Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human br...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 460; pp. 294 - 303
Main Authors Gao, Zhong-Ke, Cai, Qing, Dong, Na, Zhang, Shan-Shan, Bo, Yun, Zhang, Jie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2016
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2016.05.035

Cover

Loading…
Abstract Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects. •We develop an approach to construct brain network from P300 event-related potentials.•We integrate both time and frequency domain information to infer complex network.•Our method allows analyzing multi-channel signals.•Our method allows identifying brain states between able-bodied and disabled subjects.
AbstractList Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects. •We develop an approach to construct brain network from P300 event-related potentials.•We integrate both time and frequency domain information to infer complex network.•Our method allows analyzing multi-channel signals.•Our method allows identifying brain states between able-bodied and disabled subjects.
Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.
Author Gao, Zhong-Ke
Bo, Yun
Zhang, Shan-Shan
Dong, Na
Zhang, Jie
Cai, Qing
Author_xml – sequence: 1
  givenname: Zhong-Ke
  surname: Gao
  fullname: Gao, Zhong-Ke
  email: zhongkegao@tju.edu.cn
  organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Qing
  surname: Cai
  fullname: Cai, Qing
  organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Na
  surname: Dong
  fullname: Dong, Na
  email: dongna@tju.edu.cn
  organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Shan-Shan
  surname: Zhang
  fullname: Zhang, Shan-Shan
  organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
– sequence: 5
  givenname: Yun
  surname: Bo
  fullname: Bo, Yun
  organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
– sequence: 6
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Center for Computational Systems Biology, Fudan University, Shanghai 200433, China
BookMark eNqFkT2P1DAQhi10SOwd_AIalzQJ4zhOHCQKtBwf0klQXG859uTwktiLJzm4gv-Ol6WigGo043lGeh9fsouYIjL2XEAtQHQvD_XxywPZuilNDaoGqR6xndC9rBohhgu2A9nrqpW9eMIuiQ4AIHrZ7NjPfVqOM_7gEdfvKX_lIU6YMTrkU04L_ywBOIW7aGd6xd-iSz7EOz5mGyKn1a7It-gx8_tAm53LKCzbvBGfUuZ2nLEaC4Ge2-i5D3QaeU7beEC30lP2eCqH8dmfesVu313f7j9UN5_ef9y_uamclN1ada1v1DCiBnCgUevBNsPo9aRlO7mhGzs1SOyxhHLCl3cHoL1qe6e9a5W8Yi_OZ485fduQVrMEcjjPNmLayAjdKNWqpmvL6nBedTkRZZyMCyVlSHEtkWcjwJyMm4P5bdycjBtQphgvrPyLPeaw2PzwH-r1mcIi4D5gNuTC6QN8yMWR8Sn8k_8FyxGfjg
CitedBy_id crossref_primary_10_1016_j_physa_2018_08_041
crossref_primary_10_1016_j_physleta_2018_05_022
crossref_primary_10_1142_S0217979219502060
Cites_doi 10.1103/PhysRevLett.87.198701
10.1103/PhysRevLett.104.118701
10.1007/978-3-319-00846-2_422
10.1038/srep08222
10.1103/PhysRevE.90.022804
10.1016/j.cej.2016.01.039
10.1016/j.nonrwa.2011.08.029
10.1016/j.physleta.2014.10.005
10.1177/1073858405280524
10.1016/j.bspc.2014.12.007
10.1038/nrn2575
10.1155/2012/452503
10.1103/PhysRevE.79.061916
10.1093/cercor/bht004
10.1016/j.jneumeth.2010.08.027
10.1371/journal.pone.0093045
10.1016/S0987-7053(00)00220-3
10.1016/j.jneumeth.2014.03.012
10.1016/j.neuroimage.2015.07.006
10.1126/science.1065103
10.1016/j.plrev.2015.04.033
10.1209/0295-5075/103/50004
10.1371/journal.pone.0036733
10.1371/journal.pone.0034163
10.1103/PhysRevLett.94.018102
10.1016/j.physrep.2014.07.001
10.1140/epjb/e2015-60270-7
10.1109/TBME.2012.2186568
10.1103/PhysRevE.77.050905
10.1016/j.physd.2013.06.009
10.1016/j.expthermflusci.2014.09.008
10.1155/2011/519868
10.1209/0295-5075/109/30005
10.1177/1073858411422754
10.1016/j.bandc.2013.12.011
10.1002/hbm.23113
10.1016/j.physleta.2009.09.042
10.1073/pnas.1523412113
10.1142/S0218127412502367
10.1038/nature16948
10.1016/j.physa.2015.02.035
10.1073/pnas.0806082105
10.1177/1073858406293182
10.1016/j.jneumeth.2007.03.005
10.1038/srep06787
10.1016/j.tics.2004.07.008
10.1038/ncomms8709
10.1093/cercor/bhu173
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.physa.2016.05.035
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 303
ExternalDocumentID 10_1016_j_physa_2016_05_035
S0378437116302205
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
7TB
7U5
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c336t-64d259be800c08e889a29bd8f834fc96b6593e7e001c1de88c008d547c8dc453
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Tue Aug 05 11:12:44 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 01:31:54 EDT 2025
Fri Feb 23 02:35:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multivariate time series analysis
Brain network construction
P300 ERP
Complex network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-64d259be800c08e889a29bd8f834fc96b6593e7e001c1de88c008d547c8dc453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825545264
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1825545264
crossref_citationtrail_10_1016_j_physa_2016_05_035
crossref_primary_10_1016_j_physa_2016_05_035
elsevier_sciencedirect_doi_10_1016_j_physa_2016_05_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-15
PublicationDateYYYYMMDD 2016-10-15
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Barzel, Barabási (br000090) 2016; 530
Cui, Zhang (br000255) 2016; 37
Hoffmann, Vesin, Ebrahimi, Diserens (br000010) 2008; 167
Gao, Buldyrev, Havlin, Stanley (br000050) 2011; 107
M.E.J. Newman, Oxford University Press, 2010.
Wang, Wang, Szolnoki, Perc (br000075) 2015; 88
Gao, Yang, Fang, Jin, Xia, Hu (br000130) 2015; 5
Maslov, Sneppen (br000265) 2002; 296
Kramer, Cash (br000200) 2012; 18
Xu, Zhang, Small (br000100) 2008; 105
Gao, Zhang, Jin, Donner, Marwan, Kurths (br000115) 2013; 103
Valencia, Martinerie, Dupont, Chavez (br000175) 2008; 77
Bassett, Bullmore (br000180) 2006; 12
Gao, Yang, Zhai, Jin, Chen (br000125) 2016
Sporns, Chialvo, Kaiser, Hilgetag (br000160) 2004; 8
Boccaletti, Bianconi, Criado, del Genio, Gómez-Gardeñes, Romance, Sendiña-Nadal, Wang, Zanin (br000045) 2014; 544
Latora, Marchiori (br000260) 2001; 87
Wang, Kokubo, Jusup, Tanimoto (br000080) 2015; 14
Carrillo-de-la Pena, Cadaveira (br000270) 2000; 30
Subramaniyam, Hyttinen (br000220) 2014; 378
Chavez, Valencia, Navarro, Latora, Martinerie (br000190) 2010; 104
Liu, Stanley, Gao (br000085) 2016; 113
Gao, Yang, Fang, Zhou, Xia, Du (br000120) 2015; 109
Huang, Dong, Huang, Lai (br000070) 2014; 4
Zou, Senthilkumar, Nagao, Kiss, Tang, Koseska, Duan, Kurths (br000060) 2015; 6
Marwan, Donges, Zou, Donner, Kurths (br000110) 2009; 373
Weng, Zhao, Small, Huang (br000150) 2014; 90
Dimitriadis, Laskaris, Tsirka, Vourkas, Micheloyannis, Fotopoulos (br000195) 2010; 193
Dimitriadis, Laskaris, Tzelepi, Economou (br000205) 2012; 59
Sun, Lee, Chen, Collinson, Thakor, Bezerianos, Sim (br000245) 2012; 7
Eguíluz, Chialvo, Cecchi, Baliki, Apkarian (br000165) 2005; 94
Gao, Guan, Gao, Zhou (br000030) 2015; 18
Jin, Song, Liu, Stanley (br000055) 2015; 427
Dimitriadis, Sun, Laskaris, Thakor, Bezerianos (br000240) 2014; 41
Huang, Lai, Harrison (br000135) 2012; 22
Zhou, Huang, Huang, Lai, Yang, Xue (br000065) 2013; 87
Gao, Jin (br000140) 2012; 13
Gao, Yang, Zhai, Ding, Jin (br000145) 2016; 291
Onishi, Natsume (br000025) 2014; 9
Gao, Fang, Ding, Jin (br000155) 2015; 60
Peng, Hu, Zhang, Hu (br000020) 2012; 7
Bullmore, Sporns (br000185) 2009; 10
Ioannides, Dimitriadis, Saridis, Voultsidou, Poghosyan, Liu, Laskaris (br000210) 2012; 2012
Zhang, Kendrick, Lu, Feng (br000250) 2014; 25
Lehnertz, Ansmanna, Bialonskia, Dicktena, Geiera, Porza (br000215) 2014; 267
Zhang, Cheng, Wang, Lu, Lu, Fang (br000225) 2012; 7
Sun, Lim, Kwok, Bezerianos (br000235) 2014; 85
Uehara, Yamasaki, Okamoto, Koike, Kan, Miyauchi, Kira, Tobimatsu (br000230) 2013; 24
Kramer, Eden, Cash, Kolaczyk (br000105) 2009; 79
Manyakov, Chumerin, Combaz, Van Hulle (br000015) 2011; 2011
Saggar, Hosseini, Bruno, Quintin, Raman, Kesler, Reiss (br000170) 2015; 120
Zhang, Small (br000095) 2006; 96
Linden (br000005) 2005; 11
Zhang, Zhou, Jin, Wang, Cichocki (br000035) 2015; 244
Boccaletti (10.1016/j.physa.2016.05.035_br000045) 2014; 544
Uehara (10.1016/j.physa.2016.05.035_br000230) 2013; 24
Linden (10.1016/j.physa.2016.05.035_br000005) 2005; 11
Huang (10.1016/j.physa.2016.05.035_br000135) 2012; 22
Zhang (10.1016/j.physa.2016.05.035_br000035) 2015; 244
Latora (10.1016/j.physa.2016.05.035_br000260) 2001; 87
Kramer (10.1016/j.physa.2016.05.035_br000105) 2009; 79
Chavez (10.1016/j.physa.2016.05.035_br000190) 2010; 104
Zhang (10.1016/j.physa.2016.05.035_br000095) 2006; 96
Huang (10.1016/j.physa.2016.05.035_br000070) 2014; 4
Valencia (10.1016/j.physa.2016.05.035_br000175) 2008; 77
Manyakov (10.1016/j.physa.2016.05.035_br000015) 2011; 2011
Carrillo-de-la Pena (10.1016/j.physa.2016.05.035_br000270) 2000; 30
Gao (10.1016/j.physa.2016.05.035_br000125) 2016
Gao (10.1016/j.physa.2016.05.035_br000030) 2015; 18
Sun (10.1016/j.physa.2016.05.035_br000235) 2014; 85
Gao (10.1016/j.physa.2016.05.035_br000140) 2012; 13
Ioannides (10.1016/j.physa.2016.05.035_br000210) 2012; 2012
Marwan (10.1016/j.physa.2016.05.035_br000110) 2009; 373
Xu (10.1016/j.physa.2016.05.035_br000100) 2008; 105
Dimitriadis (10.1016/j.physa.2016.05.035_br000240) 2014; 41
Gao (10.1016/j.physa.2016.05.035_br000090) 2016; 530
Sporns (10.1016/j.physa.2016.05.035_br000160) 2004; 8
Cui (10.1016/j.physa.2016.05.035_br000255) 2016; 37
Dimitriadis (10.1016/j.physa.2016.05.035_br000205) 2012; 59
Wang (10.1016/j.physa.2016.05.035_br000075) 2015; 88
Gao (10.1016/j.physa.2016.05.035_br000130) 2015; 5
Zhang (10.1016/j.physa.2016.05.035_br000250) 2014; 25
Gao (10.1016/j.physa.2016.05.035_br000145) 2016; 291
Lehnertz (10.1016/j.physa.2016.05.035_br000215) 2014; 267
Liu (10.1016/j.physa.2016.05.035_br000085) 2016; 113
Peng (10.1016/j.physa.2016.05.035_br000020) 2012; 7
Wang (10.1016/j.physa.2016.05.035_br000080) 2015; 14
Subramaniyam (10.1016/j.physa.2016.05.035_br000220) 2014; 378
Gao (10.1016/j.physa.2016.05.035_br000155) 2015; 60
Zhang (10.1016/j.physa.2016.05.035_br000225) 2012; 7
10.1016/j.physa.2016.05.035_br000040
Gao (10.1016/j.physa.2016.05.035_br000120) 2015; 109
Gao (10.1016/j.physa.2016.05.035_br000050) 2011; 107
Zhou (10.1016/j.physa.2016.05.035_br000065) 2013; 87
Kramer (10.1016/j.physa.2016.05.035_br000200) 2012; 18
Eguíluz (10.1016/j.physa.2016.05.035_br000165) 2005; 94
Weng (10.1016/j.physa.2016.05.035_br000150) 2014; 90
Dimitriadis (10.1016/j.physa.2016.05.035_br000195) 2010; 193
Bassett (10.1016/j.physa.2016.05.035_br000180) 2006; 12
Sun (10.1016/j.physa.2016.05.035_br000245) 2012; 7
Bullmore (10.1016/j.physa.2016.05.035_br000185) 2009; 10
Saggar (10.1016/j.physa.2016.05.035_br000170) 2015; 120
Hoffmann (10.1016/j.physa.2016.05.035_br000010) 2008; 167
Jin (10.1016/j.physa.2016.05.035_br000055) 2015; 427
Zou (10.1016/j.physa.2016.05.035_br000060) 2015; 6
Maslov (10.1016/j.physa.2016.05.035_br000265) 2002; 296
Gao (10.1016/j.physa.2016.05.035_br000115) 2013; 103
Onishi (10.1016/j.physa.2016.05.035_br000025) 2014; 9
References_xml – volume: 7
  start-page: e36733
  year: 2012
  ident: br000225
  publication-title: PLoS One
– volume: 7
  start-page: e34163
  year: 2012
  ident: br000020
  publication-title: PLoS One
– volume: 8
  start-page: 418
  year: 2004
  ident: br000160
  publication-title: Trends Cogn. Sci.
– volume: 7
  start-page: e36733
  year: 2012
  ident: br000245
  publication-title: PLoS One
– volume: 12
  start-page: 512
  year: 2006
  ident: br000180
  publication-title: Neuroscientist
– volume: 25
  start-page: 3475
  year: 2014
  ident: br000250
  publication-title: Cereb. Cortex
– volume: 2011
  year: 2011
  ident: br000015
  publication-title: Comput. Intell. Neurosci.
– volume: 244
  start-page: 8
  year: 2015
  ident: br000035
  publication-title: J. Neurosci. Methods
– volume: 96
  year: 2006
  ident: br000095
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 232
  year: 2000
  ident: br000270
  publication-title: Neurophysiol. Clin./Clin. Neurophysiol.
– volume: 427
  start-page: 302
  year: 2015
  ident: br000055
  publication-title: Physica A
– volume: 373
  start-page: 4246
  year: 2009
  ident: br000110
  publication-title: Phys. Lett. A
– volume: 5
  start-page: 8222
  year: 2015
  ident: br000130
  publication-title: Sci. Rep.
– volume: 4
  start-page: 6787
  year: 2014
  ident: br000070
  publication-title: Sci. Rep.
– volume: 87
  year: 2001
  ident: br000260
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 563
  year: 2005
  ident: br000005
  publication-title: Neuroscientist
– volume: 59
  start-page: 1302
  year: 2012
  ident: br000205
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 103
  start-page: 50004
  year: 2013
  ident: br000115
  publication-title: Europhys. Lett.
– volume: 18
  start-page: 360
  year: 2012
  ident: br000200
  publication-title: Neuroscientist
– year: 2016
  ident: br000125
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 87
  year: 2013
  ident: br000065
  publication-title: Phys. Rev. E
– volume: 88
  start-page: 124
  year: 2015
  ident: br000075
  publication-title: Eur. Phys. J. B
– volume: 378
  start-page: 3464
  year: 2014
  ident: br000220
  publication-title: Phys. Lett. A
– volume: 37
  start-page: 1459
  year: 2016
  ident: br000255
  publication-title: Hum. Brain Mapp.
– volume: 79
  year: 2009
  ident: br000105
  publication-title: Phys. Rev. E
– volume: 77
  year: 2008
  ident: br000175
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 7709
  year: 2015
  ident: br000060
  publication-title: Nature Commun.
– volume: 60
  start-page: 157
  year: 2015
  ident: br000155
  publication-title: Exp. Therm Fluid Sci.
– volume: 94
  year: 2005
  ident: br000165
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 1529
  year: 2013
  ident: br000230
  publication-title: Cereb. Cortex
– reference: M.E.J. Newman, Oxford University Press, 2010.
– volume: 14
  start-page: 1
  year: 2015
  ident: br000080
  publication-title: Phys. Life Rev.
– volume: 291
  start-page: 74
  year: 2016
  ident: br000145
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 186
  year: 2009
  ident: br000185
  publication-title: Nat. Rev. Neurosci.
– volume: 104
  year: 2010
  ident: br000190
  publication-title: Phys. Rev. Lett.
– volume: 530
  start-page: 307
  year: 2016
  ident: br000090
  publication-title: Nature
– volume: 120
  start-page: 274
  year: 2015
  ident: br000170
  publication-title: Neuroimage
– volume: 296
  start-page: 910
  year: 2002
  ident: br000265
  publication-title: Science
– volume: 9
  start-page: e93045
  year: 2014
  ident: br000025
  publication-title: PLoS One
– volume: 22
  start-page: 1250236
  year: 2012
  ident: br000135
  publication-title: Internat. J. Bifur. Chaos
– volume: 113
  start-page: 1138
  year: 2016
  ident: br000085
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 107
  year: 2011
  ident: br000050
  publication-title: Phys. Rev. Lett.
– volume: 167
  start-page: 115
  year: 2008
  ident: br000010
  publication-title: J. Neurosci. Methods
– volume: 18
  start-page: 127
  year: 2015
  ident: br000030
  publication-title: Biomed. Signal Process.
– volume: 13
  start-page: 947
  year: 2012
  ident: br000140
  publication-title: Nonlinear Anal.-Real
– volume: 109
  start-page: 30005
  year: 2015
  ident: br000120
  publication-title: Europhys. Lett.
– volume: 85
  start-page: 220
  year: 2014
  ident: br000235
  publication-title: Brain Cogn.
– volume: 41
  start-page: 1710
  year: 2014
  ident: br000240
  article-title: XIII mediterranean conference on medical and biological engineering and computing 2013
  publication-title: IFMBE Proc.
– volume: 544
  start-page: 1
  year: 2014
  ident: br000045
  publication-title: Phys. Rep.
– volume: 267
  start-page: 7
  year: 2014
  ident: br000215
  publication-title: Physica D
– volume: 90
  start-page: 1
  year: 2014
  ident: br000150
  publication-title: Phys. Rev. E
– volume: 2012
  year: 2012
  ident: br000210
  publication-title: Comput. Math. Methods Med.
– volume: 105
  start-page: 19601
  year: 2008
  ident: br000100
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 193
  start-page: 145
  year: 2010
  ident: br000195
  publication-title: J. Neurosci. Methods
– volume: 87
  year: 2001
  ident: 10.1016/j.physa.2016.05.035_br000260
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.198701
– ident: 10.1016/j.physa.2016.05.035_br000040
– volume: 87
  year: 2013
  ident: 10.1016/j.physa.2016.05.035_br000065
  publication-title: Phys. Rev. E
– volume: 104
  year: 2010
  ident: 10.1016/j.physa.2016.05.035_br000190
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.118701
– volume: 41
  start-page: 1710
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000240
  article-title: XIII mediterranean conference on medical and biological engineering and computing 2013
  publication-title: IFMBE Proc.
  doi: 10.1007/978-3-319-00846-2_422
– volume: 5
  start-page: 8222
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000130
  publication-title: Sci. Rep.
  doi: 10.1038/srep08222
– volume: 90
  start-page: 1
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000150
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.022804
– volume: 291
  start-page: 74
  year: 2016
  ident: 10.1016/j.physa.2016.05.035_br000145
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.01.039
– volume: 13
  start-page: 947
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000140
  publication-title: Nonlinear Anal.-Real
  doi: 10.1016/j.nonrwa.2011.08.029
– volume: 378
  start-page: 3464
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000220
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2014.10.005
– volume: 11
  start-page: 563
  year: 2005
  ident: 10.1016/j.physa.2016.05.035_br000005
  publication-title: Neuroscientist
  doi: 10.1177/1073858405280524
– volume: 18
  start-page: 127
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000030
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2014.12.007
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.physa.2016.05.035_br000185
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 2012
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000210
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/452503
– volume: 79
  year: 2009
  ident: 10.1016/j.physa.2016.05.035_br000105
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.061916
– volume: 24
  start-page: 1529
  year: 2013
  ident: 10.1016/j.physa.2016.05.035_br000230
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht004
– volume: 193
  start-page: 145
  year: 2010
  ident: 10.1016/j.physa.2016.05.035_br000195
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.08.027
– volume: 9
  start-page: e93045
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000025
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093045
– volume: 30
  start-page: 232
  year: 2000
  ident: 10.1016/j.physa.2016.05.035_br000270
  publication-title: Neurophysiol. Clin./Clin. Neurophysiol.
  doi: 10.1016/S0987-7053(00)00220-3
– volume: 244
  start-page: 8
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000035
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.03.012
– volume: 120
  start-page: 274
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000170
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.006
– volume: 296
  start-page: 910
  year: 2002
  ident: 10.1016/j.physa.2016.05.035_br000265
  publication-title: Science
  doi: 10.1126/science.1065103
– volume: 96
  year: 2006
  ident: 10.1016/j.physa.2016.05.035_br000095
  publication-title: Phys. Rev. Lett.
– year: 2016
  ident: 10.1016/j.physa.2016.05.035_br000125
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: 1
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000080
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2015.04.033
– volume: 103
  start-page: 50004
  year: 2013
  ident: 10.1016/j.physa.2016.05.035_br000115
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/50004
– volume: 7
  start-page: e36733
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000225
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036733
– volume: 7
  start-page: e34163
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000020
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034163
– volume: 94
  year: 2005
  ident: 10.1016/j.physa.2016.05.035_br000165
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.018102
– volume: 544
  start-page: 1
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000045
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.07.001
– volume: 88
  start-page: 124
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000075
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2015-60270-7
– volume: 107
  year: 2011
  ident: 10.1016/j.physa.2016.05.035_br000050
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 1302
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000205
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2186568
– volume: 77
  year: 2008
  ident: 10.1016/j.physa.2016.05.035_br000175
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.050905
– volume: 267
  start-page: 7
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000215
  publication-title: Physica D
  doi: 10.1016/j.physd.2013.06.009
– volume: 60
  start-page: 157
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000155
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.09.008
– volume: 2011
  year: 2011
  ident: 10.1016/j.physa.2016.05.035_br000015
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/519868
– volume: 109
  start-page: 30005
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000120
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/109/30005
– volume: 18
  start-page: 360
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000200
  publication-title: Neuroscientist
  doi: 10.1177/1073858411422754
– volume: 85
  start-page: 220
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000235
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2013.12.011
– volume: 37
  start-page: 1459
  year: 2016
  ident: 10.1016/j.physa.2016.05.035_br000255
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23113
– volume: 373
  start-page: 4246
  year: 2009
  ident: 10.1016/j.physa.2016.05.035_br000110
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.09.042
– volume: 113
  start-page: 1138
  year: 2016
  ident: 10.1016/j.physa.2016.05.035_br000085
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1523412113
– volume: 22
  start-page: 1250236
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000135
  publication-title: Internat. J. Bifur. Chaos
  doi: 10.1142/S0218127412502367
– volume: 530
  start-page: 307
  year: 2016
  ident: 10.1016/j.physa.2016.05.035_br000090
  publication-title: Nature
  doi: 10.1038/nature16948
– volume: 427
  start-page: 302
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000055
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.02.035
– volume: 105
  start-page: 19601
  year: 2008
  ident: 10.1016/j.physa.2016.05.035_br000100
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0806082105
– volume: 12
  start-page: 512
  year: 2006
  ident: 10.1016/j.physa.2016.05.035_br000180
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 167
  start-page: 115
  year: 2008
  ident: 10.1016/j.physa.2016.05.035_br000010
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– volume: 4
  start-page: 6787
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000070
  publication-title: Sci. Rep.
  doi: 10.1038/srep06787
– volume: 8
  start-page: 418
  year: 2004
  ident: 10.1016/j.physa.2016.05.035_br000160
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2004.07.008
– volume: 6
  start-page: 7709
  year: 2015
  ident: 10.1016/j.physa.2016.05.035_br000060
  publication-title: Nature Commun.
  doi: 10.1038/ncomms8709
– volume: 7
  start-page: e36733
  year: 2012
  ident: 10.1016/j.physa.2016.05.035_br000245
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036733
– volume: 25
  start-page: 3475
  year: 2014
  ident: 10.1016/j.physa.2016.05.035_br000250
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu173
SSID ssj0001732
Score 2.201487
Snippet Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 294
SubjectTerms Brain
Brain network construction
Channels
Complex network
Construction
Inference
Multiple sclerosis
Multivariate time series analysis
Networks
P300 ERP
Visual
Title Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects
URI https://dx.doi.org/10.1016/j.physa.2016.05.035
https://www.proquest.com/docview/1825545264
Volume 460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DIngRV1yHCB6t05qt9SYujIoiqOAtNMvAyNgROxUv-tt9L20VRTx4bJu0JS95S_J97xGyY5i3eexUJDPhIo4kLiSlRcyANTHS5JlB7vDllezf8fN7cd8hRy0XBmGVje6vdXrQ1s2dXjOavafhsHcTM5VyphLwKAJdFBnsXCGsb-_9C-aRKFafJEC0hK3bzEMB44W7B5h8KJEhfWeo-fardfqhp4PxOZ0nc43XSA_rH1sgHV8skpmA3rTlEnnDVT3yr7SoQd102NL4KNJH6DWLY4pIDZhrB_QYIk60WNRgeQgaKEUUuWTP9GVYVvAdWPaP1agqKXi0FLlVkYEe3tG8cNRhVt4RXJSVwU2ccpncnp7cHvWjpq5CZBmTk0hyB0GP8eAr2jj1aZrl-5lx6SBlfGAzaaTImFceBs8mDp5bcBSc4MqmznLBVshUMS78KqEKcYngxNmBlNzI3AwMOCR5onLDBbRdI_vtcGrb5BzH0hcj3YLLHnSQgUYZ6FhokMEa2f3s9FSn3Pi7uWzlpL_NHA1G4e-O261UNawpPCjJCz-uSg0xlwi11_n6f1--QWbxCq1cIjbJ1OS58lvgvkxMN8zPLpk-PLvoX30AMNHwhw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEB_8VuTzIvqp-DYfeLRsu0nT1pv4YH0tgit4C81jYWWtYrfixf_dmbQVFPHgsW2mLTPJPJL5zQDsae5MHtokkFlsA0EgLgKlBVyjNdFS55km7PDVQPZvxfldfDcDRy0WhtIqG91f63SvrZs73Yab3afxuHsT8iQVPInQo_Bw0T8wS9WpRAdmD88u-oMPhRwlvD5MwICJCNriQz7NizYQqP5QJH0FT9_27VsD9UVVe_tzuggLjePIDut_W4IZV_yDOZ_AacpleKOFPXGvrKjzutm4RfIxQpCwax6GjJI1cLodsGMMOsloMU0dIphHFTGCkz2zl3FZ4Xdw5T9Uk6pk6NQyglcFGimcZXlhmaXCvBO8KCtN-zjlCgxPT4ZH_aBprRAYzuU0kMJi3KMduosmTF2aZnkv0zYdpVyMTCa1jDPuEofMM5HF5wZ9BYvcNak1Iuar0CkeC7cGLKHURPTjzEhKoWWuRxp9kjxKci1iHLsOvZadyjRlx6n7xUS1-WX3ystAkQxUGCuUwTrsfxA91VU3fh4uWzmpT5NHoV34mfB_K1WFy4rOSvLCPValwrAr9u3XxcZvX74Lf_vDq0t1eTa42IR5ekJGL4q3oDN9rtw2ejNTvdPM1ndttvM4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+network+inference+from+P300+signals%3A+Decoding+brain+state+under+visual+stimulus+for+able-bodied+and+disabled+subjects&rft.jtitle=Physica+A&rft.au=Gaoa%2C+Zhong-Ke&rft.au=Caia%2C+Qing&rft.au=Donga%2C+Na&rft.au=Zhanga%2C+Shan-Shan&rft.date=2016-10-15&rft.issn=0378-4371&rft.volume=460&rft.spage=294&rft.epage=303&rft_id=info:doi/10.1016%2Fj.physa.2016.05.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon