Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique

•A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and validated.•Input parameters for the new model consist only of fluid and material properties.•The new method reproduces droplet pinning according to exi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 145; p. 103808
Main Authors Krämer, Veronika, Barwari, Beawer, Burgmann, Sebastian, Rohde, Martin, Rentschler, Simon, Holzknecht, Christopher, Gmelin, Christoph, Janoske, Uwe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text
ISSN0301-9322
1879-3533
DOI10.1016/j.ijmultiphaseflow.2021.103808

Cover

Abstract •A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and validated.•Input parameters for the new model consist only of fluid and material properties.•The new method reproduces droplet pinning according to existing experimental data.•Numerical results provide an insight in the flow structures inside the droplet. The wetting phenomena and the dynamics of a droplet moved by external forces are essential for many technical applications. However, its numerical modeling has been a challenge and a subject of several investigations in recent years. The objective of the current numerical study is to provide a numerical model within the volume of fluid method that accurately predicts droplet adhesion and the onset of the droplet motion for a three-dimensional droplet. The presented numerical calculations are performed with OpenFOAM® using a multiphase solver hysteresisInterFoam, which is based on widely used solver interFoam and additionally extended by a contact angle hysteresis algorithm. The hysteresis implementation is performed by means of the feedback deceleration technique (FDT) which controls the movement of the contact line. Basically, the current study focuses on determining the suitable control parameter for the modified FDT and its dependency on the examined material system. Finally, the new method is validated for droplets under shear flow as well as on an inclined surface. Different droplet volumes, fluid viscosities and solid surfaces were examined. The numerical results agree well with the experimental data. Besides, the new methodology allows to gain new insights into the inner flow of the droplet.
AbstractList •A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and validated.•Input parameters for the new model consist only of fluid and material properties.•The new method reproduces droplet pinning according to existing experimental data.•Numerical results provide an insight in the flow structures inside the droplet. The wetting phenomena and the dynamics of a droplet moved by external forces are essential for many technical applications. However, its numerical modeling has been a challenge and a subject of several investigations in recent years. The objective of the current numerical study is to provide a numerical model within the volume of fluid method that accurately predicts droplet adhesion and the onset of the droplet motion for a three-dimensional droplet. The presented numerical calculations are performed with OpenFOAM® using a multiphase solver hysteresisInterFoam, which is based on widely used solver interFoam and additionally extended by a contact angle hysteresis algorithm. The hysteresis implementation is performed by means of the feedback deceleration technique (FDT) which controls the movement of the contact line. Basically, the current study focuses on determining the suitable control parameter for the modified FDT and its dependency on the examined material system. Finally, the new method is validated for droplets under shear flow as well as on an inclined surface. Different droplet volumes, fluid viscosities and solid surfaces were examined. The numerical results agree well with the experimental data. Besides, the new methodology allows to gain new insights into the inner flow of the droplet.
ArticleNumber 103808
Author Barwari, Beawer
Burgmann, Sebastian
Janoske, Uwe
Holzknecht, Christopher
Rentschler, Simon
Krämer, Veronika
Rohde, Martin
Gmelin, Christoph
Author_xml – sequence: 1
  givenname: Veronika
  surname: Krämer
  fullname: Krämer, Veronika
  email: veronika.kraemer@de.bosch.com
  organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany
– sequence: 2
  givenname: Beawer
  surname: Barwari
  fullname: Barwari, Beawer
  organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
– sequence: 3
  givenname: Sebastian
  surname: Burgmann
  fullname: Burgmann, Sebastian
  organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
– sequence: 4
  givenname: Martin
  surname: Rohde
  fullname: Rohde, Martin
  organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
– sequence: 5
  givenname: Simon
  surname: Rentschler
  fullname: Rentschler, Simon
  organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany
– sequence: 6
  givenname: Christopher
  surname: Holzknecht
  fullname: Holzknecht, Christopher
  organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany
– sequence: 7
  givenname: Christoph
  surname: Gmelin
  fullname: Gmelin, Christoph
  organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany
– sequence: 8
  givenname: Uwe
  surname: Janoske
  fullname: Janoske, Uwe
  organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
BookMark eNqNkMtOwzAQRS1UJNrCP3jFLmUc57lBQuVRpAo2sESWY0-og5sE2wX170lbVl11NaO50tGdMyGjtmuRkGsGMwYsu2lmpllvbDD9Snqsbfc7iyFmQ8gLKM7ImBV5GfGU8xEZAwcWlTyOL8jE-wYA0jzhY_LxslmjM0paKltpt9542tXDTqVeDUH7SbXreouByr63291hH8o-oKY1oq6k-qIaFVp0MpiupQHVqjXfG7wk57W0Hq_-55S8Pz68zRfR8vXpeX63jBTnWYiGulBUccKHfinDOElAlazQaVymMs8qltRpneS8woprDgpBp4rliJBnTFXIp-T2wFWu895hLXpn1tJtBQOxkyUacSxL7GSJg6wBcH8EUCbsnwlOGns6ZnHA4PDsj0EnvDLYKtTGoQpCd-ZU1B8hIZjN
CitedBy_id crossref_primary_10_1140_epjs_s11734_024_01374_1
crossref_primary_10_37188_lam_2024_037
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104140
crossref_primary_10_1515_teme_2021_0119
crossref_primary_10_1016_j_expthermflusci_2022_110763
crossref_primary_10_1080_0005772X_2024_2385192
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104345
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105017
Cites_doi 10.1021/la0354988
10.1021/la901737y
10.1016/0021-9991(81)90145-5
10.1039/c3sm51959g
10.1016/0021-9991(92)90240-Y
10.1016/j.physd.2019.01.008
10.1063/1.2734933
10.1016/j.colsurfa.2019.03.096
10.1007/s00348-021-03148-0
10.1103/PhysRevFluids.4.024001
10.1103/RevModPhys.57.827
10.1016/j.jcp.2020.109709
10.1021/la060254j
10.1016/j.ijmultiphaseflow.2006.06.013
10.1002/cite.201800094
10.1016/j.jcis.2006.04.021
10.1016/j.ijheatmasstransfer.2011.09.057
10.1063/1.4707703
10.11159/ffhmt16.143
10.1016/0167-6105(86)90054-1
10.1016/j.jcis.2019.03.026
10.1016/j.colsurfa.2007.09.032
10.1016/j.jcp.2009.04.027
10.1017/S0022112096004788
10.1017/S0022112008000190
10.1006/jcis.1995.1130
10.1016/j.expthermflusci.2013.04.005
10.1016/j.jcp.2005.01.016
10.1016/j.jcis.2010.12.087
10.1080/02786826.2014.938801
10.1557/mrc.2019.92
10.1115/1.2175091
10.1007/s00162-015-0362-9
10.1007/BF02945980
10.1016/j.expthermflusci.2019.109843
10.1016/j.ijmultiphaseflow.2007.08.008
10.1016/j.jcp.2009.07.034
10.1007/BF00717812
10.1007/978-3-540-30299-5
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2021.103808
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2021_103808
S0301932221002408
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c336t-80808b24332251e2440c918d5295a76b14f5f473beb3d30ce0d5c17ee0761cbe3
IEDL.DBID AIKHN
ISSN 0301-9322
IngestDate Thu Apr 24 22:50:26 EDT 2025
Tue Jul 01 02:45:09 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Critical inclination angle
Contact angle hysteresis
Feedback deceleration technique
Critical velocity
Droplet movement
Contact line
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-80808b24332251e2440c918d5295a76b14f5f473beb3d30ce0d5c17ee0761cbe3
ParticipantIDs crossref_primary_10_1016_j_ijmultiphaseflow_2021_103808
crossref_citationtrail_10_1016_j_ijmultiphaseflow_2021_103808
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2021_103808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wong (bib0042) 1981
Savory, Toy (bib0035) 1986; 4
Zhang, Qin (bib0044) 2019; 545
Semprebon, Brinkmann (bib0038) 2014
Dimitrakopoulos, Higdon (bib0007) 1997; 336
Ding, Spelt (bib0008) 2008; 599
Yeo (bib0043) 2008
Tropea, Yarin, Foss (bib0041) 2007
Dupont, Legendre (bib0009) 2010; 229
Barwari, Burgmann, Janoske (bib0004) 2019; 91
He, Yao (bib0020) 2019; 9
Mireault, Abel, Andrzejewski, Ross (bib0031) 2005; 16
Milne, Amirfazli (bib0030) 2009; 25
Theodorakakos, Ous, Gavaises, Nouri, Nikolopoulos, Yanagihara (bib0040) 2006; 300
Gao, McCarthy (bib0018) 2006; 22
Fricke, Köhne, Bothe (bib0015) 2019; 394
Spelt (bib0039) 2005; 207
De Gennes (bib0019) 1985; 57
Hu, Huang, Chen (bib0022) 2013; 49
Ríos-López, Petal, Kostoglou, Karapantsios (bib0034) 2019; 572
Kim, Kaviany (bib0024) 2007; 101
Fan, Wilson, Kapur (bib0013) 2011; 356
ElSherbini, Jacobi (bib0010) 2006; 128
Extrand (bib0011) 2004; 20
Seiler, Gloerfeld, Roisman, Tropea (bib0037) 2019; 4
Barwari, Burgmann, Bechtold, Rohde, Janoske (bib0003) 2019; 109
OpenFOAM Foundation Ldt., 2018. OpenFOAM. The OpenFOAM Foundation, User Guide version 6.
Brackbill, Kothe, Zemach (bib0005) 1992; 100
Fujimoto, Shiotani, Tong, Hama, Takuda (bib0017) 2007; 33
Fang, Hidrovo, Wang, Eaton, Goodson (bib0014) 2008; 34
Savory, Toy (bib0036) 1986; 23
Afkhami, Zaleski, Bussmann (bib0001) 2009; 228
Maurer, Mebus, Janoske (bib0029) 2016
Annapragada, Murthy, Garimella (bib0002) 2012; 55
Fu, Leung, Chao (bib0016) 2014; 48
Li, Liu, Ding (bib0026) 2020; 420
Park, Kang (bib0032) 2012; 24
Hu, Carter, Blake (bib0023) 1996
Maurer (bib0028) 2017
Hirt, Nichols (bib0021) 1981; 39
Linder, Criscione, Roisman, Marschall, Tropea (bib0027) 2015; 29
Pierce, Carmona, Amirfazli (bib0033) 2008; 323
Extrand, Kumagai (bib0012) 1995; 170
Burgmann, Dues, Barwari, Steinbock, Büttner, Czarske, Janoske (bib0006) 2021; 62
Fu (10.1016/j.ijmultiphaseflow.2021.103808_bib0016) 2014; 48
Hu (10.1016/j.ijmultiphaseflow.2021.103808_bib0022) 2013; 49
Fricke (10.1016/j.ijmultiphaseflow.2021.103808_bib0015) 2019; 394
Seiler (10.1016/j.ijmultiphaseflow.2021.103808_bib0037) 2019; 4
Park (10.1016/j.ijmultiphaseflow.2021.103808_bib0032) 2012; 24
Savory (10.1016/j.ijmultiphaseflow.2021.103808_bib0036) 1986; 23
Ding (10.1016/j.ijmultiphaseflow.2021.103808_bib0008) 2008; 599
He (10.1016/j.ijmultiphaseflow.2021.103808_bib0020) 2019; 9
Afkhami (10.1016/j.ijmultiphaseflow.2021.103808_bib0001) 2009; 228
Annapragada (10.1016/j.ijmultiphaseflow.2021.103808_bib0002) 2012; 55
Extrand (10.1016/j.ijmultiphaseflow.2021.103808_bib0011) 2004; 20
Fujimoto (10.1016/j.ijmultiphaseflow.2021.103808_bib0017) 2007; 33
Gao (10.1016/j.ijmultiphaseflow.2021.103808_bib0018) 2006; 22
Linder (10.1016/j.ijmultiphaseflow.2021.103808_bib0027) 2015; 29
Savory (10.1016/j.ijmultiphaseflow.2021.103808_bib0035) 1986; 4
Li (10.1016/j.ijmultiphaseflow.2021.103808_bib0026) 2020; 420
Tropea (10.1016/j.ijmultiphaseflow.2021.103808_bib0041) 2007
ElSherbini (10.1016/j.ijmultiphaseflow.2021.103808_bib0010) 2006; 128
Semprebon (10.1016/j.ijmultiphaseflow.2021.103808_bib0038) 2014
Spelt (10.1016/j.ijmultiphaseflow.2021.103808_bib0039) 2005; 207
Hirt (10.1016/j.ijmultiphaseflow.2021.103808_bib0021) 1981; 39
Wong (10.1016/j.ijmultiphaseflow.2021.103808_bib0042) 1981
De Gennes (10.1016/j.ijmultiphaseflow.2021.103808_bib0019) 1985; 57
Pierce (10.1016/j.ijmultiphaseflow.2021.103808_bib0033) 2008; 323
Maurer (10.1016/j.ijmultiphaseflow.2021.103808_bib0028) 2017
Mireault (10.1016/j.ijmultiphaseflow.2021.103808_bib0031) 2005; 16
10.1016/j.ijmultiphaseflow.2021.103808_bib0025
Fang (10.1016/j.ijmultiphaseflow.2021.103808_bib0014) 2008; 34
Zhang (10.1016/j.ijmultiphaseflow.2021.103808_bib0044) 2019; 545
Yeo (10.1016/j.ijmultiphaseflow.2021.103808_bib0043) 2008
Fan (10.1016/j.ijmultiphaseflow.2021.103808_bib0013) 2011; 356
Extrand (10.1016/j.ijmultiphaseflow.2021.103808_bib0012) 1995; 170
Barwari (10.1016/j.ijmultiphaseflow.2021.103808_bib0003) 2019; 109
Kim (10.1016/j.ijmultiphaseflow.2021.103808_bib0024) 2007; 101
Hu (10.1016/j.ijmultiphaseflow.2021.103808_bib0023) 1996
Barwari (10.1016/j.ijmultiphaseflow.2021.103808_bib0004) 2019; 91
Ríos-López (10.1016/j.ijmultiphaseflow.2021.103808_bib0034) 2019; 572
Burgmann (10.1016/j.ijmultiphaseflow.2021.103808_bib0006) 2021; 62
Brackbill (10.1016/j.ijmultiphaseflow.2021.103808_bib0005) 1992; 100
Dupont (10.1016/j.ijmultiphaseflow.2021.103808_bib0009) 2010; 229
Maurer (10.1016/j.ijmultiphaseflow.2021.103808_bib0029) 2016
Milne (10.1016/j.ijmultiphaseflow.2021.103808_bib0030) 2009; 25
Dimitrakopoulos (10.1016/j.ijmultiphaseflow.2021.103808_bib0007) 1997; 336
Theodorakakos (10.1016/j.ijmultiphaseflow.2021.103808_bib0040) 2006; 300
References_xml – volume: 170
  start-page: 515
  year: 1995
  end-page: 521
  ident: bib0012
  article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 6234
  year: 2006
  end-page: 6237
  ident: bib0018
  article-title: Contact angle hysteresis explained
  publication-title: Langmuir
– volume: 91
  start-page: 991
  year: 2019
  end-page: 1000
  ident: bib0004
  article-title: Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel
  publication-title: Chem. Ing. Tech.
– start-page: 3325
  year: 2014
  end-page: 3334
  ident: bib0038
  article-title: On the onset of motion of sliding drops
  publication-title: Soft matter
– volume: 34
  start-page: 690
  year: 2008
  end-page: 705
  ident: bib0014
  article-title: 3-D numerical simulation of contact angle hysteresis for microscale two phase flow
  publication-title: Int. J. Multiphase Flow
– volume: 20
  start-page: 4017
  year: 2004
  end-page: 4021
  ident: bib0011
  article-title: Contact angles and their hysteresis as a measure of liquid-solid adhesion
  publication-title: Langmuir
– volume: 228
  start-page: 5370
  year: 2009
  end-page: 5389
  ident: bib0001
  article-title: A mesh-dependent model for applying dynamic angles to VOF simulations
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 916
  year: 2014
  end-page: 923
  ident: bib0016
  article-title: Detachment of droplets in a fully developed turbulent channel flow
  publication-title: Aerosol Sci. Technol.
– volume: 9
  start-page: 1060
  year: 2019
  end-page: 1066
  ident: bib0020
  article-title: Simulating contact angle hysteresis using pseudo-line tensions
  publication-title: MRS Commun.
– volume: 4
  year: 2019
  ident: bib0037
  article-title: Aerodynamically driven motion of a wall-bounded drop on a smooth solid substrate
  publication-title: Phys. Rev. Fluids
– year: 2008
  ident: bib0043
  article-title: Wetting and spreading
  publication-title: Encyclopedia of Microfluidics and Nanofluidics
– volume: 24
  year: 2012
  ident: bib0032
  article-title: Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique
  publication-title: Phys. Fluids
– volume: 109
  year: 2019
  ident: bib0003
  article-title: Experimental study of the onset of downstream motion of adhering droplets in turbulent shear flows
  publication-title: Exp. Therm. Fluid Sci.
– volume: 55
  start-page: 1457
  year: 2012
  end-page: 1465
  ident: bib0002
  article-title: Droplet retention on an incline
  publication-title: Int. J. Heat Mass Transfer
– year: 2016
  ident: bib0029
  article-title: Water droplet motion on an inclining surface
  publication-title: Proceedings of the 3
– volume: 23
  start-page: 345
  year: 1986
  end-page: 364
  ident: bib0036
  article-title: Hemispheres and hemisphere-cylinders in turbulent boundary layers
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 599
  start-page: 341
  year: 2008
  end-page: 362
  ident: bib0008
  article-title: Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers
  publication-title: J. Fluid Mech.
– reference: OpenFOAM Foundation Ldt., 2018. OpenFOAM. The OpenFOAM Foundation, User Guide version 6.
– volume: 323
  start-page: 73
  year: 2008
  end-page: 82
  ident: bib0033
  article-title: Understanding of sliding and contact angle results in tilted plate experiments
  publication-title: Colloids Surf. A
– volume: 25
  start-page: 14155
  year: 2009
  end-page: 14164
  ident: bib0030
  article-title: Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces
  publication-title: Langmuir
– volume: 300
  start-page: 673
  year: 2006
  end-page: 687
  ident: bib0040
  article-title: Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells
  publication-title: J. Colloid Interface Sci.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0021
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– year: 2007
  ident: bib0041
  publication-title: Springer Handbook of Experimental Fluid Mechanics
– start-page: 289
  year: 1996
  end-page: 296
  ident: bib0023
  article-title: The effect of the grid aspect ratio on the convergence of parallel CFD algorithms
  publication-title: Parallel Computational Fluid Dynamics 1995: Implementations and Results Using Parallel Computers
– volume: 336
  start-page: 351
  year: 1997
  end-page: 378
  ident: bib0007
  article-title: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows
  publication-title: J. Fluid Mech.
– volume: 207
  start-page: 389
  year: 2005
  end-page: 404
  ident: bib0039
  article-title: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis
  publication-title: J. Comput. Phys.
– volume: 49
  start-page: 86
  year: 2013
  end-page: 93
  ident: bib0022
  article-title: Displacement of liquid droplets on micro-grooved surfaces with air flow
  publication-title: Exp. Therm. Fluid Sci.
– volume: 62
  start-page: 47
  year: 2021
  ident: bib0006
  article-title: „Flow measurements in the wake of an adhering and oscillating droplet using laser-Doppler velocity profile sensor
  publication-title: Exp. Fluids
– volume: 420
  year: 2020
  ident: bib0026
  article-title: A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis
  publication-title: J. Comput. Phys.
– year: 1981
  ident: bib0042
  article-title: Ph.D. thesis
– volume: 394
  start-page: 26
  year: 2019
  end-page: 43
  ident: bib0015
  article-title: A kinematic evolution equation for the dynamic contact angle and some consequences
  publication-title: Physica D
– volume: 4
  start-page: 181
  year: 1986
  end-page: 188
  ident: bib0035
  article-title: The flow regime in the turbulent near wake of a hemisphere
  publication-title: Exp. Fluids
– volume: 572
  start-page: 97
  year: 2019
  end-page: 106
  ident: bib0034
  article-title: Sessile droplets shape response to complex body forces
  publication-title: Colloids Surf. A
– volume: 57
  start-page: 827
  year: 1985
  end-page: 863
  ident: bib0019
  article-title: Wetting: statics and dynamics
  publication-title: Rev. Mod. Phys.
– volume: 128
  start-page: 427
  year: 2006
  end-page: 433
  ident: bib0010
  article-title: A model for condensate retention on plain-fin heat exchangers
  publication-title: J. Heat Trans. Trans. ASME
– volume: 33
  start-page: 317
  year: 2007
  end-page: 332
  ident: bib0017
  article-title: Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate
  publication-title: Int. J. Multiphase Flow
– volume: 545
  start-page: 231
  year: 2019
  end-page: 241
  ident: bib0044
  article-title: Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface
  publication-title: J. Colloid Interface Sci.
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  ident: bib0005
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
– volume: 356
  start-page: 286
  year: 2011
  end-page: 292
  ident: bib0013
  article-title: Displacement of liquid droplets on a surface by a shearing air flow
  publication-title: J. Colloid Interface Sci.
– volume: 101
  year: 2007
  ident: bib0024
  article-title: Purging of dropwise condensate by electrowetting
  publication-title: J. Appl. Phys.
– year: 2017
  ident: bib0028
  article-title: Experimentelle und numerische Untersuchung der Tropfenbewegung unter Einfluss von äußeren Kräften
– volume: 16
  start-page: 219
  year: 2005
  end-page: 223
  ident: bib0031
  article-title: Measurements of advancing and receding contact angles of water on
  publication-title: Microgravity sci. Technol.
– volume: 29
  start-page: 373
  year: 2015
  end-page: 390
  ident: bib0027
  article-title: 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 229
  start-page: 2453
  year: 2010
  end-page: 2478
  ident: bib0009
  article-title: Numerical simulation of static and sliding drop with contact angle hysteresis
  publication-title: J. Comput. Phys.
– year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0028
– volume: 20
  start-page: 4017
  issue: 10
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0011
  article-title: Contact angles and their hysteresis as a measure of liquid-solid adhesion
  publication-title: Langmuir
  doi: 10.1021/la0354988
– volume: 25
  start-page: 14155
  issue: 24
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0030
  article-title: Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la901737y
– year: 1981
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0042
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0021
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– start-page: 3325
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0038
  article-title: On the onset of motion of sliding drops
  publication-title: Soft matter
  doi: 10.1039/c3sm51959g
– volume: 100
  start-page: 335
  issue: 2
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0005
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 394
  start-page: 26
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0015
  article-title: A kinematic evolution equation for the dynamic contact angle and some consequences
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.01.008
– volume: 101
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0024
  article-title: Purging of dropwise condensate by electrowetting
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2734933
– volume: 572
  start-page: 97
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0034
  article-title: Sessile droplets shape response to complex body forces
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2019.03.096
– ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0025
– volume: 62
  start-page: 47
  year: 2021
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0006
  article-title: „Flow measurements in the wake of an adhering and oscillating droplet using laser-Doppler velocity profile sensor
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-021-03148-0
– volume: 4
  issue: 2
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0037
  article-title: Aerodynamically driven motion of a wall-bounded drop on a smooth solid substrate
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.024001
– volume: 57
  start-page: 827
  issue: 3
  year: 1985
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0019
  article-title: Wetting: statics and dynamics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.827
– volume: 420
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0026
  article-title: A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109709
– volume: 22
  start-page: 6234
  issue: 14
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0018
  article-title: Contact angle hysteresis explained
  publication-title: Langmuir
  doi: 10.1021/la060254j
– volume: 33
  start-page: 317
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0017
  article-title: Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2006.06.013
– volume: 91
  start-page: 991
  issue: 7
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0004
  article-title: Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201800094
– volume: 300
  start-page: 673
  issue: 2
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0040
  article-title: Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.04.021
– volume: 55
  start-page: 1457
  issue: 5-6
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0002
  article-title: Droplet retention on an incline
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.09.057
– volume: 24
  issue: 4
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0032
  article-title: Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique
  publication-title: Phys. Fluids
  doi: 10.1063/1.4707703
– year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0029
  article-title: Water droplet motion on an inclining surface
  doi: 10.11159/ffhmt16.143
– volume: 23
  start-page: 345
  year: 1986
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0036
  article-title: Hemispheres and hemisphere-cylinders in turbulent boundary layers
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(86)90054-1
– volume: 545
  start-page: 231
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0044
  article-title: Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.026
– volume: 323
  start-page: 73
  issue: 1–3
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0033
  article-title: Understanding of sliding and contact angle results in tilted plate experiments
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2007.09.032
– volume: 228
  start-page: 5370
  issue: 15
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0001
  article-title: A mesh-dependent model for applying dynamic angles to VOF simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.027
– volume: 336
  start-page: 351
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0007
  article-title: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112096004788
– volume: 599
  start-page: 341
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0008
  article-title: Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008000190
– volume: 170
  start-page: 515
  issue: 2
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0012
  article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1130
– volume: 49
  start-page: 86
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0022
  article-title: Displacement of liquid droplets on micro-grooved surfaces with air flow
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2013.04.005
– start-page: 289
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0023
  article-title: The effect of the grid aspect ratio on the convergence of parallel CFD algorithms
– volume: 207
  start-page: 389
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0039
  article-title: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.01.016
– volume: 356
  start-page: 286
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0013
  article-title: Displacement of liquid droplets on a surface by a shearing air flow
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.12.087
– volume: 48
  start-page: 916
  issue: 9
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0016
  article-title: Detachment of droplets in a fully developed turbulent channel flow
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2014.938801
– year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0043
  article-title: Wetting and spreading
– volume: 9
  start-page: 1060
  issue: 3
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0020
  article-title: Simulating contact angle hysteresis using pseudo-line tensions
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.92
– volume: 128
  start-page: 427
  issue: 5
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0010
  article-title: A model for condensate retention on plain-fin heat exchangers
  publication-title: J. Heat Trans. Trans. ASME
  doi: 10.1115/1.2175091
– volume: 29
  start-page: 373
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0027
  article-title: 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-015-0362-9
– volume: 16
  start-page: 219
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0031
  article-title: Measurements of advancing and receding contact angles of water on PMMA andCR-39 at various g-levels
  publication-title: Microgravity sci. Technol.
  doi: 10.1007/BF02945980
– volume: 109
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0003
  article-title: Experimental study of the onset of downstream motion of adhering droplets in turbulent shear flows
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2019.109843
– volume: 34
  start-page: 690
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0014
  article-title: 3-D numerical simulation of contact angle hysteresis for microscale two phase flow
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2007.08.008
– volume: 229
  start-page: 2453
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0009
  article-title: Numerical simulation of static and sliding drop with contact angle hysteresis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.07.034
– volume: 4
  start-page: 181
  year: 1986
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0035
  article-title: The flow regime in the turbulent near wake of a hemisphere
  publication-title: Exp. Fluids
  doi: 10.1007/BF00717812
– year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0041
  publication-title: Springer Handbook of Experimental Fluid Mechanics
  doi: 10.1007/978-3-540-30299-5
SSID ssj0005743
Score 2.3922937
Snippet •A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103808
SubjectTerms Contact angle hysteresis
Contact line
Critical inclination angle
Critical velocity
Droplet movement
Feedback deceleration technique
Title Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2021.103808
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ7wiEYPRlHjk-zBeKt0W9ptDx4IkaBGLkrCxTTdRxUkQBTizd_uDFtEjQcO3vraZjPdzDfT-eZbgLMw08J1pXIw_YmdOiKcIyOqsgvEC19rEXFqTr7rhO1u_aYX9ArQXPTCEK0y9_3Wp8-9dX6llluzNun3a_cUzMdUKOBWqKsIZc-Pw6AE5cb1bbuzZHpYnj0979CAdThf0rz6A8vce0bQyIbjd0wZPT6XDacdJ__Cqm_409qGrTxwZA07tx0omFEFNr_JCVZgbU7nVG-78NiZ2UrMkKW56ggbZ3jMUj1v-Hti-pWo41NGFWxqdbI30wlGoCxDSJOpemHaKIQlu0jYl9zrHnRbVw_NtpNvpOAo3w-nDmlHRtIjqTIMZwwiuqtiHmkq8qUilLyeBVld-BIza-27yrg6UFwYQz85lDT-PpRG45E5AGaU5-MUQp4KD32sG2nhpVyFbiwF5rTBIVwuTJaoXGWcNrsYJgs62SD5bfKETJ5Ykx-C-Bo_sXobK49sLL5Q8mMFJQgOK77j6B_ecQwbdGYpLydQmr7OzCkGLlNZheLFB6_my_MTpXfwgQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gxtfBKGrE5x6Mt0rfWw4eCJGgIhcx8WKa7qMKEiAI8eZvd6ZbFI0HDt6a7iOb6Wa-2c433wKchaniti2khcefquUjwlkioiw7R7zwlOKRQ8XJd-2w-eDfPAaPBajPamGIVpn7fuPTM2-dv6nk1qyMut3KPQXzVUoUOEaoawmW_cDjxOu7-JjjeRiWPfW2qPsqnH-TvLo9w9t7QchI-8N3PDC6TiYaTvdN_oVUc-jT2ILNPGxkNbOybSjoQQk25sQES7CSkTnl2w48tacmD9NnSa45woYpPrNEZeV-z0yNiTg-YZS_pkIn05iMMP5kKQKaSOQrU1oiKJktwr7EXnfhoXHVqTet_BoFS3peOLFIOTISLgmVYTCjEc9tWXUiRSm-hIfC8dMg9bkn8FytPFtqWwXS4VrTLw4ptLcHxcFwoPeBael6uITQSbiLHtaOFHcTR4Z2VXA80QZluJyZLJa5xjhdddGPZ2SyXvzb5DGZPDYmLwP_Gj8yahsLj6zNvlD8Y__ECA0LznHwD3Ocwlqzc9eKW9ft20NYpxZDfjmC4mQ81ccYwkzESbZFPwG1lfFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+an+adhering+droplet+applying+an+adapted+feedback+deceleration+technique&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Kr%C3%A4mer%2C+Veronika&rft.au=Barwari%2C+Beawer&rft.au=Burgmann%2C+Sebastian&rft.au=Rohde%2C+Martin&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=145&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2021.103808&rft.externalDocID=S0301932221002408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon