Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis

•A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water capacity.•Increased bulk density under conservation tillage remains non-harmful for crop growth.•Soil pH decreased under conservation tillage....

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 194; p. 104292
Main Authors Li, Yuan, Li, Zhou, Cui, Song, Jagadamma, Sindhu, Zhang, Qingping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water capacity.•Increased bulk density under conservation tillage remains non-harmful for crop growth.•Soil pH decreased under conservation tillage.•The response of soil physical properties vary with experiment duration. Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the negative effects caused by intensive tillage practices. Implementing effective and sustainable agriculture requires a deeper understanding of the impacts of conservation tillage practices on soil physical properties. This study examined the effects of conservation tillage practices on soil physical properties, including soil bulk density, aggregate size and stability, hydraulic properties, and soil pH; based on data collected from 264 studies published worldwide since 1980. The results indicated that no-tillage (NT), NT with residue retention (NTS), and reduced tillage (RT) increased bulk density by 1.4, 2.6, and 2.1%, respectively, compared with conventional tillage (CT). Soil bulk density decreased by 2.9% in NTS compared with NT, and 3.9% in RT with residue retention (RTS) compared with RT. The effect size of bulk density significantly decreased with the increasing experimental duration under NT and NTS practices. Compared to CT, conservation tillage practices increased aggregate mean weight diameter (MWD), geometric mean weight diameter and water stable aggregate (WSA) regardless of the residue retention or minimum tillage systems. The largest effect size of MWD (51.9%) and WSA (54.9%) appeared under NTS as compared to the CT. The effect size of MWD and WSA increased under NT with the increasing experimental duration. NT increased saturated hydraulic conductivity by 24.6% compared to CT. All conservation tillage practices increased soil available water capacity (AWC) compared with CT and NTS with a 10.2% increase in AWC compared with NT. The effect size of AWC increased under RT and NT practices with the increasing experimental duration. Soil pH decreased by 1.7 and 1.0% under RTS compared with RT and CT, respectively; and NT led to a 2.8% reduction in soil pH compared with CT. The effect size of soil pH decreased under RT and NT treatments with the increasing experiment duration. Overall, conservation tillage practices positively affected many soil physical properties; and the extent of the effects varied with the duration of the experiment.
AbstractList •A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water capacity.•Increased bulk density under conservation tillage remains non-harmful for crop growth.•Soil pH decreased under conservation tillage.•The response of soil physical properties vary with experiment duration. Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the negative effects caused by intensive tillage practices. Implementing effective and sustainable agriculture requires a deeper understanding of the impacts of conservation tillage practices on soil physical properties. This study examined the effects of conservation tillage practices on soil physical properties, including soil bulk density, aggregate size and stability, hydraulic properties, and soil pH; based on data collected from 264 studies published worldwide since 1980. The results indicated that no-tillage (NT), NT with residue retention (NTS), and reduced tillage (RT) increased bulk density by 1.4, 2.6, and 2.1%, respectively, compared with conventional tillage (CT). Soil bulk density decreased by 2.9% in NTS compared with NT, and 3.9% in RT with residue retention (RTS) compared with RT. The effect size of bulk density significantly decreased with the increasing experimental duration under NT and NTS practices. Compared to CT, conservation tillage practices increased aggregate mean weight diameter (MWD), geometric mean weight diameter and water stable aggregate (WSA) regardless of the residue retention or minimum tillage systems. The largest effect size of MWD (51.9%) and WSA (54.9%) appeared under NTS as compared to the CT. The effect size of MWD and WSA increased under NT with the increasing experimental duration. NT increased saturated hydraulic conductivity by 24.6% compared to CT. All conservation tillage practices increased soil available water capacity (AWC) compared with CT and NTS with a 10.2% increase in AWC compared with NT. The effect size of AWC increased under RT and NT practices with the increasing experimental duration. Soil pH decreased by 1.7 and 1.0% under RTS compared with RT and CT, respectively; and NT led to a 2.8% reduction in soil pH compared with CT. The effect size of soil pH decreased under RT and NT treatments with the increasing experiment duration. Overall, conservation tillage practices positively affected many soil physical properties; and the extent of the effects varied with the duration of the experiment.
Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the negative effects caused by intensive tillage practices. Implementing effective and sustainable agriculture requires a deeper understanding of the impacts of conservation tillage practices on soil physical properties. This study examined the effects of conservation tillage practices on soil physical properties, including soil bulk density, aggregate size and stability, hydraulic properties, and soil pH; based on data collected from 264 studies published worldwide since 1980. The results indicated that no-tillage (NT), NT with residue retention (NTS), and reduced tillage (RT) increased bulk density by 1.4, 2.6, and 2.1%, respectively, compared with conventional tillage (CT). Soil bulk density decreased by 2.9% in NTS compared with NT, and 3.9% in RT with residue retention (RTS) compared with RT. The effect size of bulk density significantly decreased with the increasing experimental duration under NT and NTS practices. Compared to CT, conservation tillage practices increased aggregate mean weight diameter (MWD), geometric mean weight diameter and water stable aggregate (WSA) regardless of the residue retention or minimum tillage systems. The largest effect size of MWD (51.9%) and WSA (54.9%) appeared under NTS as compared to the CT. The effect size of MWD and WSA increased under NT with the increasing experimental duration. NT increased saturated hydraulic conductivity by 24.6% compared to CT. All conservation tillage practices increased soil available water capacity (AWC) compared with CT and NTS with a 10.2% increase in AWC compared with NT. The effect size of AWC increased under RT and NT practices with the increasing experimental duration. Soil pH decreased by 1.7 and 1.0% under RTS compared with RT and CT, respectively; and NT led to a 2.8% reduction in soil pH compared with CT. The effect size of soil pH decreased under RT and NT treatments with the increasing experiment duration. Overall, conservation tillage practices positively affected many soil physical properties; and the extent of the effects varied with the duration of the experiment.
ArticleNumber 104292
Author Li, Yuan
Cui, Song
Zhang, Qingping
Jagadamma, Sindhu
Li, Zhou
Author_xml – sequence: 1
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
– sequence: 2
  givenname: Zhou
  surname: Li
  fullname: Li, Zhou
  organization: College of Animal Science, Guizhou University, Guiyang 550025, China
– sequence: 3
  givenname: Song
  surname: Cui
  fullname: Cui, Song
  organization: School of Agriculture, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
– sequence: 4
  givenname: Sindhu
  surname: Jagadamma
  fullname: Jagadamma, Sindhu
  organization: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, USA
– sequence: 5
  givenname: Qingping
  surname: Zhang
  fullname: Zhang, Qingping
  email: zhangqp2008@lzu.edu.cn
  organization: College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
BookMark eNqFkE1rGzEQhkVJoM7HL8hFx152I-2XVoUeQmibQKBQmrPQakf2GK3kSrIh_75y3FMOyWnE8D4vo-eCnPnggZAbzmrO-HC7rVNG5-qGcVmzoWZMfiIrPgpZtV3XnZFVSYmKy1F8JhcpbRljXduMK5J-Q8J5DzRCBp8xeKr9TBf0uOwXemzVa6C47GI4AN1tXhIa7Sj4A8bgl8LQYGneAE0BHUVPTQw7V0rSV3pH1y5MJb5A1pX22hU8XZFzq12C6__zkjz_-P7n_qF6-vXz8f7uqTJtO-RqmBrbM6vnTk6THa0sbw5MT9I0gvdS2B6khbIf7Sw406Nt5x7mvmu5EINuL8mXU2-5_e8eUlYLJgPlRx7CPqmm1IxiLGiJtqdoOT6lCFbtIi46vijO1FGx2qpXxeqoWLFBFcWFkm8og1kfJeao0X3AfjuxUAwcEKJKBsEbmDGCyWoO-C7_D-qjni8
CitedBy_id crossref_primary_10_35633_inmateh_60_35
crossref_primary_10_1016_j_geodrs_2023_e00727
crossref_primary_10_1007_s40333_022_0026_8
crossref_primary_10_5194_soil_9_1_2023
crossref_primary_10_1016_j_geoderma_2021_115383
crossref_primary_10_1007_s42106_022_00217_0
crossref_primary_10_3389_fsufs_2020_00031
crossref_primary_10_1016_j_eja_2021_126417
crossref_primary_10_3390_agriculture11090823
crossref_primary_10_3390_land10040361
crossref_primary_10_1051_bioconf_202410808003
crossref_primary_10_1007_s42729_022_01085_3
crossref_primary_10_1016_j_scitotenv_2020_140147
crossref_primary_10_1016_j_still_2025_106528
crossref_primary_10_3389_feart_2024_1357467
crossref_primary_10_1002_jpln_202200297
crossref_primary_10_1007_s42729_020_00362_3
crossref_primary_10_19047_0136_1694_2022_112_134_159
crossref_primary_10_1016_j_farsys_2024_100108
crossref_primary_10_3390_agronomy11020302
crossref_primary_10_3390_agronomy12061321
crossref_primary_10_1016_j_fcr_2024_109370
crossref_primary_10_1016_j_scitotenv_2023_168542
crossref_primary_10_3390_agronomy11091681
crossref_primary_10_1002_saj2_20716
crossref_primary_10_1016_j_still_2023_105781
crossref_primary_10_3390_agronomy14040669
crossref_primary_10_1016_j_scitotenv_2023_166917
crossref_primary_10_1007_s42729_024_01742_9
crossref_primary_10_1088_1755_1315_1005_1_012003
crossref_primary_10_1016_j_scitotenv_2022_156346
crossref_primary_10_1002_jpln_202200044
crossref_primary_10_1016_j_scitotenv_2020_136677
crossref_primary_10_3389_fagro_2022_844166
crossref_primary_10_3389_fsufs_2022_541798
crossref_primary_10_1016_j_catena_2020_105102
crossref_primary_10_3390_land12030638
crossref_primary_10_3390_microorganisms11102459
crossref_primary_10_1016_j_still_2021_104959
crossref_primary_10_3390_su13063155
crossref_primary_10_1016_j_agee_2022_108205
crossref_primary_10_3390_land9110456
crossref_primary_10_1002_agg2_20330
crossref_primary_10_1016_j_geoderma_2019_114099
crossref_primary_10_1371_journal_pone_0215702
crossref_primary_10_1016_j_geoderma_2021_115443
crossref_primary_10_1016_j_still_2020_104832
crossref_primary_10_1016_j_still_2024_106420
crossref_primary_10_3390_agronomy14071584
crossref_primary_10_1016_j_still_2022_105413
crossref_primary_10_3389_fsoil_2022_821589
crossref_primary_10_3389_fenvs_2024_1404971
crossref_primary_10_1016_j_agee_2021_107546
crossref_primary_10_3389_fenvs_2022_1005114
crossref_primary_10_3390_agronomy14071476
crossref_primary_10_3389_fpls_2022_1017145
crossref_primary_10_3390_agronomy11030529
crossref_primary_10_3390_land12091646
crossref_primary_10_1016_j_geodrs_2024_e00840
crossref_primary_10_1016_j_agwat_2021_107105
crossref_primary_10_1016_j_jenvman_2020_110549
crossref_primary_10_1080_00103624_2024_2323073
crossref_primary_10_3390_soilsystems6040087
crossref_primary_10_3389_fpls_2020_610065
crossref_primary_10_1111_gcb_15930
crossref_primary_10_1007_s10340_023_01701_w
crossref_primary_10_1016_j_catena_2020_104617
crossref_primary_10_1016_j_still_2022_105592
crossref_primary_10_3390_su132413753
crossref_primary_10_35633_inmateh_74_86
crossref_primary_10_1016_j_still_2025_106448
crossref_primary_10_1002_esp_4829
crossref_primary_10_1007_s12230_024_09959_1
crossref_primary_10_1016_j_geoderma_2024_117120
crossref_primary_10_1007_s11356_022_20306_x
crossref_primary_10_1016_j_agee_2021_107650
crossref_primary_10_1016_j_geoderma_2022_116156
crossref_primary_10_1016_j_apsoil_2024_105848
crossref_primary_10_3103_S1068367423060095
crossref_primary_10_1111_ejss_13092
crossref_primary_10_56407_bs_agrarian_4_2023_71
crossref_primary_10_1002_ldr_3891
crossref_primary_10_1016_j_energy_2022_124243
crossref_primary_10_1016_j_still_2024_106328
crossref_primary_10_3390_w15152821
crossref_primary_10_1016_j_scitotenv_2022_153929
crossref_primary_10_1016_j_agee_2023_108616
crossref_primary_10_1016_j_pedsph_2024_10_002
crossref_primary_10_3390_land12020326
crossref_primary_10_3389_fpls_2022_1009631
crossref_primary_10_3389_fsoil_2022_970380
crossref_primary_10_3390_agronomy15030742
crossref_primary_10_3390_land13050625
crossref_primary_10_3390_agriculture14091659
crossref_primary_10_3390_agronomy12010176
crossref_primary_10_1016_j_eja_2024_127135
crossref_primary_10_56093_aaz_v63i2_148858
crossref_primary_10_3390_agronomy13030710
crossref_primary_10_1016_j_still_2024_106055
crossref_primary_10_1007_s11769_023_1335_3
crossref_primary_10_1051_e3sconf_202127305013
crossref_primary_10_1016_j_scitotenv_2020_137164
crossref_primary_10_3103_S1068367423090069
crossref_primary_10_3389_fenvs_2022_969819
crossref_primary_10_1007_s11270_024_07106_4
crossref_primary_10_1177_11786221251320712
crossref_primary_10_1111_ejss_13479
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_1016_j_scitotenv_2023_163570
crossref_primary_10_1111_gcb_70048
crossref_primary_10_1007_s11368_023_03491_1
crossref_primary_10_1007_s11368_024_03829_3
crossref_primary_10_31497_zrzyxb_20220505
crossref_primary_10_3390_agriculture11080718
crossref_primary_10_1038_s41598_024_76077_7
crossref_primary_10_1071_SR20329
crossref_primary_10_3390_agronomy10122010
crossref_primary_10_1016_j_iswcr_2025_02_012
crossref_primary_10_1016_j_still_2024_106345
crossref_primary_10_1071_SR21011
crossref_primary_10_3390_agronomy13092306
crossref_primary_10_35633_inmateh_65_25
crossref_primary_10_1088_2976_601X_ad7bbe
crossref_primary_10_1016_j_ecoser_2021_101378
crossref_primary_10_31857_S250026272305006X
crossref_primary_10_3390_agronomy12030658
crossref_primary_10_1111_ejss_13070
crossref_primary_10_3389_fsufs_2025_1470188
crossref_primary_10_1007_s11104_021_05294_0
crossref_primary_10_1111_rec_14358
crossref_primary_10_1016_j_jclepro_2022_132874
crossref_primary_10_1016_j_fcr_2024_109508
crossref_primary_10_1088_1748_9326_ad751d
crossref_primary_10_1007_s11368_021_02885_3
crossref_primary_10_3390_land11020255
crossref_primary_10_3390_cli9020019
crossref_primary_10_1016_j_soisec_2024_100164
crossref_primary_10_3390_soilsystems7010017
crossref_primary_10_1186_s12302_023_00784_7
crossref_primary_10_1007_s11368_024_03923_6
crossref_primary_10_1016_j_geoderma_2022_115927
crossref_primary_10_1016_j_ecolind_2023_111452
crossref_primary_10_3390_plants10112323
crossref_primary_10_5194_soil_8_309_2022
crossref_primary_10_3390_agronomy11030607
crossref_primary_10_17660_ActaHortic_2025_1416_43
crossref_primary_10_1016_j_agee_2024_109123
crossref_primary_10_1016_j_still_2023_105643
crossref_primary_10_1016_j_geoderma_2021_115594
crossref_primary_10_1007_s11104_024_06817_1
crossref_primary_10_1080_03650340_2024_2419507
crossref_primary_10_2478_ata_2023_0010
crossref_primary_10_3389_fmicb_2022_986519
crossref_primary_10_1016_j_fcr_2023_109218
crossref_primary_10_1155_2023_8861216
crossref_primary_10_1038_s41598_024_58022_w
crossref_primary_10_3390_agronomy12051199
crossref_primary_10_1016_j_scitotenv_2023_168283
Cites_doi 10.1016/j.still.2007.07.003
10.1081/CSS-120005764
10.1016/S0378-4290(00)00130-1
10.1016/j.still.2006.02.003
10.5194/bg-13-3619-2016
10.1016/j.geoderma.2004.03.005
10.1016/j.soilbio.2018.02.024
10.1016/j.still.2005.02.025
10.1016/j.still.2017.11.001
10.1016/j.agee.2010.08.006
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1016/j.still.2005.07.012
10.1890/0012-9658(1999)080[1105:REQTMA]2.0.CO;2
10.21273/HORTTECH.9.3.380
10.1016/j.still.2005.07.015
10.18637/jss.v036.i03
10.1111/j.1475-2743.2009.00210.x
10.2136/sssaj1994.03615995005800030020x
10.1111/gcb.12517
10.1038/nature13809
10.1007/s11368-018-2120-2
10.1016/j.agsy.2014.05.009
10.1016/j.still.2009.03.005
10.1016/j.still.2016.04.014
10.1016/S0167-1987(00)00147-1
10.2136/sssaj2000.642681x
10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
10.2136/sssaj2008.0353
10.1016/j.still.2004.05.007
10.1016/j.still.2005.04.004
10.1016/S0038-0717(00)00179-6
10.1016/j.geoderma.2018.03.011
10.1016/j.geoderma.2016.03.029
10.1016/j.soilbio.2016.03.011
10.1890/04-1724
10.1016/j.still.2004.07.002
10.1016/j.geoderma.2008.03.017
10.1016/j.soilbio.2018.06.002
10.1038/s41467-018-05980-1
10.2307/3803155
10.1073/pnas.0507535103
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2019.06.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2019_06_009
S0167198719300716
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c336t-6b2f50fad49bbf8f90fa1e0ab9c271597f5e9fef908fd710a8f3d5ed5431776a3
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Mon Jul 21 10:39:38 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
Tue Jul 01 00:57:00 EDT 2025
Fri Feb 23 02:49:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil physics
Soil quality
No tillage
Conservation tillage
Residue retention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-6b2f50fad49bbf8f90fa1e0ab9c271597f5e9fef908fd710a8f3d5ed5431776a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2271878710
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2271878710
crossref_primary_10_1016_j_still_2019_06_009
crossref_citationtrail_10_1016_j_still_2019_06_009
elsevier_sciencedirect_doi_10_1016_j_still_2019_06_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Soil & tillage research
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Viechtbauer (bib0225) 2010; 36
Turmel, Speratti, Baudron, Verhulst, Govaerts (bib0215) 2015; 134
Zuber, Villamil (bib0230) 2016; 97
Li, Chang, Tian, Zhang (bib0105) 2018; 121
Dolan, Clapp, Allmaras, Baker, Molina (bib0050) 2006; 89
Adams, Gurevitch, Rosenberg (bib0010) 1997; 78
Limousin, Tessier (bib0115) 2007; 92
Ghuman, Sur (bib0070) 2001; 58
Lampurlanés, Angás, Cantero-Martı́nez (bib0100) 2001; 69
Pittelkow, Liang, Linquist, van Groenigen, Lee, Lundy, van Gestel, Six, Venterea, van Kessel (bib0180) 2014; 517
Sasal, Andriulo, Taboada (bib0190) 2006; 87
Liu, Lu, Cui, Li, Fang (bib0125) 2014; 20
Kassam, Friedrich, Shaxson, Bartz, Mello, Kienzle, Pretty (bib0095) 2014
Six, Paustian, Elliott, Combrink (bib0210) 2000; 64
Six, Elliott, Paustian (bib0205) 2000; 32
Nimmo (bib0155) 2004
Pagliai, Vignozzi, Pellegrini (bib0175) 2004; 79
Omondi, Xia, Nahayo, Liu, Korai, Pan (bib0160) 2016; 274
Reynolds, Drury, Yang, Fox, Tan, Zhang (bib0185) 2007; 96
Bormann, Klaassen (bib0040) 2008; 145
Luo, Li, Friman, Guo, Guo, Shen, Ling (bib0140) 2018; 124
Abdalla, Chivenge, Ciais, Chaplot (bib0005) 2016; 13
Beare, Hendrix, Coleman (bib0020) 1994; 58
USDA-NRCS (bib0220) 1996
Bronick, Lal (bib0045) 2005; 124
Li, Cui, Chang, Zhang (bib0110) 2018; 19
Lipiec, Kuś, Słowińska-Jurkiewicz, Nosalewicz (bib0120) 2006; 89
Malik, Puissant, Buckeridge, Goodall, Jehmlich, Chowdhury, Gweon, Peyton, Mason, van Agtmaal, Blaud, Clark, Whitaker, Pywell, Ostle, Gleixner, Griffiths (bib0150) 2018; 9
López-Fando, Pardo (bib0130) 2009; 104
Fageria (bib0060) 2002; 33
Luo, Hui, Zhang (bib0135) 2006; 87
Anderson, Burnham (bib0015) 2002; 66
Fierer, Jackson (bib0065) 2006; 103
Luo, Wang, Sun (bib0145) 2010; 139
Blanco-Canqui, Ruis (bib0025) 2018; 326
Hedges, Gurevitch, Curtis (bib0085) 1999; 80
Duiker, Beegle (bib0055) 2006; 88
Blanco-Canqui, Stone, Schlegel, Lyon, Vigil, Mikha, Stahlman, Rice (bib0030) 2009; 73
Gurevitch, Hedges (bib0075) 2001
He, Kuhn, Zhang, Zhang, Li (bib0080) 2009; 25
Sithole, Magwaza, Mafongoya (bib0200) 2016; 162
Johnson, Hoyt (bib0090) 1999; 9
Osenberg, Sarnelle, Cooper, Holt (bib0165) 1999; 80
Schmidt, Villamil, Amiotti (bib0195) 2018; 176
Osunbitan, Oyedele, Adekalu (bib0170) 2005; 82
Blevins, Smith, Thomas (bib0035) 1984
Sasal (10.1016/j.still.2019.06.009_bib0190) 2006; 87
Kassam (10.1016/j.still.2019.06.009_bib0095) 2014
Blanco-Canqui (10.1016/j.still.2019.06.009_bib0030) 2009; 73
Gurevitch (10.1016/j.still.2019.06.009_bib0075) 2001
Osunbitan (10.1016/j.still.2019.06.009_bib0170) 2005; 82
He (10.1016/j.still.2019.06.009_bib0080) 2009; 25
Beare (10.1016/j.still.2019.06.009_bib0020) 1994; 58
Li (10.1016/j.still.2019.06.009_bib0105) 2018; 121
Luo (10.1016/j.still.2019.06.009_bib0140) 2018; 124
Duiker (10.1016/j.still.2019.06.009_bib0055) 2006; 88
Pittelkow (10.1016/j.still.2019.06.009_bib0180) 2014; 517
Adams (10.1016/j.still.2019.06.009_bib0010) 1997; 78
Li (10.1016/j.still.2019.06.009_bib0110) 2018; 19
Luo (10.1016/j.still.2019.06.009_bib0135) 2006; 87
Schmidt (10.1016/j.still.2019.06.009_bib0195) 2018; 176
Dolan (10.1016/j.still.2019.06.009_bib0050) 2006; 89
Six (10.1016/j.still.2019.06.009_bib0205) 2000; 32
Reynolds (10.1016/j.still.2019.06.009_bib0185) 2007; 96
Bormann (10.1016/j.still.2019.06.009_bib0040) 2008; 145
USDA-NRCS (10.1016/j.still.2019.06.009_bib0220) 1996
Malik (10.1016/j.still.2019.06.009_bib0150) 2018; 9
Lampurlanés (10.1016/j.still.2019.06.009_bib0100) 2001; 69
Limousin (10.1016/j.still.2019.06.009_bib0115) 2007; 92
Osenberg (10.1016/j.still.2019.06.009_bib0165) 1999; 80
Blevins (10.1016/j.still.2019.06.009_bib0035) 1984
López-Fando (10.1016/j.still.2019.06.009_bib0130) 2009; 104
Sithole (10.1016/j.still.2019.06.009_bib0200) 2016; 162
Viechtbauer (10.1016/j.still.2019.06.009_bib0225) 2010; 36
Omondi (10.1016/j.still.2019.06.009_bib0160) 2016; 274
Turmel (10.1016/j.still.2019.06.009_bib0215) 2015; 134
Zuber (10.1016/j.still.2019.06.009_bib0230) 2016; 97
Liu (10.1016/j.still.2019.06.009_bib0125) 2014; 20
Six (10.1016/j.still.2019.06.009_bib0210) 2000; 64
Fageria (10.1016/j.still.2019.06.009_bib0060) 2002; 33
Blanco-Canqui (10.1016/j.still.2019.06.009_bib0025) 2018; 326
Johnson (10.1016/j.still.2019.06.009_bib0090) 1999; 9
Pagliai (10.1016/j.still.2019.06.009_bib0175) 2004; 79
Anderson (10.1016/j.still.2019.06.009_bib0015) 2002; 66
Luo (10.1016/j.still.2019.06.009_bib0145) 2010; 139
Bronick (10.1016/j.still.2019.06.009_bib0045) 2005; 124
Abdalla (10.1016/j.still.2019.06.009_bib0005) 2016; 13
Fierer (10.1016/j.still.2019.06.009_bib0065) 2006; 103
Nimmo (10.1016/j.still.2019.06.009_bib0155) 2004
Hedges (10.1016/j.still.2019.06.009_bib0085) 1999; 80
Lipiec (10.1016/j.still.2019.06.009_bib0120) 2006; 89
Ghuman (10.1016/j.still.2019.06.009_bib0070) 2001; 58
References_xml – volume: 89
  start-page: 221
  year: 2006
  end-page: 231
  ident: bib0050
  article-title: Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management
  publication-title: Soi. Tillage. Res
– volume: 134
  start-page: 6
  year: 2015
  end-page: 16
  ident: bib0215
  article-title: Crop residue management and soil health: a systems analysis
  publication-title: Agric. Syst.
– volume: 87
  start-page: 9
  year: 2006
  end-page: 18
  ident: bib0190
  article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas
  publication-title: Soi. Tillage. Res
– volume: 9
  start-page: 380
  year: 1999
  end-page: 393
  ident: bib0090
  article-title: Changes to the soil environment under conservation tillage
  publication-title: HortTechnology
– volume: 64
  start-page: 681
  year: 2000
  end-page: 689
  ident: bib0210
  article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon
  publication-title: Soil Sci. Soc. Am. J.
– volume: 87
  start-page: 53
  year: 2006
  end-page: 63
  ident: bib0135
  article-title: Elevated CO
  publication-title: Ecology
– start-page: 190
  year: 1984
  end-page: 230
  ident: bib0035
  article-title: Changes in soil properties under no-tillage
  publication-title: No-Tillage Agriculture: Principles and Practices
– volume: 78
  start-page: 1277
  year: 1997
  end-page: 1283
  ident: bib0010
  article-title: Resampling tests for meta‐analysis of ecological data
  publication-title: Ecology
– volume: 88
  start-page: 30
  year: 2006
  end-page: 41
  ident: bib0055
  article-title: Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems
  publication-title: Soi. Tillage. Res
– year: 2014
  ident: bib0095
  article-title: The Spread of Conservation Agriculture: Policy and Institutional Support for Adoption and Uptake, Field Actions Science Reports
– volume: 19
  start-page: 1393
  year: 2018
  end-page: 1406
  ident: bib0110
  article-title: Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis
  publication-title: J. Soils Sediments
– volume: 82
  start-page: 57
  year: 2005
  end-page: 64
  ident: bib0170
  article-title: Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria
  publication-title: Soi. Tillage. Res
– volume: 176
  start-page: 85
  year: 2018
  end-page: 94
  ident: bib0195
  article-title: Soil quality under conservation practices on farm operations of the southern semiarid pampas region of Argentina
  publication-title: Soi. Tillage. Res
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  ident: bib0085
  article-title: The meta‐analysis of response ratios in experimental ecology
  publication-title: Ecology
– volume: 139
  start-page: 224
  year: 2010
  end-page: 231
  ident: bib0145
  article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments
  publication-title: Agric Ecosyst Environ
– volume: 69
  start-page: 27
  year: 2001
  end-page: 40
  ident: bib0100
  article-title: Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions
  publication-title: Field Crops Res.
– volume: 145
  start-page: 295
  year: 2008
  end-page: 302
  ident: bib0040
  article-title: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils
  publication-title: Geoderma
– volume: 33
  start-page: 2301
  year: 2002
  end-page: 2329
  ident: bib0060
  article-title: Soil quality vs. Environmentally-based agricultural management practices
  publication-title: Commun. Soil. Sci. Plan
– volume: 162
  start-page: 55
  year: 2016
  end-page: 67
  ident: bib0200
  article-title: Conservation agriculture and its impact on soil quality and maize yield: a South African perspective
  publication-title: Soi. Tillage. Res
– volume: 121
  start-page: 50
  year: 2018
  end-page: 58
  ident: bib0105
  article-title: Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: a global meta-analysis
  publication-title: Soil Biol. Biochem.
– volume: 89
  start-page: 210
  year: 2006
  end-page: 220
  ident: bib0120
  article-title: Soil porosity and water infiltration as influenced by tillage methods
  publication-title: Soi. Tillage. Res
– volume: 517
  start-page: 365
  year: 2014
  ident: bib0180
  article-title: Productivity limits and potentials of the principles of conservation agriculture
  publication-title: Nature
– volume: 124
  start-page: 3
  year: 2005
  end-page: 22
  ident: bib0045
  article-title: Soil structure and management: a review
  publication-title: Geoderma
– volume: 80
  start-page: 1105
  year: 1999
  end-page: 1117
  ident: bib0165
  article-title: Resolving ecological questions through meta-analysis: goals, metrics, and models
  publication-title: Ecology
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  ident: bib0205
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
– volume: 20
  start-page: 1366
  year: 2014
  end-page: 1381
  ident: bib0125
  article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis
  publication-title: Glob. Change Biol. Bioenergy
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  ident: bib0225
  article-title: Conducting meta-analyses in R with the metafor package
  publication-title: J. Stat. Softw.
– volume: 9
  start-page: 3591
  year: 2018
  ident: bib0150
  article-title: Land use driven change in soil pH affects microbial carbon cycling processes
  publication-title: Nat. Commun.
– volume: 58
  start-page: 1
  year: 2001
  end-page: 10
  ident: bib0070
  article-title: Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate
  publication-title: Soi. Tillage. Res
– volume: 326
  start-page: 164
  year: 2018
  end-page: 200
  ident: bib0025
  article-title: No-tillage and soil physical environment
  publication-title: Geoderma
– volume: 103
  start-page: 626
  year: 2006
  ident: bib0065
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: PNAS
– volume: 73
  start-page: 1871
  year: 2009
  end-page: 1879
  ident: bib0030
  article-title: No-till induced increase in organic carbon reduces maximum bulk density of soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 58
  start-page: 777
  year: 1994
  end-page: 786
  ident: bib0020
  article-title: Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 97
  start-page: 176
  year: 2016
  end-page: 187
  ident: bib0230
  article-title: Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities
  publication-title: Soil Biol. Biochem.
– year: 1996
  ident: bib0220
  article-title: Soil Quality Resource Concerns: Compaction
– volume: 124
  start-page: 105
  year: 2018
  end-page: 115
  ident: bib0140
  article-title: Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis
  publication-title: Soil Biol Biochem
– start-page: 317
  year: 2004
  end-page: 328
  ident: bib0155
  article-title: Porosity and Pore Size Distribution
– volume: 66
  start-page: 912
  year: 2002
  end-page: 918
  ident: bib0015
  article-title: Avoiding pitfalls when using information-theoretic methods
  publication-title: J. Wildl. Manag
– volume: 104
  start-page: 278
  year: 2009
  end-page: 284
  ident: bib0130
  article-title: Changes in soil chemical characteristics with different tillage practices in a semi-arid environment
  publication-title: Soi. Tillage. Res
– volume: 13
  start-page: 3619
  year: 2016
  end-page: 3633
  ident: bib0005
  article-title: No-tillage lessens soil CO
  publication-title: Biogeosciences
– start-page: 347
  year: 2001
  end-page: 369
  ident: bib0075
  article-title: Meta-analysis: combining the results of independent experiments
  publication-title: Design and Analysis of Ecological Experiments
– volume: 25
  start-page: 201
  year: 2009
  end-page: 209
  ident: bib0080
  article-title: Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China
  publication-title: Soil. Use. Mange.
– volume: 92
  start-page: 167
  year: 2007
  end-page: 174
  ident: bib0115
  article-title: Effects of no-tillage on chemical gradients and topsoil acidification
  publication-title: Soi. Tillage. Res
– volume: 96
  start-page: 316
  year: 2007
  end-page: 330
  ident: bib0185
  article-title: Land management effects on the near-surface physical quality of a clay loam soil
  publication-title: Soi. Tillage. Res
– volume: 79
  start-page: 131
  year: 2004
  end-page: 143
  ident: bib0175
  article-title: Soil structure and the effect of management practices
  publication-title: Soi. Tillage. Res
– volume: 274
  start-page: 28
  year: 2016
  end-page: 34
  ident: bib0160
  article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data
  publication-title: Geoderma
– volume: 96
  start-page: 316
  year: 2007
  ident: 10.1016/j.still.2019.06.009_bib0185
  article-title: Land management effects on the near-surface physical quality of a clay loam soil
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2007.07.003
– volume: 33
  start-page: 2301
  year: 2002
  ident: 10.1016/j.still.2019.06.009_bib0060
  article-title: Soil quality vs. Environmentally-based agricultural management practices
  publication-title: Commun. Soil. Sci. Plan
  doi: 10.1081/CSS-120005764
– volume: 69
  start-page: 27
  year: 2001
  ident: 10.1016/j.still.2019.06.009_bib0100
  article-title: Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(00)00130-1
– volume: 92
  start-page: 167
  year: 2007
  ident: 10.1016/j.still.2019.06.009_bib0115
  article-title: Effects of no-tillage on chemical gradients and topsoil acidification
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2006.02.003
– volume: 13
  start-page: 3619
  year: 2016
  ident: 10.1016/j.still.2019.06.009_bib0005
  article-title: No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-3619-2016
– volume: 124
  start-page: 3
  year: 2005
  ident: 10.1016/j.still.2019.06.009_bib0045
  article-title: Soil structure and management: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 121
  start-page: 50
  year: 2018
  ident: 10.1016/j.still.2019.06.009_bib0105
  article-title: Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: a global meta-analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.024
– volume: 87
  start-page: 9
  year: 2006
  ident: 10.1016/j.still.2019.06.009_bib0190
  article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2005.02.025
– volume: 176
  start-page: 85
  year: 2018
  ident: 10.1016/j.still.2019.06.009_bib0195
  article-title: Soil quality under conservation practices on farm operations of the southern semiarid pampas region of Argentina
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2017.11.001
– volume: 139
  start-page: 224
  year: 2010
  ident: 10.1016/j.still.2019.06.009_bib0145
  article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2010.08.006
– start-page: 347
  year: 2001
  ident: 10.1016/j.still.2019.06.009_bib0075
  article-title: Meta-analysis: combining the results of independent experiments
– volume: 80
  start-page: 1150
  year: 1999
  ident: 10.1016/j.still.2019.06.009_bib0085
  article-title: The meta‐analysis of response ratios in experimental ecology
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– volume: 89
  start-page: 210
  year: 2006
  ident: 10.1016/j.still.2019.06.009_bib0120
  article-title: Soil porosity and water infiltration as influenced by tillage methods
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2005.07.012
– volume: 80
  start-page: 1105
  year: 1999
  ident: 10.1016/j.still.2019.06.009_bib0165
  article-title: Resolving ecological questions through meta-analysis: goals, metrics, and models
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1105:REQTMA]2.0.CO;2
– year: 2014
  ident: 10.1016/j.still.2019.06.009_bib0095
– volume: 9
  start-page: 380
  year: 1999
  ident: 10.1016/j.still.2019.06.009_bib0090
  article-title: Changes to the soil environment under conservation tillage
  publication-title: HortTechnology
  doi: 10.21273/HORTTECH.9.3.380
– volume: 89
  start-page: 221
  year: 2006
  ident: 10.1016/j.still.2019.06.009_bib0050
  article-title: Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2005.07.015
– volume: 36
  start-page: 1
  year: 2010
  ident: 10.1016/j.still.2019.06.009_bib0225
  article-title: Conducting meta-analyses in R with the metafor package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i03
– volume: 25
  start-page: 201
  year: 2009
  ident: 10.1016/j.still.2019.06.009_bib0080
  article-title: Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China
  publication-title: Soil. Use. Mange.
  doi: 10.1111/j.1475-2743.2009.00210.x
– volume: 58
  start-page: 777
  year: 1994
  ident: 10.1016/j.still.2019.06.009_bib0020
  article-title: Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800030020x
– volume: 20
  start-page: 1366
  year: 2014
  ident: 10.1016/j.still.2019.06.009_bib0125
  article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcb.12517
– volume: 517
  start-page: 365
  year: 2014
  ident: 10.1016/j.still.2019.06.009_bib0180
  article-title: Productivity limits and potentials of the principles of conservation agriculture
  publication-title: Nature
  doi: 10.1038/nature13809
– volume: 19
  start-page: 1393
  year: 2018
  ident: 10.1016/j.still.2019.06.009_bib0110
  article-title: Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-018-2120-2
– start-page: 317
  year: 2004
  ident: 10.1016/j.still.2019.06.009_bib0155
– volume: 134
  start-page: 6
  year: 2015
  ident: 10.1016/j.still.2019.06.009_bib0215
  article-title: Crop residue management and soil health: a systems analysis
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2014.05.009
– volume: 104
  start-page: 278
  year: 2009
  ident: 10.1016/j.still.2019.06.009_bib0130
  article-title: Changes in soil chemical characteristics with different tillage practices in a semi-arid environment
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2009.03.005
– volume: 162
  start-page: 55
  year: 2016
  ident: 10.1016/j.still.2019.06.009_bib0200
  article-title: Conservation agriculture and its impact on soil quality and maize yield: a South African perspective
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2016.04.014
– volume: 58
  start-page: 1
  year: 2001
  ident: 10.1016/j.still.2019.06.009_bib0070
  article-title: Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate
  publication-title: Soi. Tillage. Res
  doi: 10.1016/S0167-1987(00)00147-1
– volume: 64
  start-page: 681
  year: 2000
  ident: 10.1016/j.still.2019.06.009_bib0210
  article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.642681x
– volume: 78
  start-page: 1277
  year: 1997
  ident: 10.1016/j.still.2019.06.009_bib0010
  article-title: Resampling tests for meta‐analysis of ecological data
  publication-title: Ecology
  doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
– start-page: 190
  year: 1984
  ident: 10.1016/j.still.2019.06.009_bib0035
  article-title: Changes in soil properties under no-tillage
– volume: 73
  start-page: 1871
  year: 2009
  ident: 10.1016/j.still.2019.06.009_bib0030
  article-title: No-till induced increase in organic carbon reduces maximum bulk density of soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0353
– volume: 82
  start-page: 57
  year: 2005
  ident: 10.1016/j.still.2019.06.009_bib0170
  article-title: Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2004.05.007
– volume: 88
  start-page: 30
  year: 2006
  ident: 10.1016/j.still.2019.06.009_bib0055
  article-title: Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2005.04.004
– volume: 32
  start-page: 2099
  year: 2000
  ident: 10.1016/j.still.2019.06.009_bib0205
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 326
  start-page: 164
  year: 2018
  ident: 10.1016/j.still.2019.06.009_bib0025
  article-title: No-tillage and soil physical environment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.011
– volume: 274
  start-page: 28
  year: 2016
  ident: 10.1016/j.still.2019.06.009_bib0160
  article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.03.029
– volume: 97
  start-page: 176
  year: 2016
  ident: 10.1016/j.still.2019.06.009_bib0230
  article-title: Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.03.011
– volume: 87
  start-page: 53
  year: 2006
  ident: 10.1016/j.still.2019.06.009_bib0135
  article-title: Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis
  publication-title: Ecology
  doi: 10.1890/04-1724
– volume: 79
  start-page: 131
  year: 2004
  ident: 10.1016/j.still.2019.06.009_bib0175
  article-title: Soil structure and the effect of management practices
  publication-title: Soi. Tillage. Res
  doi: 10.1016/j.still.2004.07.002
– volume: 145
  start-page: 295
  year: 2008
  ident: 10.1016/j.still.2019.06.009_bib0040
  article-title: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.03.017
– volume: 124
  start-page: 105
  year: 2018
  ident: 10.1016/j.still.2019.06.009_bib0140
  article-title: Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.06.002
– volume: 9
  start-page: 3591
  year: 2018
  ident: 10.1016/j.still.2019.06.009_bib0150
  article-title: Land use driven change in soil pH affects microbial carbon cycling processes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05980-1
– volume: 66
  start-page: 912
  year: 2002
  ident: 10.1016/j.still.2019.06.009_bib0015
  article-title: Avoiding pitfalls when using information-theoretic methods
  publication-title: J. Wildl. Manag
  doi: 10.2307/3803155
– volume: 103
  start-page: 626
  year: 2006
  ident: 10.1016/j.still.2019.06.009_bib0065
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: PNAS
  doi: 10.1073/pnas.0507535103
– year: 1996
  ident: 10.1016/j.still.2019.06.009_bib0220
SSID ssj0004328
Score 2.6195378
Snippet •A global meta-analysis on soil physical properties under conservation tillage.•Conservation tillage has higher aggregate size, stability and available water...
Conservation tillage practices, here defined as no-tillage (NT) or reduced tillage (RT) with/without residue retention, have been widely used to alleviate the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104292
SubjectTerms aggregate stability
agricultural conservation practice
available water capacity
bulk density
Conservation tillage
conventional tillage
cropland
data collection
farming systems
geometry
meta-analysis
minimum tillage
No tillage
reduced tillage
Residue retention
saturated hydraulic conductivity
soil density
soil pH
Soil physics
Soil quality
sustainable agriculture
Title Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis
URI https://dx.doi.org/10.1016/j.still.2019.06.009
https://www.proquest.com/docview/2271878710
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOih4tGqQEGDxJF0N4kTJ72tEKsFxB5okbhZdmxXqXazq31c-9s74zhAEdpDb0lkR9bMeOZLPPMNYxeZtrxSeRZxm4iI634RaV6aSFQ603FpdOV5Cu7H-eiR3z5lT1vsqquFobTK4Ptbn-69dXjSC9Lszeu694MS6OmTGSEIBUqi3eZckJV_-_OS5sFT31_V83vT6I55yOd44S6a0PlDXHoST8pKfD86vfHTPvgM99jHgBph0C5sn23Z5oB9GPxaBOYMe8iWDxYNa21hQTCYxA2qMUDUIdP1FGgJ6Dqg9j8RLMyDfuBVpRvMHCAehOWsnkDdAHX38qXA32EALXMITO1KRSowmXxij8Prn1ejKHRUiKo0zVdRrhOX9Z0yvNTaFa7E69j2lS6rRCCwES6zpbP4vHAGsYcqXGoya6hgXohcpZ_ZdjNr7BcGsXUIVVyCg3NuClQsYieR5UaJtIqr4oglnSRlFejGqevFRHZ5Zb-lF78k8UufXVcescvnSfOWbWPz8LxTkfzHaCTGg80TzzuFStxOdEaiGjtbL2WCcijQicX94_99-Qnbpbu2YPEr214t1vYUkctKn3nTPGM7g5u70fgvvEvxHA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiPJQCwUGqdwIu0kcJ6nUwwqotvRxgFbqzdixjYJ2s6t9CHHpn-of7IzjUEBVD5V6ixzbisbjmXH8zTeMbWfa8kqJLOI2ySOu-0WkeWmivNKZjkujK89TcHQshqf8y1l2tsIuulwYglUG29_adG-tQ0svSLM3reveNwLQ05EZQxBylCIgKw_s7194bpvv7n_CRX6XJHufTz4Oo1BaIKrSVCwioROX9Z0yvNTaFa7E59j2lS6rJEcPn7vMls5ie-EMOmFVuNRk1lDmeJ4LleK899gaR3NBZRM-nF_hSnjqC7p6QnH6vI7qyIPKcNuO6MIjLj1rKMEgr3eH_zkG7-32HrNHIUyFQSuJdbZimyfs4eDHLFB12Kds_tWiJi8tzCjupvUF1RggrpLxcgz0CWiroPZ_LSxMg0LAX6l1MHGAASjMJ_UI6gaonJjPPd6BAbRUJTC2CxWpQJ3yjJ3eiZyfs9Vm0tgNBrF1GBu5BDsLbgrUJAzW8kwYladVXBWbLOkkKavAb05lNkayA7L9lF78ksQvPZyv3GTv_wyatvQeN3cX3RLJf7RUogO6eeDbbkEl7l-6lFGNnSznMkE5FGg14_6L207-ht0fnhwdysP944OX7AG9abMlt9jqYra0rzBsWujXXk2Bfb_rfXEJXeQuPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residue+retention+and+minimum+tillage+improve+physical+environment+of+the+soil+in+croplands%3A+A+global+meta-analysis&rft.jtitle=Soil+%26+tillage+research&rft.au=Li%2C+Yuan&rft.au=Li%2C+Zhou&rft.au=Cui%2C+Song&rft.au=Jagadamma%2C+Sindhu&rft.date=2019-11-01&rft.issn=0167-1987&rft.volume=194&rft.spage=104292&rft_id=info:doi/10.1016%2Fj.still.2019.06.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2019_06_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon