVUyx43Y18IgfU7uwwgmTfskHy6rlk-1YvOS6ydd1jUZ9fTnq72xTUfjFt_26QrPC-z2VvTJGaJ9FffHdpgLOXyxobMA-CpYHcdqjgKPDV8VVu9ABcoopqnoxGSLJJOR7WX2v7LBXaNia4kL9Skf_cO2Y0gAoE9f_fo8_uPP1o3LyPuhBy7f9Vq3wr1rn87OO0Ex5aTB-R-E2_QIw-eh2Rg60fkXqBC-ZhctjCiGzCiABPqYUQ7GFGAEfUwoltgRDdhRHsYUQcj6mD0hJx-GJ3kx6y5kIMVQsgVy2JRGimt4LHJdDlMKkwHxFgpVjqCOVVlU5sNC65lEetMZILbxAiI4iKuIyuekp16UdtnhA4rrgpZJaZIIQIuRWZkKsCf6FKUsHDRHnnbLtykaNTq8dKU-WTTRHvkdTf3p9do2TLr-a1m7ZO7iFqfZHtBdmCh7Es4dq7MqwYAfwCTIolV |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertical+recrystallization+for+highly+efficient+and+stable+formamidinium-based+inverted-structure+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Xie%2C+Fengxian&rft.au=Chen%2C+Chun-Chao&rft.au=Wu%2C+Yongzhen&rft.au=Li%2C+Xing&rft.date=2017&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=10&rft.issue=9&rft.spage=1942&rft.epage=1949&rft_id=info:doi/10.1039%2FC7EE01675A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7EE01675A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |