Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis
•A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water capacity.•Increased bulk density under conservation tillage remains non-harmful for crop growth.•Soil pH decreased under conservation tillage....
Saved in:
Published in | Soil & tillage research Vol. 194; p. 104292 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water capacity.•Increased bulk density under conservation tillage remains non-harmful for crop growth.•Soil pH decreased under conservation tillage.•The response of soil physical properties vary with experiment duration.
Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the negative effects caused by intensive tillage practices. Implementing effective and sustainable agriculture requires a deeper understanding of the impacts of conservation tillage practices on soil physical properties. This study examined the effects of conservation tillage practices on soil physical properties, including soil bulk density, aggregate size and stability, hydraulic properties, and soil pH; based on data collected from 264 studies published worldwide since 1980. The results indicated that no-tillage (NT), NT with residue retention (NTS), and reduced tillage (RT) increased bulk density by 1.4, 2.6, and 2.1%, respectively, compared with conventional tillage (CT). Soil bulk density decreased by 2.9% in NTS compared with NT, and 3.9% in RT with residue retention (RTS) compared with RT. The effect size of bulk density significantly decreased with the increasing experimental duration under NT and NTS practices. Compared to CT, conservation tillage practices increased aggregate mean weight diameter (MWD), geometric mean weight diameter and water stable aggregate (WSA) regardless of the residue retention or minimum tillage systems. The largest effect size of MWD (51.9%) and WSA (54.9%) appeared under NTS as compared to the CT. The effect size of MWD and WSA increased under NT with the increasing experimental duration. NT increased saturated hydraulic conductivity by 24.6% compared to CT. All conservation tillage practices increased soil available water capacity (AWC) compared with CT and NTS with a 10.2% increase in AWC compared with NT. The effect size of AWC increased under RT and NT practices with the increasing experimental duration. Soil pH decreased by 1.7 and 1.0% under RTS compared with RT and CT, respectively; and NT led to a 2.8% reduction in soil pH compared with CT. The effect size of soil pH decreased under RT and NT treatments with the increasing experiment duration. Overall, conservation tillage practices positively affected many soil physical properties; and the extent of the effects varied with the duration of the experiment. |
---|---|
AbstractList | •A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water capacity.•Increased bulk density under conservation tillage remains non-harmful for crop growth.•Soil pH decreased under conservation tillage.•The response of soil physical properties vary with experiment duration.
Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the negative effects caused by intensive tillage practices. Implementing effective and sustainable agriculture requires a deeper understanding of the impacts of conservation tillage practices on soil physical properties. This study examined the effects of conservation tillage practices on soil physical properties, including soil bulk density, aggregate size and stability, hydraulic properties, and soil pH; based on data collected from 264 studies published worldwide since 1980. The results indicated that no-tillage (NT), NT with residue retention (NTS), and reduced tillage (RT) increased bulk density by 1.4, 2.6, and 2.1%, respectively, compared with conventional tillage (CT). Soil bulk density decreased by 2.9% in NTS compared with NT, and 3.9% in RT with residue retention (RTS) compared with RT. The effect size of bulk density significantly decreased with the increasing experimental duration under NT and NTS practices. Compared to CT, conservation tillage practices increased aggregate mean weight diameter (MWD), geometric mean weight diameter and water stable aggregate (WSA) regardless of the residue retention or minimum tillage systems. The largest effect size of MWD (51.9%) and WSA (54.9%) appeared under NTS as compared to the CT. The effect size of MWD and WSA increased under NT with the increasing experimental duration. NT increased saturated hydraulic conductivity by 24.6% compared to CT. All conservation tillage practices increased soil available water capacity (AWC) compared with CT and NTS with a 10.2% increase in AWC compared with NT. The effect size of AWC increased under RT and NT practices with the increasing experimental duration. Soil pH decreased by 1.7 and 1.0% under RTS compared with RT and CT, respectively; and NT led to a 2.8% reduction in soil pH compared with CT. The effect size of soil pH decreased under RT and NT treatments with the increasing experiment duration. Overall, conservation tillage practices positively affected many soil physical properties; and the extent of the effects varied with the duration of the experiment. Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the negative effects caused by intensive tillage practices. Implementing effective and sustainable agriculture requires a deeper understanding of the impacts of conservation tillage practices on soil physical properties. This study examined the effects of conservation tillage practices on soil physical properties, including soil bulk density, aggregate size and stability, hydraulic properties, and soil pH; based on data collected from 264 studies published worldwide since 1980. The results indicated that no-tillage (NT), NT with residue retention (NTS), and reduced tillage (RT) increased bulk density by 1.4, 2.6, and 2.1%, respectively, compared with conventional tillage (CT). Soil bulk density decreased by 2.9% in NTS compared with NT, and 3.9% in RT with residue retention (RTS) compared with RT. The effect size of bulk density significantly decreased with the increasing experimental duration under NT and NTS practices. Compared to CT, conservation tillage practices increased aggregate mean weight diameter (MWD), geometric mean weight diameter and water stable aggregate (WSA) regardless of the residue retention or minimum tillage systems. The largest effect size of MWD (51.9%) and WSA (54.9%) appeared under NTS as compared to the CT. The effect size of MWD and WSA increased under NT with the increasing experimental duration. NT increased saturated hydraulic conductivity by 24.6% compared to CT. All conservation tillage practices increased soil available water capacity (AWC) compared with CT and NTS with a 10.2% increase in AWC compared with NT. The effect size of AWC increased under RT and NT practices with the increasing experimental duration. Soil pH decreased by 1.7 and 1.0% under RTS compared with RT and CT, respectively; and NT led to a 2.8% reduction in soil pH compared with CT. The effect size of soil pH decreased under RT and NT treatments with the increasing experiment duration. Overall, conservation tillage practices positively affected many soil physical properties; and the extent of the effects varied with the duration of the experiment. |
ArticleNumber | 104292 |
Author | Li, Yuan Cui, Song Zhang, Qingping Jagadamma, Sindhu Li, Zhou |
Author_xml | – sequence: 1 givenname: Yuan surname: Li fullname: Li, Yuan organization: College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China – sequence: 2 givenname: Zhou surname: Li fullname: Li, Zhou organization: College of Animal Science, Guizhou University, Guiyang 550025, China – sequence: 3 givenname: Song surname: Cui fullname: Cui, Song organization: School of Agriculture, Middle Tennessee State University, Murfreesboro, TN, 37132, USA – sequence: 4 givenname: Sindhu surname: Jagadamma fullname: Jagadamma, Sindhu organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, USA – sequence: 5 givenname: Qingping surname: Zhang fullname: Zhang, Qingping email: zhangqp2008@lzu.edu.cn organization: College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China |
BookMark | eNqFkE1rGzEQhkVJoM7HL8hFx152I-2XVoUeQmibQKBQmrPQakf2GK3kSrIh_75y3FMOyWnE8D4vo-eCnPnggZAbzmrO-HC7rVNG5-qGcVmzoWZMfiIrPgpZtV3XnZFVSYmKy1F8JhcpbRljXduMK5J-Q8J5DzRCBp8xeKr9TBf0uOwXemzVa6C47GI4AN1tXhIa7Sj4A8bgl8LQYGneAE0BHUVPTQw7V0rSV3pH1y5MJb5A1pX22hU8XZFzq12C6__zkjz_-P7n_qF6-vXz8f7uqTJtO-RqmBrbM6vnTk6THa0sbw5MT9I0gvdS2B6khbIf7Sw406Nt5x7mvmu5EINuL8mXU2-5_e8eUlYLJgPlRx7CPqmm1IxiLGiJtqdoOT6lCFbtIi46vijO1FGx2qpXxeqoWLFBFcWFkm8og1kfJeao0X3AfjuxUAwcEKJKBsEbmDGCyWoO-C7_D-qjni8 |
CitedBy_id | crossref_primary_10_35633_inmateh_60_35 crossref_primary_10_1016_j_geodrs_2023_e00727 crossref_primary_10_1007_s40333_022_0026_8 crossref_primary_10_5194_soil_9_1_2023 crossref_primary_10_1016_j_geoderma_2021_115383 crossref_primary_10_1007_s42106_022_00217_0 crossref_primary_10_3389_fsufs_2020_00031 crossref_primary_10_1016_j_eja_2021_126417 crossref_primary_10_3390_agriculture11090823 crossref_primary_10_3390_land10040361 crossref_primary_10_1051_bioconf_202410808003 crossref_primary_10_1007_s42729_022_01085_3 crossref_primary_10_1016_j_scitotenv_2020_140147 crossref_primary_10_1016_j_still_2025_106528 crossref_primary_10_3389_feart_2024_1357467 crossref_primary_10_1002_jpln_202200297 crossref_primary_10_1007_s42729_020_00362_3 crossref_primary_10_19047_0136_1694_2022_112_134_159 crossref_primary_10_1016_j_farsys_2024_100108 crossref_primary_10_3390_agronomy11020302 crossref_primary_10_3390_agronomy12061321 crossref_primary_10_1016_j_fcr_2024_109370 crossref_primary_10_1016_j_scitotenv_2023_168542 crossref_primary_10_3390_agronomy11091681 crossref_primary_10_1002_saj2_20716 crossref_primary_10_1016_j_still_2023_105781 crossref_primary_10_3390_agronomy14040669 crossref_primary_10_1016_j_scitotenv_2023_166917 crossref_primary_10_1007_s42729_024_01742_9 crossref_primary_10_1088_1755_1315_1005_1_012003 crossref_primary_10_1016_j_scitotenv_2022_156346 crossref_primary_10_1002_jpln_202200044 crossref_primary_10_1016_j_scitotenv_2020_136677 crossref_primary_10_3389_fagro_2022_844166 crossref_primary_10_3389_fsufs_2022_541798 crossref_primary_10_1016_j_catena_2020_105102 crossref_primary_10_3390_land12030638 crossref_primary_10_3390_microorganisms11102459 crossref_primary_10_1016_j_still_2021_104959 crossref_primary_10_3390_su13063155 crossref_primary_10_1016_j_agee_2022_108205 crossref_primary_10_3390_land9110456 crossref_primary_10_1002_agg2_20330 crossref_primary_10_1016_j_geoderma_2019_114099 crossref_primary_10_1371_journal_pone_0215702 crossref_primary_10_1016_j_geoderma_2021_115443 crossref_primary_10_1016_j_still_2020_104832 crossref_primary_10_1016_j_still_2024_106420 crossref_primary_10_3390_agronomy14071584 crossref_primary_10_1016_j_still_2022_105413 crossref_primary_10_3389_fsoil_2022_821589 crossref_primary_10_3389_fenvs_2024_1404971 crossref_primary_10_1016_j_agee_2021_107546 crossref_primary_10_3389_fenvs_2022_1005114 crossref_primary_10_3390_agronomy14071476 crossref_primary_10_3389_fpls_2022_1017145 crossref_primary_10_3390_agronomy11030529 crossref_primary_10_3390_land12091646 crossref_primary_10_1016_j_geodrs_2024_e00840 crossref_primary_10_1016_j_agwat_2021_107105 crossref_primary_10_1016_j_jenvman_2020_110549 crossref_primary_10_1080_00103624_2024_2323073 crossref_primary_10_3390_soilsystems6040087 crossref_primary_10_3389_fpls_2020_610065 crossref_primary_10_1111_gcb_15930 crossref_primary_10_1007_s10340_023_01701_w crossref_primary_10_1016_j_catena_2020_104617 crossref_primary_10_1016_j_still_2022_105592 crossref_primary_10_3390_su132413753 crossref_primary_10_35633_inmateh_74_86 crossref_primary_10_1016_j_still_2025_106448 crossref_primary_10_1002_esp_4829 crossref_primary_10_1007_s12230_024_09959_1 crossref_primary_10_1016_j_geoderma_2024_117120 crossref_primary_10_1007_s11356_022_20306_x crossref_primary_10_1016_j_agee_2021_107650 crossref_primary_10_1016_j_geoderma_2022_116156 crossref_primary_10_1016_j_apsoil_2024_105848 crossref_primary_10_3103_S1068367423060095 crossref_primary_10_1111_ejss_13092 crossref_primary_10_56407_bs_agrarian_4_2023_71 crossref_primary_10_1002_ldr_3891 crossref_primary_10_1016_j_energy_2022_124243 crossref_primary_10_1016_j_still_2024_106328 crossref_primary_10_3390_w15152821 crossref_primary_10_1016_j_scitotenv_2022_153929 crossref_primary_10_1016_j_agee_2023_108616 crossref_primary_10_1016_j_pedsph_2024_10_002 crossref_primary_10_3390_land12020326 crossref_primary_10_3389_fpls_2022_1009631 crossref_primary_10_3389_fsoil_2022_970380 crossref_primary_10_3390_agronomy15030742 crossref_primary_10_3390_land13050625 crossref_primary_10_3390_agriculture14091659 crossref_primary_10_3390_agronomy12010176 crossref_primary_10_1016_j_eja_2024_127135 crossref_primary_10_56093_aaz_v63i2_148858 crossref_primary_10_3390_agronomy13030710 crossref_primary_10_1016_j_still_2024_106055 crossref_primary_10_1007_s11769_023_1335_3 crossref_primary_10_1051_e3sconf_202127305013 crossref_primary_10_1016_j_scitotenv_2020_137164 crossref_primary_10_3103_S1068367423090069 crossref_primary_10_3389_fenvs_2022_969819 crossref_primary_10_1007_s11270_024_07106_4 crossref_primary_10_1177_11786221251320712 crossref_primary_10_1111_ejss_13479 crossref_primary_10_1088_1748_9326_aca41e crossref_primary_10_1016_j_scitotenv_2023_163570 crossref_primary_10_1111_gcb_70048 crossref_primary_10_1007_s11368_023_03491_1 crossref_primary_10_1007_s11368_024_03829_3 crossref_primary_10_31497_zrzyxb_20220505 crossref_primary_10_3390_agriculture11080718 crossref_primary_10_1038_s41598_024_76077_7 crossref_primary_10_1071_SR20329 crossref_primary_10_3390_agronomy10122010 crossref_primary_10_1016_j_iswcr_2025_02_012 crossref_primary_10_1016_j_still_2024_106345 crossref_primary_10_1071_SR21011 crossref_primary_10_3390_agronomy13092306 crossref_primary_10_35633_inmateh_65_25 crossref_primary_10_1088_2976_601X_ad7bbe crossref_primary_10_1016_j_ecoser_2021_101378 crossref_primary_10_31857_S250026272305006X crossref_primary_10_3390_agronomy12030658 crossref_primary_10_1111_ejss_13070 crossref_primary_10_3389_fsufs_2025_1470188 crossref_primary_10_1007_s11104_021_05294_0 crossref_primary_10_1111_rec_14358 crossref_primary_10_1016_j_jclepro_2022_132874 crossref_primary_10_1016_j_fcr_2024_109508 crossref_primary_10_1088_1748_9326_ad751d crossref_primary_10_1007_s11368_021_02885_3 crossref_primary_10_3390_land11020255 crossref_primary_10_3390_cli9020019 crossref_primary_10_1016_j_soisec_2024_100164 crossref_primary_10_3390_soilsystems7010017 crossref_primary_10_1186_s12302_023_00784_7 crossref_primary_10_1007_s11368_024_03923_6 crossref_primary_10_1016_j_geoderma_2022_115927 crossref_primary_10_1016_j_ecolind_2023_111452 crossref_primary_10_3390_plants10112323 crossref_primary_10_5194_soil_8_309_2022 crossref_primary_10_3390_agronomy11030607 crossref_primary_10_17660_ActaHortic_2025_1416_43 crossref_primary_10_1016_j_agee_2024_109123 crossref_primary_10_1016_j_still_2023_105643 crossref_primary_10_1016_j_geoderma_2021_115594 crossref_primary_10_1007_s11104_024_06817_1 crossref_primary_10_1080_03650340_2024_2419507 crossref_primary_10_2478_ata_2023_0010 crossref_primary_10_3389_fmicb_2022_986519 crossref_primary_10_1016_j_fcr_2023_109218 crossref_primary_10_1155_2023_8861216 crossref_primary_10_1038_s41598_024_58022_w crossref_primary_10_3390_agronomy12051199 crossref_primary_10_1016_j_scitotenv_2023_168283 |
Cites_doi | 10.1016/j.still.2007.07.003 10.1081/CSS-120005764 10.1016/S0378-4290(00)00130-1 10.1016/j.still.2006.02.003 10.5194/bg-13-3619-2016 10.1016/j.geoderma.2004.03.005 10.1016/j.soilbio.2018.02.024 10.1016/j.still.2005.02.025 10.1016/j.still.2017.11.001 10.1016/j.agee.2010.08.006 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1016/j.still.2005.07.012 10.1890/0012-9658(1999)080[1105:REQTMA]2.0.CO;2 10.21273/HORTTECH.9.3.380 10.1016/j.still.2005.07.015 10.18637/jss.v036.i03 10.1111/j.1475-2743.2009.00210.x 10.2136/sssaj1994.03615995005800030020x 10.1111/gcb.12517 10.1038/nature13809 10.1007/s11368-018-2120-2 10.1016/j.agsy.2014.05.009 10.1016/j.still.2009.03.005 10.1016/j.still.2016.04.014 10.1016/S0167-1987(00)00147-1 10.2136/sssaj2000.642681x 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 10.2136/sssaj2008.0353 10.1016/j.still.2004.05.007 10.1016/j.still.2005.04.004 10.1016/S0038-0717(00)00179-6 10.1016/j.geoderma.2018.03.011 10.1016/j.geoderma.2016.03.029 10.1016/j.soilbio.2016.03.011 10.1890/04-1724 10.1016/j.still.2004.07.002 10.1016/j.geoderma.2008.03.017 10.1016/j.soilbio.2018.06.002 10.1038/s41467-018-05980-1 10.2307/3803155 10.1073/pnas.0507535103 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.still.2019.06.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-3444 |
ExternalDocumentID | 10_1016_j_still_2019_06_009 S0167198719300716 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c336t-6b2f50fad49bbf8f90fa1e0ab9c271597f5e9fef908fd710a8f3d5ed5431776a3 |
IEDL.DBID | .~1 |
ISSN | 0167-1987 |
IngestDate | Mon Jul 21 10:39:38 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Tue Jul 01 00:57:00 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil physics Soil quality No tillage Conservation tillage Residue retention |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-6b2f50fad49bbf8f90fa1e0ab9c271597f5e9fef908fd710a8f3d5ed5431776a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2271878710 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2271878710 crossref_primary_10_1016_j_still_2019_06_009 crossref_citationtrail_10_1016_j_still_2019_06_009 elsevier_sciencedirect_doi_10_1016_j_still_2019_06_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | Soil & tillage research |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Viechtbauer (bib0225) 2010; 36 Turmel, Speratti, Baudron, Verhulst, Govaerts (bib0215) 2015; 134 Zuber, Villamil (bib0230) 2016; 97 Li, Chang, Tian, Zhang (bib0105) 2018; 121 Dolan, Clapp, Allmaras, Baker, Molina (bib0050) 2006; 89 Adams, Gurevitch, Rosenberg (bib0010) 1997; 78 Limousin, Tessier (bib0115) 2007; 92 Ghuman, Sur (bib0070) 2001; 58 Lampurlanés, Angás, Cantero-Martı́nez (bib0100) 2001; 69 Pittelkow, Liang, Linquist, van Groenigen, Lee, Lundy, van Gestel, Six, Venterea, van Kessel (bib0180) 2014; 517 Sasal, Andriulo, Taboada (bib0190) 2006; 87 Liu, Lu, Cui, Li, Fang (bib0125) 2014; 20 Kassam, Friedrich, Shaxson, Bartz, Mello, Kienzle, Pretty (bib0095) 2014 Six, Paustian, Elliott, Combrink (bib0210) 2000; 64 Six, Elliott, Paustian (bib0205) 2000; 32 Nimmo (bib0155) 2004 Pagliai, Vignozzi, Pellegrini (bib0175) 2004; 79 Omondi, Xia, Nahayo, Liu, Korai, Pan (bib0160) 2016; 274 Reynolds, Drury, Yang, Fox, Tan, Zhang (bib0185) 2007; 96 Bormann, Klaassen (bib0040) 2008; 145 Luo, Li, Friman, Guo, Guo, Shen, Ling (bib0140) 2018; 124 Abdalla, Chivenge, Ciais, Chaplot (bib0005) 2016; 13 Beare, Hendrix, Coleman (bib0020) 1994; 58 USDA-NRCS (bib0220) 1996 Bronick, Lal (bib0045) 2005; 124 Li, Cui, Chang, Zhang (bib0110) 2018; 19 Lipiec, Kuś, Słowińska-Jurkiewicz, Nosalewicz (bib0120) 2006; 89 Malik, Puissant, Buckeridge, Goodall, Jehmlich, Chowdhury, Gweon, Peyton, Mason, van Agtmaal, Blaud, Clark, Whitaker, Pywell, Ostle, Gleixner, Griffiths (bib0150) 2018; 9 López-Fando, Pardo (bib0130) 2009; 104 Fageria (bib0060) 2002; 33 Luo, Hui, Zhang (bib0135) 2006; 87 Anderson, Burnham (bib0015) 2002; 66 Fierer, Jackson (bib0065) 2006; 103 Luo, Wang, Sun (bib0145) 2010; 139 Blanco-Canqui, Ruis (bib0025) 2018; 326 Hedges, Gurevitch, Curtis (bib0085) 1999; 80 Duiker, Beegle (bib0055) 2006; 88 Blanco-Canqui, Stone, Schlegel, Lyon, Vigil, Mikha, Stahlman, Rice (bib0030) 2009; 73 Gurevitch, Hedges (bib0075) 2001 He, Kuhn, Zhang, Zhang, Li (bib0080) 2009; 25 Sithole, Magwaza, Mafongoya (bib0200) 2016; 162 Johnson, Hoyt (bib0090) 1999; 9 Osenberg, Sarnelle, Cooper, Holt (bib0165) 1999; 80 Schmidt, Villamil, Amiotti (bib0195) 2018; 176 Osunbitan, Oyedele, Adekalu (bib0170) 2005; 82 Blevins, Smith, Thomas (bib0035) 1984 Sasal (10.1016/j.still.2019.06.009_bib0190) 2006; 87 Kassam (10.1016/j.still.2019.06.009_bib0095) 2014 Blanco-Canqui (10.1016/j.still.2019.06.009_bib0030) 2009; 73 Gurevitch (10.1016/j.still.2019.06.009_bib0075) 2001 Osunbitan (10.1016/j.still.2019.06.009_bib0170) 2005; 82 He (10.1016/j.still.2019.06.009_bib0080) 2009; 25 Beare (10.1016/j.still.2019.06.009_bib0020) 1994; 58 Li (10.1016/j.still.2019.06.009_bib0105) 2018; 121 Luo (10.1016/j.still.2019.06.009_bib0140) 2018; 124 Duiker (10.1016/j.still.2019.06.009_bib0055) 2006; 88 Pittelkow (10.1016/j.still.2019.06.009_bib0180) 2014; 517 Adams (10.1016/j.still.2019.06.009_bib0010) 1997; 78 Li (10.1016/j.still.2019.06.009_bib0110) 2018; 19 Luo (10.1016/j.still.2019.06.009_bib0135) 2006; 87 Schmidt (10.1016/j.still.2019.06.009_bib0195) 2018; 176 Dolan (10.1016/j.still.2019.06.009_bib0050) 2006; 89 Six (10.1016/j.still.2019.06.009_bib0205) 2000; 32 Reynolds (10.1016/j.still.2019.06.009_bib0185) 2007; 96 Bormann (10.1016/j.still.2019.06.009_bib0040) 2008; 145 USDA-NRCS (10.1016/j.still.2019.06.009_bib0220) 1996 Malik (10.1016/j.still.2019.06.009_bib0150) 2018; 9 Lampurlanés (10.1016/j.still.2019.06.009_bib0100) 2001; 69 Limousin (10.1016/j.still.2019.06.009_bib0115) 2007; 92 Osenberg (10.1016/j.still.2019.06.009_bib0165) 1999; 80 Blevins (10.1016/j.still.2019.06.009_bib0035) 1984 López-Fando (10.1016/j.still.2019.06.009_bib0130) 2009; 104 Sithole (10.1016/j.still.2019.06.009_bib0200) 2016; 162 Viechtbauer (10.1016/j.still.2019.06.009_bib0225) 2010; 36 Omondi (10.1016/j.still.2019.06.009_bib0160) 2016; 274 Turmel (10.1016/j.still.2019.06.009_bib0215) 2015; 134 Zuber (10.1016/j.still.2019.06.009_bib0230) 2016; 97 Liu (10.1016/j.still.2019.06.009_bib0125) 2014; 20 Six (10.1016/j.still.2019.06.009_bib0210) 2000; 64 Fageria (10.1016/j.still.2019.06.009_bib0060) 2002; 33 Blanco-Canqui (10.1016/j.still.2019.06.009_bib0025) 2018; 326 Johnson (10.1016/j.still.2019.06.009_bib0090) 1999; 9 Pagliai (10.1016/j.still.2019.06.009_bib0175) 2004; 79 Anderson (10.1016/j.still.2019.06.009_bib0015) 2002; 66 Luo (10.1016/j.still.2019.06.009_bib0145) 2010; 139 Bronick (10.1016/j.still.2019.06.009_bib0045) 2005; 124 Abdalla (10.1016/j.still.2019.06.009_bib0005) 2016; 13 Fierer (10.1016/j.still.2019.06.009_bib0065) 2006; 103 Nimmo (10.1016/j.still.2019.06.009_bib0155) 2004 Hedges (10.1016/j.still.2019.06.009_bib0085) 1999; 80 Lipiec (10.1016/j.still.2019.06.009_bib0120) 2006; 89 Ghuman (10.1016/j.still.2019.06.009_bib0070) 2001; 58 |
References_xml | – volume: 89 start-page: 221 year: 2006 end-page: 231 ident: bib0050 article-title: Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management publication-title: Soi. Tillage. Res – volume: 134 start-page: 6 year: 2015 end-page: 16 ident: bib0215 article-title: Crop residue management and soil health: a systems analysis publication-title: Agric. Syst. – volume: 87 start-page: 9 year: 2006 end-page: 18 ident: bib0190 article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas publication-title: Soi. Tillage. Res – volume: 9 start-page: 380 year: 1999 end-page: 393 ident: bib0090 article-title: Changes to the soil environment under conservation tillage publication-title: HortTechnology – volume: 64 start-page: 681 year: 2000 end-page: 689 ident: bib0210 article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon publication-title: Soil Sci. Soc. Am. J. – volume: 87 start-page: 53 year: 2006 end-page: 63 ident: bib0135 article-title: Elevated CO publication-title: Ecology – start-page: 190 year: 1984 end-page: 230 ident: bib0035 article-title: Changes in soil properties under no-tillage publication-title: No-Tillage Agriculture: Principles and Practices – volume: 78 start-page: 1277 year: 1997 end-page: 1283 ident: bib0010 article-title: Resampling tests for meta‐analysis of ecological data publication-title: Ecology – volume: 88 start-page: 30 year: 2006 end-page: 41 ident: bib0055 article-title: Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems publication-title: Soi. Tillage. Res – year: 2014 ident: bib0095 article-title: The Spread of Conservation Agriculture: Policy and Institutional Support for Adoption and Uptake, Field Actions Science Reports – volume: 19 start-page: 1393 year: 2018 end-page: 1406 ident: bib0110 article-title: Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis publication-title: J. Soils Sediments – volume: 82 start-page: 57 year: 2005 end-page: 64 ident: bib0170 article-title: Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria publication-title: Soi. Tillage. Res – volume: 176 start-page: 85 year: 2018 end-page: 94 ident: bib0195 article-title: Soil quality under conservation practices on farm operations of the southern semiarid pampas region of Argentina publication-title: Soi. Tillage. Res – volume: 80 start-page: 1150 year: 1999 end-page: 1156 ident: bib0085 article-title: The meta‐analysis of response ratios in experimental ecology publication-title: Ecology – volume: 139 start-page: 224 year: 2010 end-page: 231 ident: bib0145 article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments publication-title: Agric Ecosyst Environ – volume: 69 start-page: 27 year: 2001 end-page: 40 ident: bib0100 article-title: Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions publication-title: Field Crops Res. – volume: 145 start-page: 295 year: 2008 end-page: 302 ident: bib0040 article-title: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils publication-title: Geoderma – volume: 33 start-page: 2301 year: 2002 end-page: 2329 ident: bib0060 article-title: Soil quality vs. Environmentally-based agricultural management practices publication-title: Commun. Soil. Sci. Plan – volume: 162 start-page: 55 year: 2016 end-page: 67 ident: bib0200 article-title: Conservation agriculture and its impact on soil quality and maize yield: a South African perspective publication-title: Soi. Tillage. Res – volume: 121 start-page: 50 year: 2018 end-page: 58 ident: bib0105 article-title: Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: a global meta-analysis publication-title: Soil Biol. Biochem. – volume: 89 start-page: 210 year: 2006 end-page: 220 ident: bib0120 article-title: Soil porosity and water infiltration as influenced by tillage methods publication-title: Soi. Tillage. Res – volume: 517 start-page: 365 year: 2014 ident: bib0180 article-title: Productivity limits and potentials of the principles of conservation agriculture publication-title: Nature – volume: 124 start-page: 3 year: 2005 end-page: 22 ident: bib0045 article-title: Soil structure and management: a review publication-title: Geoderma – volume: 80 start-page: 1105 year: 1999 end-page: 1117 ident: bib0165 article-title: Resolving ecological questions through meta-analysis: goals, metrics, and models publication-title: Ecology – volume: 32 start-page: 2099 year: 2000 end-page: 2103 ident: bib0205 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. – volume: 20 start-page: 1366 year: 2014 end-page: 1381 ident: bib0125 article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis publication-title: Glob. Change Biol. Bioenergy – volume: 36 start-page: 1 year: 2010 end-page: 48 ident: bib0225 article-title: Conducting meta-analyses in R with the metafor package publication-title: J. Stat. Softw. – volume: 9 start-page: 3591 year: 2018 ident: bib0150 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nat. Commun. – volume: 58 start-page: 1 year: 2001 end-page: 10 ident: bib0070 article-title: Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate publication-title: Soi. Tillage. Res – volume: 326 start-page: 164 year: 2018 end-page: 200 ident: bib0025 article-title: No-tillage and soil physical environment publication-title: Geoderma – volume: 103 start-page: 626 year: 2006 ident: bib0065 article-title: The diversity and biogeography of soil bacterial communities publication-title: PNAS – volume: 73 start-page: 1871 year: 2009 end-page: 1879 ident: bib0030 article-title: No-till induced increase in organic carbon reduces maximum bulk density of soils publication-title: Soil Sci. Soc. Am. J. – volume: 58 start-page: 777 year: 1994 end-page: 786 ident: bib0020 article-title: Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils publication-title: Soil Sci. Soc. Am. J. – volume: 97 start-page: 176 year: 2016 end-page: 187 ident: bib0230 article-title: Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities publication-title: Soil Biol. Biochem. – year: 1996 ident: bib0220 article-title: Soil Quality Resource Concerns: Compaction – volume: 124 start-page: 105 year: 2018 end-page: 115 ident: bib0140 article-title: Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis publication-title: Soil Biol Biochem – start-page: 317 year: 2004 end-page: 328 ident: bib0155 article-title: Porosity and Pore Size Distribution – volume: 66 start-page: 912 year: 2002 end-page: 918 ident: bib0015 article-title: Avoiding pitfalls when using information-theoretic methods publication-title: J. Wildl. Manag – volume: 104 start-page: 278 year: 2009 end-page: 284 ident: bib0130 article-title: Changes in soil chemical characteristics with different tillage practices in a semi-arid environment publication-title: Soi. Tillage. Res – volume: 13 start-page: 3619 year: 2016 end-page: 3633 ident: bib0005 article-title: No-tillage lessens soil CO publication-title: Biogeosciences – start-page: 347 year: 2001 end-page: 369 ident: bib0075 article-title: Meta-analysis: combining the results of independent experiments publication-title: Design and Analysis of Ecological Experiments – volume: 25 start-page: 201 year: 2009 end-page: 209 ident: bib0080 article-title: Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China publication-title: Soil. Use. Mange. – volume: 92 start-page: 167 year: 2007 end-page: 174 ident: bib0115 article-title: Effects of no-tillage on chemical gradients and topsoil acidification publication-title: Soi. Tillage. Res – volume: 96 start-page: 316 year: 2007 end-page: 330 ident: bib0185 article-title: Land management effects on the near-surface physical quality of a clay loam soil publication-title: Soi. Tillage. Res – volume: 79 start-page: 131 year: 2004 end-page: 143 ident: bib0175 article-title: Soil structure and the effect of management practices publication-title: Soi. Tillage. Res – volume: 274 start-page: 28 year: 2016 end-page: 34 ident: bib0160 article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data publication-title: Geoderma – volume: 96 start-page: 316 year: 2007 ident: 10.1016/j.still.2019.06.009_bib0185 article-title: Land management effects on the near-surface physical quality of a clay loam soil publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2007.07.003 – volume: 33 start-page: 2301 year: 2002 ident: 10.1016/j.still.2019.06.009_bib0060 article-title: Soil quality vs. Environmentally-based agricultural management practices publication-title: Commun. Soil. Sci. Plan doi: 10.1081/CSS-120005764 – volume: 69 start-page: 27 year: 2001 ident: 10.1016/j.still.2019.06.009_bib0100 article-title: Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions publication-title: Field Crops Res. doi: 10.1016/S0378-4290(00)00130-1 – volume: 92 start-page: 167 year: 2007 ident: 10.1016/j.still.2019.06.009_bib0115 article-title: Effects of no-tillage on chemical gradients and topsoil acidification publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2006.02.003 – volume: 13 start-page: 3619 year: 2016 ident: 10.1016/j.still.2019.06.009_bib0005 article-title: No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis publication-title: Biogeosciences doi: 10.5194/bg-13-3619-2016 – volume: 124 start-page: 3 year: 2005 ident: 10.1016/j.still.2019.06.009_bib0045 article-title: Soil structure and management: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 121 start-page: 50 year: 2018 ident: 10.1016/j.still.2019.06.009_bib0105 article-title: Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: a global meta-analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.024 – volume: 87 start-page: 9 year: 2006 ident: 10.1016/j.still.2019.06.009_bib0190 article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2005.02.025 – volume: 176 start-page: 85 year: 2018 ident: 10.1016/j.still.2019.06.009_bib0195 article-title: Soil quality under conservation practices on farm operations of the southern semiarid pampas region of Argentina publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2017.11.001 – volume: 139 start-page: 224 year: 2010 ident: 10.1016/j.still.2019.06.009_bib0145 article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2010.08.006 – start-page: 347 year: 2001 ident: 10.1016/j.still.2019.06.009_bib0075 article-title: Meta-analysis: combining the results of independent experiments – volume: 80 start-page: 1150 year: 1999 ident: 10.1016/j.still.2019.06.009_bib0085 article-title: The meta‐analysis of response ratios in experimental ecology publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – volume: 89 start-page: 210 year: 2006 ident: 10.1016/j.still.2019.06.009_bib0120 article-title: Soil porosity and water infiltration as influenced by tillage methods publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2005.07.012 – volume: 80 start-page: 1105 year: 1999 ident: 10.1016/j.still.2019.06.009_bib0165 article-title: Resolving ecological questions through meta-analysis: goals, metrics, and models publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1105:REQTMA]2.0.CO;2 – year: 2014 ident: 10.1016/j.still.2019.06.009_bib0095 – volume: 9 start-page: 380 year: 1999 ident: 10.1016/j.still.2019.06.009_bib0090 article-title: Changes to the soil environment under conservation tillage publication-title: HortTechnology doi: 10.21273/HORTTECH.9.3.380 – volume: 89 start-page: 221 year: 2006 ident: 10.1016/j.still.2019.06.009_bib0050 article-title: Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2005.07.015 – volume: 36 start-page: 1 year: 2010 ident: 10.1016/j.still.2019.06.009_bib0225 article-title: Conducting meta-analyses in R with the metafor package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i03 – volume: 25 start-page: 201 year: 2009 ident: 10.1016/j.still.2019.06.009_bib0080 article-title: Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China publication-title: Soil. Use. Mange. doi: 10.1111/j.1475-2743.2009.00210.x – volume: 58 start-page: 777 year: 1994 ident: 10.1016/j.still.2019.06.009_bib0020 article-title: Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800030020x – volume: 20 start-page: 1366 year: 2014 ident: 10.1016/j.still.2019.06.009_bib0125 article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcb.12517 – volume: 517 start-page: 365 year: 2014 ident: 10.1016/j.still.2019.06.009_bib0180 article-title: Productivity limits and potentials of the principles of conservation agriculture publication-title: Nature doi: 10.1038/nature13809 – volume: 19 start-page: 1393 year: 2018 ident: 10.1016/j.still.2019.06.009_bib0110 article-title: Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis publication-title: J. Soils Sediments doi: 10.1007/s11368-018-2120-2 – start-page: 317 year: 2004 ident: 10.1016/j.still.2019.06.009_bib0155 – volume: 134 start-page: 6 year: 2015 ident: 10.1016/j.still.2019.06.009_bib0215 article-title: Crop residue management and soil health: a systems analysis publication-title: Agric. Syst. doi: 10.1016/j.agsy.2014.05.009 – volume: 104 start-page: 278 year: 2009 ident: 10.1016/j.still.2019.06.009_bib0130 article-title: Changes in soil chemical characteristics with different tillage practices in a semi-arid environment publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2009.03.005 – volume: 162 start-page: 55 year: 2016 ident: 10.1016/j.still.2019.06.009_bib0200 article-title: Conservation agriculture and its impact on soil quality and maize yield: a South African perspective publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2016.04.014 – volume: 58 start-page: 1 year: 2001 ident: 10.1016/j.still.2019.06.009_bib0070 article-title: Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate publication-title: Soi. Tillage. Res doi: 10.1016/S0167-1987(00)00147-1 – volume: 64 start-page: 681 year: 2000 ident: 10.1016/j.still.2019.06.009_bib0210 article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.642681x – volume: 78 start-page: 1277 year: 1997 ident: 10.1016/j.still.2019.06.009_bib0010 article-title: Resampling tests for meta‐analysis of ecological data publication-title: Ecology doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 – start-page: 190 year: 1984 ident: 10.1016/j.still.2019.06.009_bib0035 article-title: Changes in soil properties under no-tillage – volume: 73 start-page: 1871 year: 2009 ident: 10.1016/j.still.2019.06.009_bib0030 article-title: No-till induced increase in organic carbon reduces maximum bulk density of soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0353 – volume: 82 start-page: 57 year: 2005 ident: 10.1016/j.still.2019.06.009_bib0170 article-title: Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2004.05.007 – volume: 88 start-page: 30 year: 2006 ident: 10.1016/j.still.2019.06.009_bib0055 article-title: Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2005.04.004 – volume: 32 start-page: 2099 year: 2000 ident: 10.1016/j.still.2019.06.009_bib0205 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00179-6 – volume: 326 start-page: 164 year: 2018 ident: 10.1016/j.still.2019.06.009_bib0025 article-title: No-tillage and soil physical environment publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.011 – volume: 274 start-page: 28 year: 2016 ident: 10.1016/j.still.2019.06.009_bib0160 article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data publication-title: Geoderma doi: 10.1016/j.geoderma.2016.03.029 – volume: 97 start-page: 176 year: 2016 ident: 10.1016/j.still.2019.06.009_bib0230 article-title: Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.011 – volume: 87 start-page: 53 year: 2006 ident: 10.1016/j.still.2019.06.009_bib0135 article-title: Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis publication-title: Ecology doi: 10.1890/04-1724 – volume: 79 start-page: 131 year: 2004 ident: 10.1016/j.still.2019.06.009_bib0175 article-title: Soil structure and the effect of management practices publication-title: Soi. Tillage. Res doi: 10.1016/j.still.2004.07.002 – volume: 145 start-page: 295 year: 2008 ident: 10.1016/j.still.2019.06.009_bib0040 article-title: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils publication-title: Geoderma doi: 10.1016/j.geoderma.2008.03.017 – volume: 124 start-page: 105 year: 2018 ident: 10.1016/j.still.2019.06.009_bib0140 article-title: Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.06.002 – volume: 9 start-page: 3591 year: 2018 ident: 10.1016/j.still.2019.06.009_bib0150 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nat. Commun. doi: 10.1038/s41467-018-05980-1 – volume: 66 start-page: 912 year: 2002 ident: 10.1016/j.still.2019.06.009_bib0015 article-title: Avoiding pitfalls when using information-theoretic methods publication-title: J. Wildl. Manag doi: 10.2307/3803155 – volume: 103 start-page: 626 year: 2006 ident: 10.1016/j.still.2019.06.009_bib0065 article-title: The diversity and biogeography of soil bacterial communities publication-title: PNAS doi: 10.1073/pnas.0507535103 – year: 1996 ident: 10.1016/j.still.2019.06.009_bib0220 |
SSID | ssj0004328 |
Score | 2.6195378 |
Snippet | •A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water... Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104292 |
SubjectTerms | aggregate stability agricultural conservation practice available water capacity bulk density Conservation tillage conventional tillage cropland data collection farming systems geometry meta-analysis minimum tillage No tillage reduced tillage Residue retention saturated hydraulic conductivity soil density soil pH Soil physics Soil quality sustainable agriculture |
Title | Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis |
URI | https://dx.doi.org/10.1016/j.still.2019.06.009 https://www.proquest.com/docview/2271878710 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOih4tGqQEGDxJF0N4kTJ72tEKsFxB5okbhZdmxXqXazq31c-9s74zhAEdpDb0lkR9bMeOZLPPMNYxeZtrxSeRZxm4iI634RaV6aSFQ603FpdOV5Cu7H-eiR3z5lT1vsqquFobTK4Ptbn-69dXjSC9Lszeu694MS6OmTGSEIBUqi3eZckJV_-_OS5sFT31_V83vT6I55yOd44S6a0PlDXHoST8pKfD86vfHTPvgM99jHgBph0C5sn23Z5oB9GPxaBOYMe8iWDxYNa21hQTCYxA2qMUDUIdP1FGgJ6Dqg9j8RLMyDfuBVpRvMHCAehOWsnkDdAHX38qXA32EALXMITO1KRSowmXxij8Prn1ejKHRUiKo0zVdRrhOX9Z0yvNTaFa7E69j2lS6rRCCwES6zpbP4vHAGsYcqXGoya6hgXohcpZ_ZdjNr7BcGsXUIVVyCg3NuClQsYieR5UaJtIqr4oglnSRlFejGqevFRHZ5Zb-lF78k8UufXVcescvnSfOWbWPz8LxTkfzHaCTGg80TzzuFStxOdEaiGjtbL2WCcijQicX94_99-Qnbpbu2YPEr214t1vYUkctKn3nTPGM7g5u70fgvvEvxHA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiPJQCwUGqdwIu0kcJ6nUwwqotvRxgFbqzdixjYJ2s6t9CHHpn-of7IzjUEBVD5V6ixzbisbjmXH8zTeMbWfa8kqJLOI2ySOu-0WkeWmivNKZjkujK89TcHQshqf8y1l2tsIuulwYglUG29_adG-tQ0svSLM3reveNwLQ05EZQxBylCIgKw_s7194bpvv7n_CRX6XJHufTz4Oo1BaIKrSVCwioROX9Z0yvNTaFa7E59j2lS6rJEcPn7vMls5ie-EMOmFVuNRk1lDmeJ4LleK899gaR3NBZRM-nF_hSnjqC7p6QnH6vI7qyIPKcNuO6MIjLj1rKMEgr3eH_zkG7-32HrNHIUyFQSuJdbZimyfs4eDHLFB12Kds_tWiJi8tzCjupvUF1RggrpLxcgz0CWiroPZ_LSxMg0LAX6l1MHGAASjMJ_UI6gaonJjPPd6BAbRUJTC2CxWpQJ3yjJ3eiZyfs9Vm0tgNBrF1GBu5BDsLbgrUJAzW8kwYladVXBWbLOkkKavAb05lNkayA7L9lF78ksQvPZyv3GTv_wyatvQeN3cX3RLJf7RUogO6eeDbbkEl7l-6lFGNnSznMkE5FGg14_6L207-ht0fnhwdysP944OX7AG9abMlt9jqYra0rzBsWujXXk2Bfb_rfXEJXeQuPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residue+retention+and+minimum+tillage+improve+physical+environment+of+the+soil+in+croplands%3A+A+global+meta-analysis&rft.jtitle=Soil+%26+tillage+research&rft.au=Li%2C+Yuan&rft.au=Li%2C+Zhou&rft.au=Cui%2C+Song&rft.au=Jagadamma%2C+Sindhu&rft.date=2019-11-01&rft.issn=0167-1987&rft.volume=194&rft.spage=104292&rft_id=info:doi/10.1016%2Fj.still.2019.06.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2019_06_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |