Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique
•A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and validated.•Input parameters for the new model consist only of fluid and material properties.•The new method reproduces droplet pinning according to exi...
Saved in:
Published in | International journal of multiphase flow Vol. 145; p. 103808 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-9322 1879-3533 |
DOI | 10.1016/j.ijmultiphaseflow.2021.103808 |
Cover
Abstract | •A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and validated.•Input parameters for the new model consist only of fluid and material properties.•The new method reproduces droplet pinning according to existing experimental data.•Numerical results provide an insight in the flow structures inside the droplet.
The wetting phenomena and the dynamics of a droplet moved by external forces are essential for many technical applications. However, its numerical modeling has been a challenge and a subject of several investigations in recent years. The objective of the current numerical study is to provide a numerical model within the volume of fluid method that accurately predicts droplet adhesion and the onset of the droplet motion for a three-dimensional droplet.
The presented numerical calculations are performed with OpenFOAM® using a multiphase solver hysteresisInterFoam, which is based on widely used solver interFoam and additionally extended by a contact angle hysteresis algorithm. The hysteresis implementation is performed by means of the feedback deceleration technique (FDT) which controls the movement of the contact line. Basically, the current study focuses on determining the suitable control parameter for the modified FDT and its dependency on the examined material system.
Finally, the new method is validated for droplets under shear flow as well as on an inclined surface. Different droplet volumes, fluid viscosities and solid surfaces were examined. The numerical results agree well with the experimental data. Besides, the new methodology allows to gain new insights into the inner flow of the droplet. |
---|---|
AbstractList | •A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and validated.•Input parameters for the new model consist only of fluid and material properties.•The new method reproduces droplet pinning according to existing experimental data.•Numerical results provide an insight in the flow structures inside the droplet.
The wetting phenomena and the dynamics of a droplet moved by external forces are essential for many technical applications. However, its numerical modeling has been a challenge and a subject of several investigations in recent years. The objective of the current numerical study is to provide a numerical model within the volume of fluid method that accurately predicts droplet adhesion and the onset of the droplet motion for a three-dimensional droplet.
The presented numerical calculations are performed with OpenFOAM® using a multiphase solver hysteresisInterFoam, which is based on widely used solver interFoam and additionally extended by a contact angle hysteresis algorithm. The hysteresis implementation is performed by means of the feedback deceleration technique (FDT) which controls the movement of the contact line. Basically, the current study focuses on determining the suitable control parameter for the modified FDT and its dependency on the examined material system.
Finally, the new method is validated for droplets under shear flow as well as on an inclined surface. Different droplet volumes, fluid viscosities and solid surfaces were examined. The numerical results agree well with the experimental data. Besides, the new methodology allows to gain new insights into the inner flow of the droplet. |
ArticleNumber | 103808 |
Author | Barwari, Beawer Burgmann, Sebastian Janoske, Uwe Holzknecht, Christopher Rentschler, Simon Krämer, Veronika Rohde, Martin Gmelin, Christoph |
Author_xml | – sequence: 1 givenname: Veronika surname: Krämer fullname: Krämer, Veronika email: veronika.kraemer@de.bosch.com organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany – sequence: 2 givenname: Beawer surname: Barwari fullname: Barwari, Beawer organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany – sequence: 3 givenname: Sebastian surname: Burgmann fullname: Burgmann, Sebastian organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany – sequence: 4 givenname: Martin surname: Rohde fullname: Rohde, Martin organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany – sequence: 5 givenname: Simon surname: Rentschler fullname: Rentschler, Simon organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany – sequence: 6 givenname: Christopher surname: Holzknecht fullname: Holzknecht, Christopher organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany – sequence: 7 givenname: Christoph surname: Gmelin fullname: Gmelin, Christoph organization: Engineering Simulation, Robert Bosch GmbH, Wernerstraße 51, 70469 Stuttgart, Germany – sequence: 8 givenname: Uwe surname: Janoske fullname: Janoske, Uwe organization: Chair of Fluid Mechanics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany |
BookMark | eNqNkMtOwzAQRS1UJNrCP3jFLmUc57lBQuVRpAo2sESWY0-og5sE2wX170lbVl11NaO50tGdMyGjtmuRkGsGMwYsu2lmpllvbDD9Snqsbfc7iyFmQ8gLKM7ImBV5GfGU8xEZAwcWlTyOL8jE-wYA0jzhY_LxslmjM0paKltpt9542tXDTqVeDUH7SbXreouByr63291hH8o-oKY1oq6k-qIaFVp0MpiupQHVqjXfG7wk57W0Hq_-55S8Pz68zRfR8vXpeX63jBTnWYiGulBUccKHfinDOElAlazQaVymMs8qltRpneS8woprDgpBp4rliJBnTFXIp-T2wFWu895hLXpn1tJtBQOxkyUacSxL7GSJg6wBcH8EUCbsnwlOGns6ZnHA4PDsj0EnvDLYKtTGoQpCd-ZU1B8hIZjN |
CitedBy_id | crossref_primary_10_1140_epjs_s11734_024_01374_1 crossref_primary_10_37188_lam_2024_037 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104140 crossref_primary_10_1515_teme_2021_0119 crossref_primary_10_1016_j_expthermflusci_2022_110763 crossref_primary_10_1080_0005772X_2024_2385192 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104345 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105017 |
Cites_doi | 10.1021/la0354988 10.1021/la901737y 10.1016/0021-9991(81)90145-5 10.1039/c3sm51959g 10.1016/0021-9991(92)90240-Y 10.1016/j.physd.2019.01.008 10.1063/1.2734933 10.1016/j.colsurfa.2019.03.096 10.1007/s00348-021-03148-0 10.1103/PhysRevFluids.4.024001 10.1103/RevModPhys.57.827 10.1016/j.jcp.2020.109709 10.1021/la060254j 10.1016/j.ijmultiphaseflow.2006.06.013 10.1002/cite.201800094 10.1016/j.jcis.2006.04.021 10.1016/j.ijheatmasstransfer.2011.09.057 10.1063/1.4707703 10.11159/ffhmt16.143 10.1016/0167-6105(86)90054-1 10.1016/j.jcis.2019.03.026 10.1016/j.colsurfa.2007.09.032 10.1016/j.jcp.2009.04.027 10.1017/S0022112096004788 10.1017/S0022112008000190 10.1006/jcis.1995.1130 10.1016/j.expthermflusci.2013.04.005 10.1016/j.jcp.2005.01.016 10.1016/j.jcis.2010.12.087 10.1080/02786826.2014.938801 10.1557/mrc.2019.92 10.1115/1.2175091 10.1007/s00162-015-0362-9 10.1007/BF02945980 10.1016/j.expthermflusci.2019.109843 10.1016/j.ijmultiphaseflow.2007.08.008 10.1016/j.jcp.2009.07.034 10.1007/BF00717812 10.1007/978-3-540-30299-5 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2021.103808 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2021_103808 S0301932221002408 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c336t-80808b24332251e2440c918d5295a76b14f5f473beb3d30ce0d5c17ee0761cbe3 |
IEDL.DBID | AIKHN |
ISSN | 0301-9322 |
IngestDate | Thu Apr 24 22:50:26 EDT 2025 Tue Jul 01 02:45:09 EDT 2025 Fri Feb 23 02:47:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Critical inclination angle Contact angle hysteresis Feedback deceleration technique Critical velocity Droplet movement Contact line |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-80808b24332251e2440c918d5295a76b14f5f473beb3d30ce0d5c17ee0761cbe3 |
ParticipantIDs | crossref_primary_10_1016_j_ijmultiphaseflow_2021_103808 crossref_citationtrail_10_1016_j_ijmultiphaseflow_2021_103808 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2021_103808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wong (bib0042) 1981 Savory, Toy (bib0035) 1986; 4 Zhang, Qin (bib0044) 2019; 545 Semprebon, Brinkmann (bib0038) 2014 Dimitrakopoulos, Higdon (bib0007) 1997; 336 Ding, Spelt (bib0008) 2008; 599 Yeo (bib0043) 2008 Tropea, Yarin, Foss (bib0041) 2007 Dupont, Legendre (bib0009) 2010; 229 Barwari, Burgmann, Janoske (bib0004) 2019; 91 He, Yao (bib0020) 2019; 9 Mireault, Abel, Andrzejewski, Ross (bib0031) 2005; 16 Milne, Amirfazli (bib0030) 2009; 25 Theodorakakos, Ous, Gavaises, Nouri, Nikolopoulos, Yanagihara (bib0040) 2006; 300 Gao, McCarthy (bib0018) 2006; 22 Fricke, Köhne, Bothe (bib0015) 2019; 394 Spelt (bib0039) 2005; 207 De Gennes (bib0019) 1985; 57 Hu, Huang, Chen (bib0022) 2013; 49 Ríos-López, Petal, Kostoglou, Karapantsios (bib0034) 2019; 572 Kim, Kaviany (bib0024) 2007; 101 Fan, Wilson, Kapur (bib0013) 2011; 356 ElSherbini, Jacobi (bib0010) 2006; 128 Extrand (bib0011) 2004; 20 Seiler, Gloerfeld, Roisman, Tropea (bib0037) 2019; 4 Barwari, Burgmann, Bechtold, Rohde, Janoske (bib0003) 2019; 109 OpenFOAM Foundation Ldt., 2018. OpenFOAM. The OpenFOAM Foundation, User Guide version 6. Brackbill, Kothe, Zemach (bib0005) 1992; 100 Fujimoto, Shiotani, Tong, Hama, Takuda (bib0017) 2007; 33 Fang, Hidrovo, Wang, Eaton, Goodson (bib0014) 2008; 34 Savory, Toy (bib0036) 1986; 23 Afkhami, Zaleski, Bussmann (bib0001) 2009; 228 Maurer, Mebus, Janoske (bib0029) 2016 Annapragada, Murthy, Garimella (bib0002) 2012; 55 Fu, Leung, Chao (bib0016) 2014; 48 Li, Liu, Ding (bib0026) 2020; 420 Park, Kang (bib0032) 2012; 24 Hu, Carter, Blake (bib0023) 1996 Maurer (bib0028) 2017 Hirt, Nichols (bib0021) 1981; 39 Linder, Criscione, Roisman, Marschall, Tropea (bib0027) 2015; 29 Pierce, Carmona, Amirfazli (bib0033) 2008; 323 Extrand, Kumagai (bib0012) 1995; 170 Burgmann, Dues, Barwari, Steinbock, Büttner, Czarske, Janoske (bib0006) 2021; 62 Fu (10.1016/j.ijmultiphaseflow.2021.103808_bib0016) 2014; 48 Hu (10.1016/j.ijmultiphaseflow.2021.103808_bib0022) 2013; 49 Fricke (10.1016/j.ijmultiphaseflow.2021.103808_bib0015) 2019; 394 Seiler (10.1016/j.ijmultiphaseflow.2021.103808_bib0037) 2019; 4 Park (10.1016/j.ijmultiphaseflow.2021.103808_bib0032) 2012; 24 Savory (10.1016/j.ijmultiphaseflow.2021.103808_bib0036) 1986; 23 Ding (10.1016/j.ijmultiphaseflow.2021.103808_bib0008) 2008; 599 He (10.1016/j.ijmultiphaseflow.2021.103808_bib0020) 2019; 9 Afkhami (10.1016/j.ijmultiphaseflow.2021.103808_bib0001) 2009; 228 Annapragada (10.1016/j.ijmultiphaseflow.2021.103808_bib0002) 2012; 55 Extrand (10.1016/j.ijmultiphaseflow.2021.103808_bib0011) 2004; 20 Fujimoto (10.1016/j.ijmultiphaseflow.2021.103808_bib0017) 2007; 33 Gao (10.1016/j.ijmultiphaseflow.2021.103808_bib0018) 2006; 22 Linder (10.1016/j.ijmultiphaseflow.2021.103808_bib0027) 2015; 29 Savory (10.1016/j.ijmultiphaseflow.2021.103808_bib0035) 1986; 4 Li (10.1016/j.ijmultiphaseflow.2021.103808_bib0026) 2020; 420 Tropea (10.1016/j.ijmultiphaseflow.2021.103808_bib0041) 2007 ElSherbini (10.1016/j.ijmultiphaseflow.2021.103808_bib0010) 2006; 128 Semprebon (10.1016/j.ijmultiphaseflow.2021.103808_bib0038) 2014 Spelt (10.1016/j.ijmultiphaseflow.2021.103808_bib0039) 2005; 207 Hirt (10.1016/j.ijmultiphaseflow.2021.103808_bib0021) 1981; 39 Wong (10.1016/j.ijmultiphaseflow.2021.103808_bib0042) 1981 De Gennes (10.1016/j.ijmultiphaseflow.2021.103808_bib0019) 1985; 57 Pierce (10.1016/j.ijmultiphaseflow.2021.103808_bib0033) 2008; 323 Maurer (10.1016/j.ijmultiphaseflow.2021.103808_bib0028) 2017 Mireault (10.1016/j.ijmultiphaseflow.2021.103808_bib0031) 2005; 16 10.1016/j.ijmultiphaseflow.2021.103808_bib0025 Fang (10.1016/j.ijmultiphaseflow.2021.103808_bib0014) 2008; 34 Zhang (10.1016/j.ijmultiphaseflow.2021.103808_bib0044) 2019; 545 Yeo (10.1016/j.ijmultiphaseflow.2021.103808_bib0043) 2008 Fan (10.1016/j.ijmultiphaseflow.2021.103808_bib0013) 2011; 356 Extrand (10.1016/j.ijmultiphaseflow.2021.103808_bib0012) 1995; 170 Barwari (10.1016/j.ijmultiphaseflow.2021.103808_bib0003) 2019; 109 Kim (10.1016/j.ijmultiphaseflow.2021.103808_bib0024) 2007; 101 Hu (10.1016/j.ijmultiphaseflow.2021.103808_bib0023) 1996 Barwari (10.1016/j.ijmultiphaseflow.2021.103808_bib0004) 2019; 91 Ríos-López (10.1016/j.ijmultiphaseflow.2021.103808_bib0034) 2019; 572 Burgmann (10.1016/j.ijmultiphaseflow.2021.103808_bib0006) 2021; 62 Brackbill (10.1016/j.ijmultiphaseflow.2021.103808_bib0005) 1992; 100 Dupont (10.1016/j.ijmultiphaseflow.2021.103808_bib0009) 2010; 229 Maurer (10.1016/j.ijmultiphaseflow.2021.103808_bib0029) 2016 Milne (10.1016/j.ijmultiphaseflow.2021.103808_bib0030) 2009; 25 Dimitrakopoulos (10.1016/j.ijmultiphaseflow.2021.103808_bib0007) 1997; 336 Theodorakakos (10.1016/j.ijmultiphaseflow.2021.103808_bib0040) 2006; 300 |
References_xml | – volume: 170 start-page: 515 year: 1995 end-page: 521 ident: bib0012 article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force publication-title: J. Colloid Interface Sci. – volume: 22 start-page: 6234 year: 2006 end-page: 6237 ident: bib0018 article-title: Contact angle hysteresis explained publication-title: Langmuir – volume: 91 start-page: 991 year: 2019 end-page: 1000 ident: bib0004 article-title: Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel publication-title: Chem. Ing. Tech. – start-page: 3325 year: 2014 end-page: 3334 ident: bib0038 article-title: On the onset of motion of sliding drops publication-title: Soft matter – volume: 34 start-page: 690 year: 2008 end-page: 705 ident: bib0014 article-title: 3-D numerical simulation of contact angle hysteresis for microscale two phase flow publication-title: Int. J. Multiphase Flow – volume: 20 start-page: 4017 year: 2004 end-page: 4021 ident: bib0011 article-title: Contact angles and their hysteresis as a measure of liquid-solid adhesion publication-title: Langmuir – volume: 228 start-page: 5370 year: 2009 end-page: 5389 ident: bib0001 article-title: A mesh-dependent model for applying dynamic angles to VOF simulations publication-title: J. Comput. Phys. – volume: 48 start-page: 916 year: 2014 end-page: 923 ident: bib0016 article-title: Detachment of droplets in a fully developed turbulent channel flow publication-title: Aerosol Sci. Technol. – volume: 9 start-page: 1060 year: 2019 end-page: 1066 ident: bib0020 article-title: Simulating contact angle hysteresis using pseudo-line tensions publication-title: MRS Commun. – volume: 4 year: 2019 ident: bib0037 article-title: Aerodynamically driven motion of a wall-bounded drop on a smooth solid substrate publication-title: Phys. Rev. Fluids – year: 2008 ident: bib0043 article-title: Wetting and spreading publication-title: Encyclopedia of Microfluidics and Nanofluidics – volume: 24 year: 2012 ident: bib0032 article-title: Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique publication-title: Phys. Fluids – volume: 109 year: 2019 ident: bib0003 article-title: Experimental study of the onset of downstream motion of adhering droplets in turbulent shear flows publication-title: Exp. Therm. Fluid Sci. – volume: 55 start-page: 1457 year: 2012 end-page: 1465 ident: bib0002 article-title: Droplet retention on an incline publication-title: Int. J. Heat Mass Transfer – year: 2016 ident: bib0029 article-title: Water droplet motion on an inclining surface publication-title: Proceedings of the 3 – volume: 23 start-page: 345 year: 1986 end-page: 364 ident: bib0036 article-title: Hemispheres and hemisphere-cylinders in turbulent boundary layers publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 599 start-page: 341 year: 2008 end-page: 362 ident: bib0008 article-title: Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers publication-title: J. Fluid Mech. – reference: OpenFOAM Foundation Ldt., 2018. OpenFOAM. The OpenFOAM Foundation, User Guide version 6. – volume: 323 start-page: 73 year: 2008 end-page: 82 ident: bib0033 article-title: Understanding of sliding and contact angle results in tilted plate experiments publication-title: Colloids Surf. A – volume: 25 start-page: 14155 year: 2009 end-page: 14164 ident: bib0030 article-title: Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces publication-title: Langmuir – volume: 300 start-page: 673 year: 2006 end-page: 687 ident: bib0040 article-title: Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells publication-title: J. Colloid Interface Sci. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib0021 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – year: 2007 ident: bib0041 publication-title: Springer Handbook of Experimental Fluid Mechanics – start-page: 289 year: 1996 end-page: 296 ident: bib0023 article-title: The effect of the grid aspect ratio on the convergence of parallel CFD algorithms publication-title: Parallel Computational Fluid Dynamics 1995: Implementations and Results Using Parallel Computers – volume: 336 start-page: 351 year: 1997 end-page: 378 ident: bib0007 article-title: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows publication-title: J. Fluid Mech. – volume: 207 start-page: 389 year: 2005 end-page: 404 ident: bib0039 article-title: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis publication-title: J. Comput. Phys. – volume: 49 start-page: 86 year: 2013 end-page: 93 ident: bib0022 article-title: Displacement of liquid droplets on micro-grooved surfaces with air flow publication-title: Exp. Therm. Fluid Sci. – volume: 62 start-page: 47 year: 2021 ident: bib0006 article-title: „Flow measurements in the wake of an adhering and oscillating droplet using laser-Doppler velocity profile sensor publication-title: Exp. Fluids – volume: 420 year: 2020 ident: bib0026 article-title: A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis publication-title: J. Comput. Phys. – year: 1981 ident: bib0042 article-title: Ph.D. thesis – volume: 394 start-page: 26 year: 2019 end-page: 43 ident: bib0015 article-title: A kinematic evolution equation for the dynamic contact angle and some consequences publication-title: Physica D – volume: 4 start-page: 181 year: 1986 end-page: 188 ident: bib0035 article-title: The flow regime in the turbulent near wake of a hemisphere publication-title: Exp. Fluids – volume: 572 start-page: 97 year: 2019 end-page: 106 ident: bib0034 article-title: Sessile droplets shape response to complex body forces publication-title: Colloids Surf. A – volume: 57 start-page: 827 year: 1985 end-page: 863 ident: bib0019 article-title: Wetting: statics and dynamics publication-title: Rev. Mod. Phys. – volume: 128 start-page: 427 year: 2006 end-page: 433 ident: bib0010 article-title: A model for condensate retention on plain-fin heat exchangers publication-title: J. Heat Trans. Trans. ASME – volume: 33 start-page: 317 year: 2007 end-page: 332 ident: bib0017 article-title: Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate publication-title: Int. J. Multiphase Flow – volume: 545 start-page: 231 year: 2019 end-page: 241 ident: bib0044 article-title: Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface publication-title: J. Colloid Interface Sci. – volume: 100 start-page: 335 year: 1992 end-page: 354 ident: bib0005 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. – volume: 356 start-page: 286 year: 2011 end-page: 292 ident: bib0013 article-title: Displacement of liquid droplets on a surface by a shearing air flow publication-title: J. Colloid Interface Sci. – volume: 101 year: 2007 ident: bib0024 article-title: Purging of dropwise condensate by electrowetting publication-title: J. Appl. Phys. – year: 2017 ident: bib0028 article-title: Experimentelle und numerische Untersuchung der Tropfenbewegung unter Einfluss von äußeren Kräften – volume: 16 start-page: 219 year: 2005 end-page: 223 ident: bib0031 article-title: Measurements of advancing and receding contact angles of water on publication-title: Microgravity sci. Technol. – volume: 29 start-page: 373 year: 2015 end-page: 390 ident: bib0027 article-title: 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis publication-title: Theor. Comput. Fluid Dyn. – volume: 229 start-page: 2453 year: 2010 end-page: 2478 ident: bib0009 article-title: Numerical simulation of static and sliding drop with contact angle hysteresis publication-title: J. Comput. Phys. – year: 2017 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0028 – volume: 20 start-page: 4017 issue: 10 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0011 article-title: Contact angles and their hysteresis as a measure of liquid-solid adhesion publication-title: Langmuir doi: 10.1021/la0354988 – volume: 25 start-page: 14155 issue: 24 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0030 article-title: Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/la901737y – year: 1981 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0042 – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0021 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – start-page: 3325 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0038 article-title: On the onset of motion of sliding drops publication-title: Soft matter doi: 10.1039/c3sm51959g – volume: 100 start-page: 335 issue: 2 year: 1992 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0005 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y – volume: 394 start-page: 26 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0015 article-title: A kinematic evolution equation for the dynamic contact angle and some consequences publication-title: Physica D doi: 10.1016/j.physd.2019.01.008 – volume: 101 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0024 article-title: Purging of dropwise condensate by electrowetting publication-title: J. Appl. Phys. doi: 10.1063/1.2734933 – volume: 572 start-page: 97 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0034 article-title: Sessile droplets shape response to complex body forces publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.03.096 – ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0025 – volume: 62 start-page: 47 year: 2021 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0006 article-title: „Flow measurements in the wake of an adhering and oscillating droplet using laser-Doppler velocity profile sensor publication-title: Exp. Fluids doi: 10.1007/s00348-021-03148-0 – volume: 4 issue: 2 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0037 article-title: Aerodynamically driven motion of a wall-bounded drop on a smooth solid substrate publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.024001 – volume: 57 start-page: 827 issue: 3 year: 1985 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0019 article-title: Wetting: statics and dynamics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.827 – volume: 420 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0026 article-title: A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109709 – volume: 22 start-page: 6234 issue: 14 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0018 article-title: Contact angle hysteresis explained publication-title: Langmuir doi: 10.1021/la060254j – volume: 33 start-page: 317 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0017 article-title: Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2006.06.013 – volume: 91 start-page: 991 issue: 7 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0004 article-title: Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201800094 – volume: 300 start-page: 673 issue: 2 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0040 article-title: Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.04.021 – volume: 55 start-page: 1457 issue: 5-6 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0002 article-title: Droplet retention on an incline publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.09.057 – volume: 24 issue: 4 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0032 article-title: Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique publication-title: Phys. Fluids doi: 10.1063/1.4707703 – year: 2016 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0029 article-title: Water droplet motion on an inclining surface doi: 10.11159/ffhmt16.143 – volume: 23 start-page: 345 year: 1986 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0036 article-title: Hemispheres and hemisphere-cylinders in turbulent boundary layers publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(86)90054-1 – volume: 545 start-page: 231 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0044 article-title: Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.03.026 – volume: 323 start-page: 73 issue: 1–3 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0033 article-title: Understanding of sliding and contact angle results in tilted plate experiments publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2007.09.032 – volume: 228 start-page: 5370 issue: 15 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0001 article-title: A mesh-dependent model for applying dynamic angles to VOF simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.027 – volume: 336 start-page: 351 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0007 article-title: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112096004788 – volume: 599 start-page: 341 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0008 article-title: Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers publication-title: J. Fluid Mech. doi: 10.1017/S0022112008000190 – volume: 170 start-page: 515 issue: 2 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0012 article-title: Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1130 – volume: 49 start-page: 86 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0022 article-title: Displacement of liquid droplets on micro-grooved surfaces with air flow publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2013.04.005 – start-page: 289 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0023 article-title: The effect of the grid aspect ratio on the convergence of parallel CFD algorithms – volume: 207 start-page: 389 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0039 article-title: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.01.016 – volume: 356 start-page: 286 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0013 article-title: Displacement of liquid droplets on a surface by a shearing air flow publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.12.087 – volume: 48 start-page: 916 issue: 9 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0016 article-title: Detachment of droplets in a fully developed turbulent channel flow publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2014.938801 – year: 2008 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0043 article-title: Wetting and spreading – volume: 9 start-page: 1060 issue: 3 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0020 article-title: Simulating contact angle hysteresis using pseudo-line tensions publication-title: MRS Commun. doi: 10.1557/mrc.2019.92 – volume: 128 start-page: 427 issue: 5 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0010 article-title: A model for condensate retention on plain-fin heat exchangers publication-title: J. Heat Trans. Trans. ASME doi: 10.1115/1.2175091 – volume: 29 start-page: 373 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0027 article-title: 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-015-0362-9 – volume: 16 start-page: 219 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0031 article-title: Measurements of advancing and receding contact angles of water on PMMA andCR-39 at various g-levels publication-title: Microgravity sci. Technol. doi: 10.1007/BF02945980 – volume: 109 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0003 article-title: Experimental study of the onset of downstream motion of adhering droplets in turbulent shear flows publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2019.109843 – volume: 34 start-page: 690 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0014 article-title: 3-D numerical simulation of contact angle hysteresis for microscale two phase flow publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2007.08.008 – volume: 229 start-page: 2453 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0009 article-title: Numerical simulation of static and sliding drop with contact angle hysteresis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.07.034 – volume: 4 start-page: 181 year: 1986 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0035 article-title: The flow regime in the turbulent near wake of a hemisphere publication-title: Exp. Fluids doi: 10.1007/BF00717812 – year: 2007 ident: 10.1016/j.ijmultiphaseflow.2021.103808_bib0041 publication-title: Springer Handbook of Experimental Fluid Mechanics doi: 10.1007/978-3-540-30299-5 |
SSID | ssj0005743 |
Score | 2.3922937 |
Snippet | •A VOF-based method to implement the contact angle hysteresis is presented.•A modification for the Feedback Deceleration Technique is introduced and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103808 |
SubjectTerms | Contact angle hysteresis Contact line Critical inclination angle Critical velocity Droplet movement Feedback deceleration technique |
Title | Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2021.103808 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ7wiEYPRlHjk-zBeKt0W9ptDx4IkaBGLkrCxTTdRxUkQBTizd_uDFtEjQcO3vraZjPdzDfT-eZbgLMw08J1pXIw_YmdOiKcIyOqsgvEC19rEXFqTr7rhO1u_aYX9ArQXPTCEK0y9_3Wp8-9dX6llluzNun3a_cUzMdUKOBWqKsIZc-Pw6AE5cb1bbuzZHpYnj0979CAdThf0rz6A8vce0bQyIbjd0wZPT6XDacdJ__Cqm_409qGrTxwZA07tx0omFEFNr_JCVZgbU7nVG-78NiZ2UrMkKW56ggbZ3jMUj1v-Hti-pWo41NGFWxqdbI30wlGoCxDSJOpemHaKIQlu0jYl9zrHnRbVw_NtpNvpOAo3w-nDmlHRtIjqTIMZwwiuqtiHmkq8qUilLyeBVld-BIza-27yrg6UFwYQz85lDT-PpRG45E5AGaU5-MUQp4KD32sG2nhpVyFbiwF5rTBIVwuTJaoXGWcNrsYJgs62SD5bfKETJ5Ykx-C-Bo_sXobK49sLL5Q8mMFJQgOK77j6B_ecQwbdGYpLydQmr7OzCkGLlNZheLFB6_my_MTpXfwgQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gxtfBKGrE5x6Mt0rfWw4eCJGgIhcx8WKa7qMKEiAI8eZvd6ZbFI0HDt6a7iOb6Wa-2c433wKchaniti2khcefquUjwlkioiw7R7zwlOKRQ8XJd-2w-eDfPAaPBajPamGIVpn7fuPTM2-dv6nk1qyMut3KPQXzVUoUOEaoawmW_cDjxOu7-JjjeRiWPfW2qPsqnH-TvLo9w9t7QchI-8N3PDC6TiYaTvdN_oVUc-jT2ILNPGxkNbOybSjoQQk25sQES7CSkTnl2w48tacmD9NnSa45woYpPrNEZeV-z0yNiTg-YZS_pkIn05iMMP5kKQKaSOQrU1oiKJktwr7EXnfhoXHVqTet_BoFS3peOLFIOTISLgmVYTCjEc9tWXUiRSm-hIfC8dMg9bkn8FytPFtqWwXS4VrTLw4ptLcHxcFwoPeBael6uITQSbiLHtaOFHcTR4Z2VXA80QZluJyZLJa5xjhdddGPZ2SyXvzb5DGZPDYmLwP_Gj8yahsLj6zNvlD8Y__ECA0LznHwD3Ocwlqzc9eKW9ft20NYpxZDfjmC4mQ81ccYwkzESbZFPwG1lfFM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+an+adhering+droplet+applying+an+adapted+feedback+deceleration+technique&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Kr%C3%A4mer%2C+Veronika&rft.au=Barwari%2C+Beawer&rft.au=Burgmann%2C+Sebastian&rft.au=Rohde%2C+Martin&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=145&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2021.103808&rft.externalDocID=S0301932221002408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |