Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy
Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However, these methods need large amount of samples and time to improve recognition accuracy. In this paper, based on the data obtained from terahertz spe...
Saved in:
Published in | IEEE transactions on terahertz science and technology Vol. 8; no. 6; pp. 696 - 701 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2156-342X 2156-3446 |
DOI | 10.1109/TTHZ.2018.2867816 |
Cover
Loading…
Abstract | Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However, these methods need large amount of samples and time to improve recognition accuracy. In this paper, based on the data obtained from terahertz spectroscopy, an identification method with less sample requirements and lower calculation time but higher accuracy is proposed. Based on the wavelet transform, baseline elimination, support vector regression, and loop iteration of samples, the specific substance in the mixture can be identified effectively. For example, seven substances that exist in brain glioma are chosen as the components of a mixture, where the key substances used for glioma diagnosis are set as the target substances and the spectra of mixtures with different mix proportions serve as training data. The average correlation coefficient of identification achieves 99.135% and the root-mean-square error is 0.40%. These results have profound implications for the eventual practical application of exact qualitative and quantitative identification of components in mixtures. |
---|---|
AbstractList | Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However, these methods need large amount of samples and time to improve recognition accuracy. In this paper, based on the data obtained from terahertz spectroscopy, an identification method with less sample requirements and lower calculation time but higher accuracy is proposed. Based on the wavelet transform, baseline elimination, support vector regression, and loop iteration of samples, the specific substance in the mixture can be identified effectively. For example, seven substances that exist in brain glioma are chosen as the components of a mixture, where the key substances used for glioma diagnosis are set as the target substances and the spectra of mixtures with different mix proportions serve as training data. The average correlation coefficient of identification achieves 99.135% and the root-mean-square error is 0.40%. These results have profound implications for the eventual practical application of exact qualitative and quantitative identification of components in mixtures. |
Author | Song, Bin Liu, Lizhuang Peng, Yan Kou, Tianyi Wu, Xu Ma, Hongyun Shi, Chenjun Zhu, Yiming Xu, Mingqian Guo, Shiwei |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-2853-6627 surname: Peng fullname: Peng, Yan email: py@usst.edu.cn organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China – sequence: 2 givenname: Chenjun surname: Shi fullname: Shi, Chenjun email: 779113661@qq.com organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China – sequence: 3 givenname: Mingqian surname: Xu fullname: Xu, Mingqian email: 215705216@qq.com organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China – sequence: 4 givenname: Tianyi surname: Kou fullname: Kou, Tianyi email: 1050425105@qq.com organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China – sequence: 5 givenname: Xu surname: Wu fullname: Wu, Xu email: wuxumaomao@hotmail.com organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China – sequence: 6 givenname: Bin surname: Song fullname: Song, Bin organization: Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China – sequence: 7 givenname: Hongyun surname: Ma fullname: Ma, Hongyun organization: Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China – sequence: 8 givenname: Shiwei surname: Guo fullname: Guo, Shiwei organization: Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China – sequence: 9 givenname: Lizhuang surname: Liu fullname: Liu, Lizhuang organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China – sequence: 10 givenname: Yiming orcidid: 0000-0003-2353-5713 surname: Zhu fullname: Zhu, Yiming email: ymzhu@usst.edu.cn organization: Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China |
BookMark | eNp9kEFLAzEQhYNUsNb-APES8NyabLbJ7lGK2kJFxBXEgyGbzOKWNlmzWbH-elNbPXhwLpkX5s1LvmPUs84CQqeUjCkl-UVRzJ7HCaHZOMm4yCg_QP2ETviIpSnv_fbJ0xEatu2SxJpwlom0j17uO7Wqgwr1O2BlDY7ahp-LuYEoqlpH6Sx2FZ66dRPDbWhxbfFt_RE6D7jc4AK8egUfPvFDAzp412rXbE7QYaVWLQz35wA9Xl8V09locXczn14uRpoxHkaCZUSoFCYKaJkzYnJmCDUKqkxQTjIQYEoiCMsFZZpzQyvKteFVxUUJOmcDdL7b23j31kEb5NJ13sZIGT8vcho58ThFd1M6Pq_1UMnG12vlN5ISuSUptyTllqTck4we8cejv-k4G7yqV_86z3bOGgB-k7I0zXOesi9_6YSB |
CODEN | ITTSBX |
CitedBy_id | crossref_primary_10_1016_j_optmat_2021_111134 crossref_primary_10_1007_s12596_024_02182_5 crossref_primary_10_3390_s19102365 crossref_primary_10_1007_s10762_021_00790_x crossref_primary_10_1364_AO_462727 crossref_primary_10_1109_TTHZ_2019_2941125 crossref_primary_10_3390_photonics10030250 crossref_primary_10_1145_3678586 crossref_primary_10_1016_j_infrared_2022_104225 crossref_primary_10_1016_j_saa_2022_121288 crossref_primary_10_1016_j_ijpharm_2022_122545 crossref_primary_10_1016_j_surfcoat_2020_125836 crossref_primary_10_1016_j_saa_2024_124351 crossref_primary_10_1016_j_infrared_2024_105157 crossref_primary_10_1109_ACCESS_2020_3029714 crossref_primary_10_1109_TTHZ_2020_3001515 crossref_primary_10_3390_photonics9030184 crossref_primary_10_1038_s41377_023_01278_0 crossref_primary_10_3390_photonics8010022 crossref_primary_10_1186_s43074_020_00011_z crossref_primary_10_1039_D1AN00500F crossref_primary_10_1364_BOE_9_005467 crossref_primary_10_1039_D0AN01062F crossref_primary_10_1002_jum_15948 crossref_primary_10_3390_s22207877 crossref_primary_10_1021_acsphotonics_3c01627 crossref_primary_10_1109_TTHZ_2022_3172006 crossref_primary_10_3390_coatings10070704 crossref_primary_10_3390_s21041186 crossref_primary_10_1016_j_saa_2023_122629 crossref_primary_10_1155_2022_1533866 crossref_primary_10_1016_j_saa_2024_125235 crossref_primary_10_1109_ACCESS_2021_3116980 crossref_primary_10_1109_TTHZ_2018_2889227 crossref_primary_10_1109_TIM_2023_3291781 crossref_primary_10_1186_s43074_021_00034_0 crossref_primary_10_1016_j_cej_2023_142347 crossref_primary_10_1364_BOE_391894 crossref_primary_10_34133_2020_2547609 crossref_primary_10_1038_s41598_022_23414_3 crossref_primary_10_1007_s13538_024_01434_w crossref_primary_10_1186_s40543_022_00328_3 crossref_primary_10_1109_ACCESS_2022_3174595 crossref_primary_10_3389_fbioe_2023_1170218 crossref_primary_10_1088_2053_1591_ad2d20 crossref_primary_10_3390_coatings12030390 crossref_primary_10_1016_j_bios_2025_117351 crossref_primary_10_34133_2021_6793457 |
Cites_doi | 10.1109/TMTT.2010.2050184 10.1016/j.eswa.2011.02.160 10.1007/978-3-642-76153-9_5 10.1002/lpor.201200505 10.1023/A:1012450327387 10.4028/www.scientific.net/AMR.804.23 10.1016/j.chemolab.2013.05.011 10.1002/jrs.1370 10.1007/s12039-009-0062-3 10.1109/ICUFN.2016.7536945 10.1007/BF00994018 10.1038/s41598-017-11527-z 10.1109/22.989974 10.1016/j.chemphys.2005.04.033 10.1001/archneur.61.4.541 10.1007/s10762-016-0283-8 10.1364/BOE.7.004472 10.1109/TBME.2005.856296 10.1016/j.procs.2014.08.048 10.1364/OE.22.012533 10.2478/s11772-011-0033-3 10.1016/0020-0190(93)90213-S 10.1007/978-1-4612-0711-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TTHZ.2018.2867816 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2156-3446 |
EndPage | 701 |
ExternalDocumentID | 10_1109_TTHZ_2018_2867816 8449964 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shanghai Youth Talent Support Program and Young Yangtse River Scholar grantid: Q2016212 – fundername: Shanghai Rising-Star Program grantid: 17QA1402500 – fundername: Shuguang Program grantid: 17SG45 – fundername: Major National Development Project of Scientific Instrument and Equipment grantid: 2017YFF0106300; 2016YFF0100503 – fundername: National Natural Science Foundation of China grantid: 61771314; 61722111 funderid: 10.13039/501100001809 – fundername: Shanghai Pujiang Program grantid: 16PJD033 – fundername: National Program on Key Basic Research Project of China (973 Program) grantid: 2014CB339806 |
GroupedDBID | 0R~ 4.4 5VS 66. 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c336t-73807a4e5ae1b930d93d01daef871608e7edb07039713c66d1f16cd6ff67bec93 |
IEDL.DBID | RIE |
ISSN | 2156-342X |
IngestDate | Sun Jun 29 13:26:00 EDT 2025 Tue Jul 01 01:46:46 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Aug 27 02:49:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-73807a4e5ae1b930d93d01daef871608e7edb07039713c66d1f16cd6ff67bec93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2353-5713 0000-0003-2853-6627 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8449964 |
PQID | 2157911106 |
PQPubID | 2040497 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_TTHZ_2018_2867816 ieee_primary_8449964 proquest_journals_2157911106 crossref_citationtrail_10_1109_TTHZ_2018_2867816 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on terahertz science and technology |
PublicationTitleAbbrev | TTHZ |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref10 ref2 ref1 ref17 ref18 (ref16) 2012 zhang (ref19) 2002; 25 feng (ref27) 2006; 47 fan (ref21) 2005; 6 ref24 ref23 ref26 ref25 ref20 ref22 (ref15) 2014; 37 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 yan (ref11) 2007; 19 |
References_xml | – ident: ref12 doi: 10.1109/TMTT.2010.2050184 – ident: ref22 doi: 10.1016/j.eswa.2011.02.160 – volume: 6 start-page: 1889 year: 2005 ident: ref21 article-title: Working set selection using second order information for training support vector machines publication-title: J Mach Learn Res – ident: ref20 doi: 10.1007/978-3-642-76153-9_5 – ident: ref3 doi: 10.1002/lpor.201200505 – ident: ref24 doi: 10.1023/A:1012450327387 – ident: ref7 doi: 10.4028/www.scientific.net/AMR.804.23 – ident: ref28 doi: 10.1016/j.chemolab.2013.05.011 – volume: 19 start-page: 158 year: 2007 ident: ref11 article-title: Terahertz spectroscopic investigation of L-glutamic acid and L-tyrosine publication-title: Meas Sci Technol – volume: 25 start-page: 696 year: 2002 ident: ref19 article-title: The relationship between kernel functions based SVM and three-layer feedforward neural networks publication-title: Chin J Comput – ident: ref14 doi: 10.1002/jrs.1370 – year: 2012 ident: ref16 article-title: Signal denoising using wavelets – ident: ref5 doi: 10.1007/s12039-009-0062-3 – ident: ref26 doi: 10.1109/ICUFN.2016.7536945 – ident: ref25 doi: 10.1007/BF00994018 – ident: ref13 doi: 10.1038/s41598-017-11527-z – ident: ref1 doi: 10.1109/22.989974 – ident: ref8 doi: 10.1016/j.chemphys.2005.04.033 – ident: ref9 doi: 10.1001/archneur.61.4.541 – ident: ref29 doi: 10.4028/www.scientific.net/AMR.804.23 – ident: ref10 doi: 10.1007/s10762-016-0283-8 – ident: ref4 doi: 10.1364/BOE.7.004472 – ident: ref18 doi: 10.1109/TBME.2005.856296 – volume: 37 start-page: 325 year: 2014 ident: ref15 article-title: Performance study of different denoising methods for ECG signals publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2014.08.048 – ident: ref6 doi: 10.1364/OE.22.012533 – volume: 47 start-page: 123 year: 2006 ident: ref27 article-title: Parameter optimizing for support vector machines classification publication-title: Comput Appl Eng Edu – ident: ref2 doi: 10.2478/s11772-011-0033-3 – ident: ref17 doi: 10.1016/0020-0190(93)90213-S – ident: ref23 doi: 10.1007/978-1-4612-0711-5 |
SSID | ssj0000563874 |
Score | 2.384814 |
Snippet | Typical methods for the analysis of mixture components include multiple linear regression, partial linear squares, and artificial neural network. However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 696 |
SubjectTerms | Absorption Artificial neural networks Brain Correlation coefficient Correlation coefficients Data models Identification Identification methods Mathematical model Mixture identification Neural networks Regression analysis Spectroscopy Spectrum analysis Support vector machines terahertz (THz) spectroscopy Wavelet transforms |
Title | Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy |
URI | https://ieeexplore.ieee.org/document/8449964 https://www.proquest.com/docview/2157911106 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB5UKOiDtv7AU1v2oU9izuR2s8k-SqkchevTCUcfDNndWRBLTjQH6l_vzCZ3iErpWxI2YWAmM9_sznwD8N2lo6ApzibSOpWorMbE2CAT8osELvJgumrCyW89vlK_ZvlsDc5WvTCIGIvPcMiX8Szfz92Ct8rOS0X4XKt1WKfErevVWu2nUCCXZSRdpiCmE6lGs_4QM0vN-XQ6_sN1XOVwVJIYPN38VRiKc1XeOeMYYS53YLKUrSssuR0uWjt0z29oG_9X-M-w3UNNcdHZxhdYw2YXtl4REO7Cp1gA6h724Loj04g04KJuvKD7pl0-6Np5Q7-_J-ZBsB-ZN1yFIW4aMbl55JMIYZ_EFMl94X37LHi0fctkmfO7p324uvw5_TFO-tkLiZNSt0nBRPS1wrzGzBqZeiN9mvkaA2dYaYkFesvuwlCW67T2Wci08zoEXZBZGHkAGw2JcQgix6Im2IUSlVK1t6UnyCcJ-qE1uc_yAaRLVVSuJybn-Rh_q5igpKZi7VWsvarX3gBOV6_cdawc_1q8x9pYLewVMYCTpb6r_r99qMh2Cnb_qT76-K1j2ORvd92IJ7DR3i_wK8GS1n6L9vgCLlDeuQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLbGJgQ8bLCBODYgDzwhemsvado8TtOmA3Z76qQTD1RN4kgTqDdtPYnt12OnvdMEaOKtrRLVkh37S2J_Bvjg0knQFGcTaZ1KVNZgYmyQCflFAhd5MH024excTy_Ul3k-34BP61oYRIzJZzjmx3iX7xduyUdlh6UifK7VI9iiuJ9nfbXW-kSFQrksI-0yhTGdSDWZD9eYWWoOq2r6jTO5yvGkJEG4v_m9QBQ7q_zljmOMOd2B2Uq6PrXkx3jZ2bG7-4O48X_Ffw7bA9gUR711vIANbHfh2T0Kwl14HFNA3c0efO_pNCIRuGhaL-i97VYf-oLeMJzwiUUQ7EkWLedhiMtWzC5_8V2EsLeiQnJgeN3dCW5u3zFd5uLq9iVcnJ5Ux9Nk6L6QOCl1lxRMRd8ozBvMrJGpN9KnmW8w8B4rLbFAb9lhGNrnOq19FjLtvA5BF2QYRr6CzZbEeA0ix6Ih4IUSlVKNt6Un0CcJ_KE1uc_yEaQrVdRuoCbnDhk_67hFSU3N2qtZe_WgvRF8XE-56nk5Hhq8x9pYDxwUMYKDlb7rYeXe1GQ7BQeAVL_596z38GRazc7qs8_nX_fhKf-nr008gM3ueolvCaR09l20zd_zceIC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualitative+and+Quantitative+Identification+of+Components+in+Mixture+by+Terahertz+Spectroscopy&rft.jtitle=IEEE+transactions+on+terahertz+science+and+technology&rft.au=Peng%2C+Yan&rft.au=Shi%2C+Chenjun&rft.au=Xu%2C+Mingqian&rft.au=Kou%2C+Tianyi&rft.date=2018-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2156-342X&rft.eissn=2156-3446&rft.volume=8&rft.issue=6&rft.spage=696&rft_id=info:doi/10.1109%2FTTHZ.2018.2867816&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-342X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-342X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-342X&client=summon |