Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy

Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However, these methods need large amount of samples and time to improve recognition accuracy. In this paper, based on the data obtained from terahertz spe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on terahertz science and technology Vol. 8; no. 6; pp. 696 - 701
Main Authors Peng, Yan, Shi, Chenjun, Xu, Mingqian, Kou, Tianyi, Wu, Xu, Song, Bin, Ma, Hongyun, Guo, Shiwei, Liu, Lizhuang, Zhu, Yiming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2156-342X
2156-3446
DOI10.1109/TTHZ.2018.2867816

Cover

Loading…
Abstract Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However, these methods need large amount of samples and time to improve recognition accuracy. In this paper, based on the data obtained from terahertz spectroscopy, an identification method with less sample requirements and lower calculation time but higher accuracy is proposed. Based on the wavelet transform, baseline elimination, support vector regression, and loop iteration of samples, the specific substance in the mixture can be identified effectively. For example, seven substances that exist in brain glioma are chosen as the components of a mixture, where the key substances used for glioma diagnosis are set as the target substances and the spectra of mixtures with different mix proportions serve as training data. The average correlation coefficient of identification achieves 99.135% and the root-mean-square error is 0.40%. These results have profound implications for the eventual practical application of exact qualitative and quantitative identification of components in mixtures.
AbstractList Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However, these methods need large amount of samples and time to improve recognition accuracy. In this paper, based on the data obtained from terahertz spectroscopy, an identification method with less sample requirements and lower calculation time but higher accuracy is proposed. Based on the wavelet transform, baseline elimination, support vector regression, and loop iteration of samples, the specific substance in the mixture can be identified effectively. For example, seven substances that exist in brain glioma are chosen as the components of a mixture, where the key substances used for glioma diagnosis are set as the target substances and the spectra of mixtures with different mix proportions serve as training data. The average correlation coefficient of identification achieves 99.135% and the root-mean-square error is 0.40%. These results have profound implications for the eventual practical application of exact qualitative and quantitative identification of components in mixtures.
Author Song, Bin
Liu, Lizhuang
Peng, Yan
Kou, Tianyi
Wu, Xu
Ma, Hongyun
Shi, Chenjun
Zhu, Yiming
Xu, Mingqian
Guo, Shiwei
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-2853-6627
  surname: Peng
  fullname: Peng, Yan
  email: py@usst.edu.cn
  organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 2
  givenname: Chenjun
  surname: Shi
  fullname: Shi, Chenjun
  email: 779113661@qq.com
  organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 3
  givenname: Mingqian
  surname: Xu
  fullname: Xu, Mingqian
  email: 215705216@qq.com
  organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 4
  givenname: Tianyi
  surname: Kou
  fullname: Kou, Tianyi
  email: 1050425105@qq.com
  organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 5
  givenname: Xu
  surname: Wu
  fullname: Wu, Xu
  email: wuxumaomao@hotmail.com
  organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 6
  givenname: Bin
  surname: Song
  fullname: Song, Bin
  organization: Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
– sequence: 7
  givenname: Hongyun
  surname: Ma
  fullname: Ma, Hongyun
  organization: Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
– sequence: 8
  givenname: Shiwei
  surname: Guo
  fullname: Guo, Shiwei
  organization: Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
– sequence: 9
  givenname: Lizhuang
  surname: Liu
  fullname: Liu, Lizhuang
  organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
– sequence: 10
  givenname: Yiming
  orcidid: 0000-0003-2353-5713
  surname: Zhu
  fullname: Zhu, Yiming
  email: ymzhu@usst.edu.cn
  organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
BookMark eNp9kEFLAzEQhYNUsNb-APES8NyabLbJ7lGK2kJFxBXEgyGbzOKWNlmzWbH-elNbPXhwLpkX5s1LvmPUs84CQqeUjCkl-UVRzJ7HCaHZOMm4yCg_QP2ETviIpSnv_fbJ0xEatu2SxJpwlom0j17uO7Wqgwr1O2BlDY7ahp-LuYEoqlpH6Sx2FZ66dRPDbWhxbfFt_RE6D7jc4AK8egUfPvFDAzp412rXbE7QYaVWLQz35wA9Xl8V09locXczn14uRpoxHkaCZUSoFCYKaJkzYnJmCDUKqkxQTjIQYEoiCMsFZZpzQyvKteFVxUUJOmcDdL7b23j31kEb5NJ13sZIGT8vcho58ThFd1M6Pq_1UMnG12vlN5ISuSUptyTllqTck4we8cejv-k4G7yqV_86z3bOGgB-k7I0zXOesi9_6YSB
CODEN ITTSBX
CitedBy_id crossref_primary_10_1016_j_optmat_2021_111134
crossref_primary_10_1007_s12596_024_02182_5
crossref_primary_10_3390_s19102365
crossref_primary_10_1007_s10762_021_00790_x
crossref_primary_10_1364_AO_462727
crossref_primary_10_1109_TTHZ_2019_2941125
crossref_primary_10_3390_photonics10030250
crossref_primary_10_1145_3678586
crossref_primary_10_1016_j_infrared_2022_104225
crossref_primary_10_1016_j_saa_2022_121288
crossref_primary_10_1016_j_ijpharm_2022_122545
crossref_primary_10_1016_j_surfcoat_2020_125836
crossref_primary_10_1016_j_saa_2024_124351
crossref_primary_10_1016_j_infrared_2024_105157
crossref_primary_10_1109_ACCESS_2020_3029714
crossref_primary_10_1109_TTHZ_2020_3001515
crossref_primary_10_3390_photonics9030184
crossref_primary_10_1038_s41377_023_01278_0
crossref_primary_10_3390_photonics8010022
crossref_primary_10_1186_s43074_020_00011_z
crossref_primary_10_1039_D1AN00500F
crossref_primary_10_1364_BOE_9_005467
crossref_primary_10_1039_D0AN01062F
crossref_primary_10_1002_jum_15948
crossref_primary_10_3390_s22207877
crossref_primary_10_1021_acsphotonics_3c01627
crossref_primary_10_1109_TTHZ_2022_3172006
crossref_primary_10_3390_coatings10070704
crossref_primary_10_3390_s21041186
crossref_primary_10_1016_j_saa_2023_122629
crossref_primary_10_1155_2022_1533866
crossref_primary_10_1016_j_saa_2024_125235
crossref_primary_10_1109_ACCESS_2021_3116980
crossref_primary_10_1109_TTHZ_2018_2889227
crossref_primary_10_1109_TIM_2023_3291781
crossref_primary_10_1186_s43074_021_00034_0
crossref_primary_10_1016_j_cej_2023_142347
crossref_primary_10_1364_BOE_391894
crossref_primary_10_34133_2020_2547609
crossref_primary_10_1038_s41598_022_23414_3
crossref_primary_10_1007_s13538_024_01434_w
crossref_primary_10_1186_s40543_022_00328_3
crossref_primary_10_1109_ACCESS_2022_3174595
crossref_primary_10_3389_fbioe_2023_1170218
crossref_primary_10_1088_2053_1591_ad2d20
crossref_primary_10_3390_coatings12030390
crossref_primary_10_1016_j_bios_2025_117351
crossref_primary_10_34133_2021_6793457
Cites_doi 10.1109/TMTT.2010.2050184
10.1016/j.eswa.2011.02.160
10.1007/978-3-642-76153-9_5
10.1002/lpor.201200505
10.1023/A:1012450327387
10.4028/www.scientific.net/AMR.804.23
10.1016/j.chemolab.2013.05.011
10.1002/jrs.1370
10.1007/s12039-009-0062-3
10.1109/ICUFN.2016.7536945
10.1007/BF00994018
10.1038/s41598-017-11527-z
10.1109/22.989974
10.1016/j.chemphys.2005.04.033
10.1001/archneur.61.4.541
10.1007/s10762-016-0283-8
10.1364/BOE.7.004472
10.1109/TBME.2005.856296
10.1016/j.procs.2014.08.048
10.1364/OE.22.012533
10.2478/s11772-011-0033-3
10.1016/0020-0190(93)90213-S
10.1007/978-1-4612-0711-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TTHZ.2018.2867816
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2156-3446
EndPage 701
ExternalDocumentID 10_1109_TTHZ_2018_2867816
8449964
Genre orig-research
GrantInformation_xml – fundername: Shanghai Youth Talent Support Program and Young Yangtse River Scholar
  grantid: Q2016212
– fundername: Shanghai Rising-Star Program
  grantid: 17QA1402500
– fundername: Shuguang Program
  grantid: 17SG45
– fundername: Major National Development Project of Scientific Instrument and Equipment
  grantid: 2017YFF0106300; 2016YFF0100503
– fundername: National Natural Science Foundation of China
  grantid: 61771314; 61722111
  funderid: 10.13039/501100001809
– fundername: Shanghai Pujiang Program
  grantid: 16PJD033
– fundername: National Program on Key Basic Research Project of China (973 Program)
  grantid: 2014CB339806
GroupedDBID 0R~
4.4
5VS
66.
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c336t-73807a4e5ae1b930d93d01daef871608e7edb07039713c66d1f16cd6ff67bec93
IEDL.DBID RIE
ISSN 2156-342X
IngestDate Sun Jun 29 13:26:00 EDT 2025
Tue Jul 01 01:46:46 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Aug 27 02:49:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-73807a4e5ae1b930d93d01daef871608e7edb07039713c66d1f16cd6ff67bec93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2353-5713
0000-0003-2853-6627
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8449964
PQID 2157911106
PQPubID 2040497
PageCount 6
ParticipantIDs crossref_primary_10_1109_TTHZ_2018_2867816
ieee_primary_8449964
proquest_journals_2157911106
crossref_citationtrail_10_1109_TTHZ_2018_2867816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on terahertz science and technology
PublicationTitleAbbrev TTHZ
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref10
ref2
ref1
ref17
ref18
(ref16) 2012
zhang (ref19) 2002; 25
feng (ref27) 2006; 47
fan (ref21) 2005; 6
ref24
ref23
ref26
ref25
ref20
ref22
(ref15) 2014; 37
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
yan (ref11) 2007; 19
References_xml – ident: ref12
  doi: 10.1109/TMTT.2010.2050184
– ident: ref22
  doi: 10.1016/j.eswa.2011.02.160
– volume: 6
  start-page: 1889
  year: 2005
  ident: ref21
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1007/978-3-642-76153-9_5
– ident: ref3
  doi: 10.1002/lpor.201200505
– ident: ref24
  doi: 10.1023/A:1012450327387
– ident: ref7
  doi: 10.4028/www.scientific.net/AMR.804.23
– ident: ref28
  doi: 10.1016/j.chemolab.2013.05.011
– volume: 19
  start-page: 158
  year: 2007
  ident: ref11
  article-title: Terahertz spectroscopic investigation of L-glutamic acid and L-tyrosine
  publication-title: Meas Sci Technol
– volume: 25
  start-page: 696
  year: 2002
  ident: ref19
  article-title: The relationship between kernel functions based SVM and three-layer feedforward neural networks
  publication-title: Chin J Comput
– ident: ref14
  doi: 10.1002/jrs.1370
– year: 2012
  ident: ref16
  article-title: Signal denoising using wavelets
– ident: ref5
  doi: 10.1007/s12039-009-0062-3
– ident: ref26
  doi: 10.1109/ICUFN.2016.7536945
– ident: ref25
  doi: 10.1007/BF00994018
– ident: ref13
  doi: 10.1038/s41598-017-11527-z
– ident: ref1
  doi: 10.1109/22.989974
– ident: ref8
  doi: 10.1016/j.chemphys.2005.04.033
– ident: ref9
  doi: 10.1001/archneur.61.4.541
– ident: ref29
  doi: 10.4028/www.scientific.net/AMR.804.23
– ident: ref10
  doi: 10.1007/s10762-016-0283-8
– ident: ref4
  doi: 10.1364/BOE.7.004472
– ident: ref18
  doi: 10.1109/TBME.2005.856296
– volume: 37
  start-page: 325
  year: 2014
  ident: ref15
  article-title: Performance study of different denoising methods for ECG signals
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2014.08.048
– ident: ref6
  doi: 10.1364/OE.22.012533
– volume: 47
  start-page: 123
  year: 2006
  ident: ref27
  article-title: Parameter optimizing for support vector machines classification
  publication-title: Comput Appl Eng Edu
– ident: ref2
  doi: 10.2478/s11772-011-0033-3
– ident: ref17
  doi: 10.1016/0020-0190(93)90213-S
– ident: ref23
  doi: 10.1007/978-1-4612-0711-5
SSID ssj0000563874
Score 2.384814
Snippet Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 696
SubjectTerms Absorption
Artificial neural networks
Brain
Correlation coefficient
Correlation coefficients
Data models
Identification
Identification methods
Mathematical model
Mixture identification
Neural networks
Regression analysis
Spectroscopy
Spectrum analysis
Support vector machines
terahertz (THz) spectroscopy
Wavelet transforms
Title Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy
URI https://ieeexplore.ieee.org/document/8449964
https://www.proquest.com/docview/2157911106
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB5UKOiDtv7AU1v2oU9izuR2s8k-SqkchevTCUcfDNndWRBLTjQH6l_vzCZ3iErpWxI2YWAmM9_sznwD8N2lo6ApzibSOpWorMbE2CAT8osELvJgumrCyW89vlK_ZvlsDc5WvTCIGIvPcMiX8Szfz92Ct8rOS0X4XKt1WKfErevVWu2nUCCXZSRdpiCmE6lGs_4QM0vN-XQ6_sN1XOVwVJIYPN38VRiKc1XeOeMYYS53YLKUrSssuR0uWjt0z29oG_9X-M-w3UNNcdHZxhdYw2YXtl4REO7Cp1gA6h724Loj04g04KJuvKD7pl0-6Np5Q7-_J-ZBsB-ZN1yFIW4aMbl55JMIYZ_EFMl94X37LHi0fctkmfO7p324uvw5_TFO-tkLiZNSt0nBRPS1wrzGzBqZeiN9mvkaA2dYaYkFesvuwlCW67T2Wci08zoEXZBZGHkAGw2JcQgix6Im2IUSlVK1t6UnyCcJ-qE1uc_yAaRLVVSuJybn-Rh_q5igpKZi7VWsvarX3gBOV6_cdawc_1q8x9pYLewVMYCTpb6r_r99qMh2Cnb_qT76-K1j2ORvd92IJ7DR3i_wK8GS1n6L9vgCLlDeuQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLbGJgQ8bLCBODYgDzwhemsvado8TtOmA3Z76qQTD1RN4kgTqDdtPYnt12OnvdMEaOKtrRLVkh37S2J_Bvjg0knQFGcTaZ1KVNZgYmyQCflFAhd5MH024excTy_Ul3k-34BP61oYRIzJZzjmx3iX7xduyUdlh6UifK7VI9iiuJ9nfbXW-kSFQrksI-0yhTGdSDWZD9eYWWoOq2r6jTO5yvGkJEG4v_m9QBQ7q_zljmOMOd2B2Uq6PrXkx3jZ2bG7-4O48X_Ffw7bA9gUR711vIANbHfh2T0Kwl14HFNA3c0efO_pNCIRuGhaL-i97VYf-oLeMJzwiUUQ7EkWLedhiMtWzC5_8V2EsLeiQnJgeN3dCW5u3zFd5uLq9iVcnJ5Ux9Nk6L6QOCl1lxRMRd8ozBvMrJGpN9KnmW8w8B4rLbFAb9lhGNrnOq19FjLtvA5BF2QYRr6CzZbEeA0ix6Ih4IUSlVKNt6Un0CcJ_KE1uc_yEaQrVdRuoCbnDhk_67hFSU3N2qtZe_WgvRF8XE-56nk5Hhq8x9pYDxwUMYKDlb7rYeXe1GQ7BQeAVL_596z38GRazc7qs8_nX_fhKf-nr008gM3ueolvCaR09l20zd_zceIC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualitative+and+Quantitative+Identification+of+Components+in+Mixture+by+Terahertz+Spectroscopy&rft.jtitle=IEEE+transactions+on+terahertz+science+and+technology&rft.au=Peng%2C+Yan&rft.au=Shi%2C+Chenjun&rft.au=Xu%2C+Mingqian&rft.au=Kou%2C+Tianyi&rft.date=2018-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2156-342X&rft.eissn=2156-3446&rft.volume=8&rft.issue=6&rft.spage=696&rft_id=info:doi/10.1109%2FTTHZ.2018.2867816&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-342X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-342X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-342X&client=summon