Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects
Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human br...
Saved in:
Published in | Physica A Vol. 460; pp. 294 - 303 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4371 1873-2119 |
DOI | 10.1016/j.physa.2016.05.035 |
Cover
Loading…
Abstract | Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.
•We develop an approach to construct brain network from P300 event-related potentials.•We integrate both time and frequency domain information to infer complex network.•Our method allows analyzing multi-channel signals.•Our method allows identifying brain states between able-bodied and disabled subjects. |
---|---|
AbstractList | Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.
•We develop an approach to construct brain network from P300 event-related potentials.•We integrate both time and frequency domain information to infer complex network.•Our method allows analyzing multi-channel signals.•Our method allows identifying brain states between able-bodied and disabled subjects. Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects. |
Author | Gao, Zhong-Ke Bo, Yun Zhang, Shan-Shan Dong, Na Zhang, Jie Cai, Qing |
Author_xml | – sequence: 1 givenname: Zhong-Ke surname: Gao fullname: Gao, Zhong-Ke email: zhongkegao@tju.edu.cn organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Qing surname: Cai fullname: Cai, Qing organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Na surname: Dong fullname: Dong, Na email: dongna@tju.edu.cn organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Shan-Shan surname: Zhang fullname: Zhang, Shan-Shan organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China – sequence: 5 givenname: Yun surname: Bo fullname: Bo, Yun organization: School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China – sequence: 6 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Center for Computational Systems Biology, Fudan University, Shanghai 200433, China |
BookMark | eNqFkT2P1DAQhi10SOwd_AIalzQJ4zhOHCQKtBwf0klQXG859uTwktiLJzm4gv-Ol6WigGo043lGeh9fsouYIjL2XEAtQHQvD_XxywPZuilNDaoGqR6xndC9rBohhgu2A9nrqpW9eMIuiQ4AIHrZ7NjPfVqOM_7gEdfvKX_lIU6YMTrkU04L_ywBOIW7aGd6xd-iSz7EOz5mGyKn1a7It-gx8_tAm53LKCzbvBGfUuZ2nLEaC4Ge2-i5D3QaeU7beEC30lP2eCqH8dmfesVu313f7j9UN5_ef9y_uamclN1ada1v1DCiBnCgUevBNsPo9aRlO7mhGzs1SOyxhHLCl3cHoL1qe6e9a5W8Yi_OZ485fduQVrMEcjjPNmLayAjdKNWqpmvL6nBedTkRZZyMCyVlSHEtkWcjwJyMm4P5bdycjBtQphgvrPyLPeaw2PzwH-r1mcIi4D5gNuTC6QN8yMWR8Sn8k_8FyxGfjg |
CitedBy_id | crossref_primary_10_1016_j_physa_2018_08_041 crossref_primary_10_1016_j_physleta_2018_05_022 crossref_primary_10_1142_S0217979219502060 |
Cites_doi | 10.1103/PhysRevLett.87.198701 10.1103/PhysRevLett.104.118701 10.1007/978-3-319-00846-2_422 10.1038/srep08222 10.1103/PhysRevE.90.022804 10.1016/j.cej.2016.01.039 10.1016/j.nonrwa.2011.08.029 10.1016/j.physleta.2014.10.005 10.1177/1073858405280524 10.1016/j.bspc.2014.12.007 10.1038/nrn2575 10.1155/2012/452503 10.1103/PhysRevE.79.061916 10.1093/cercor/bht004 10.1016/j.jneumeth.2010.08.027 10.1371/journal.pone.0093045 10.1016/S0987-7053(00)00220-3 10.1016/j.jneumeth.2014.03.012 10.1016/j.neuroimage.2015.07.006 10.1126/science.1065103 10.1016/j.plrev.2015.04.033 10.1209/0295-5075/103/50004 10.1371/journal.pone.0036733 10.1371/journal.pone.0034163 10.1103/PhysRevLett.94.018102 10.1016/j.physrep.2014.07.001 10.1140/epjb/e2015-60270-7 10.1109/TBME.2012.2186568 10.1103/PhysRevE.77.050905 10.1016/j.physd.2013.06.009 10.1016/j.expthermflusci.2014.09.008 10.1155/2011/519868 10.1209/0295-5075/109/30005 10.1177/1073858411422754 10.1016/j.bandc.2013.12.011 10.1002/hbm.23113 10.1016/j.physleta.2009.09.042 10.1073/pnas.1523412113 10.1142/S0218127412502367 10.1038/nature16948 10.1016/j.physa.2015.02.035 10.1073/pnas.0806082105 10.1177/1073858406293182 10.1016/j.jneumeth.2007.03.005 10.1038/srep06787 10.1016/j.tics.2004.07.008 10.1038/ncomms8709 10.1093/cercor/bhu173 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.physa.2016.05.035 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
EndPage | 303 |
ExternalDocumentID | 10_1016_j_physa_2016_05_035 S0378437116302205 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 7TB 7U5 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c336t-64d259be800c08e889a29bd8f834fc96b6593e7e001c1de88c008d547c8dc453 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Aug 05 11:12:44 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 01:31:54 EDT 2025 Fri Feb 23 02:35:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multivariate time series analysis Brain network construction P300 ERP Complex network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-64d259be800c08e889a29bd8f834fc96b6593e7e001c1de88c008d547c8dc453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825545264 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1825545264 crossref_citationtrail_10_1016_j_physa_2016_05_035 crossref_primary_10_1016_j_physa_2016_05_035 elsevier_sciencedirect_doi_10_1016_j_physa_2016_05_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-15 |
PublicationDateYYYYMMDD | 2016-10-15 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gao, Barzel, Barabási (br000090) 2016; 530 Cui, Zhang (br000255) 2016; 37 Hoffmann, Vesin, Ebrahimi, Diserens (br000010) 2008; 167 Gao, Buldyrev, Havlin, Stanley (br000050) 2011; 107 M.E.J. Newman, Oxford University Press, 2010. Wang, Wang, Szolnoki, Perc (br000075) 2015; 88 Gao, Yang, Fang, Jin, Xia, Hu (br000130) 2015; 5 Maslov, Sneppen (br000265) 2002; 296 Kramer, Cash (br000200) 2012; 18 Xu, Zhang, Small (br000100) 2008; 105 Gao, Zhang, Jin, Donner, Marwan, Kurths (br000115) 2013; 103 Valencia, Martinerie, Dupont, Chavez (br000175) 2008; 77 Bassett, Bullmore (br000180) 2006; 12 Gao, Yang, Zhai, Jin, Chen (br000125) 2016 Sporns, Chialvo, Kaiser, Hilgetag (br000160) 2004; 8 Boccaletti, Bianconi, Criado, del Genio, Gómez-Gardeñes, Romance, Sendiña-Nadal, Wang, Zanin (br000045) 2014; 544 Latora, Marchiori (br000260) 2001; 87 Wang, Kokubo, Jusup, Tanimoto (br000080) 2015; 14 Carrillo-de-la Pena, Cadaveira (br000270) 2000; 30 Subramaniyam, Hyttinen (br000220) 2014; 378 Chavez, Valencia, Navarro, Latora, Martinerie (br000190) 2010; 104 Liu, Stanley, Gao (br000085) 2016; 113 Gao, Yang, Fang, Zhou, Xia, Du (br000120) 2015; 109 Huang, Dong, Huang, Lai (br000070) 2014; 4 Zou, Senthilkumar, Nagao, Kiss, Tang, Koseska, Duan, Kurths (br000060) 2015; 6 Marwan, Donges, Zou, Donner, Kurths (br000110) 2009; 373 Weng, Zhao, Small, Huang (br000150) 2014; 90 Dimitriadis, Laskaris, Tsirka, Vourkas, Micheloyannis, Fotopoulos (br000195) 2010; 193 Dimitriadis, Laskaris, Tzelepi, Economou (br000205) 2012; 59 Sun, Lee, Chen, Collinson, Thakor, Bezerianos, Sim (br000245) 2012; 7 Eguíluz, Chialvo, Cecchi, Baliki, Apkarian (br000165) 2005; 94 Gao, Guan, Gao, Zhou (br000030) 2015; 18 Jin, Song, Liu, Stanley (br000055) 2015; 427 Dimitriadis, Sun, Laskaris, Thakor, Bezerianos (br000240) 2014; 41 Huang, Lai, Harrison (br000135) 2012; 22 Zhou, Huang, Huang, Lai, Yang, Xue (br000065) 2013; 87 Gao, Jin (br000140) 2012; 13 Gao, Yang, Zhai, Ding, Jin (br000145) 2016; 291 Onishi, Natsume (br000025) 2014; 9 Gao, Fang, Ding, Jin (br000155) 2015; 60 Peng, Hu, Zhang, Hu (br000020) 2012; 7 Bullmore, Sporns (br000185) 2009; 10 Ioannides, Dimitriadis, Saridis, Voultsidou, Poghosyan, Liu, Laskaris (br000210) 2012; 2012 Zhang, Kendrick, Lu, Feng (br000250) 2014; 25 Lehnertz, Ansmanna, Bialonskia, Dicktena, Geiera, Porza (br000215) 2014; 267 Zhang, Cheng, Wang, Lu, Lu, Fang (br000225) 2012; 7 Sun, Lim, Kwok, Bezerianos (br000235) 2014; 85 Uehara, Yamasaki, Okamoto, Koike, Kan, Miyauchi, Kira, Tobimatsu (br000230) 2013; 24 Kramer, Eden, Cash, Kolaczyk (br000105) 2009; 79 Manyakov, Chumerin, Combaz, Van Hulle (br000015) 2011; 2011 Saggar, Hosseini, Bruno, Quintin, Raman, Kesler, Reiss (br000170) 2015; 120 Zhang, Small (br000095) 2006; 96 Linden (br000005) 2005; 11 Zhang, Zhou, Jin, Wang, Cichocki (br000035) 2015; 244 Boccaletti (10.1016/j.physa.2016.05.035_br000045) 2014; 544 Uehara (10.1016/j.physa.2016.05.035_br000230) 2013; 24 Linden (10.1016/j.physa.2016.05.035_br000005) 2005; 11 Huang (10.1016/j.physa.2016.05.035_br000135) 2012; 22 Zhang (10.1016/j.physa.2016.05.035_br000035) 2015; 244 Latora (10.1016/j.physa.2016.05.035_br000260) 2001; 87 Kramer (10.1016/j.physa.2016.05.035_br000105) 2009; 79 Chavez (10.1016/j.physa.2016.05.035_br000190) 2010; 104 Zhang (10.1016/j.physa.2016.05.035_br000095) 2006; 96 Huang (10.1016/j.physa.2016.05.035_br000070) 2014; 4 Valencia (10.1016/j.physa.2016.05.035_br000175) 2008; 77 Manyakov (10.1016/j.physa.2016.05.035_br000015) 2011; 2011 Carrillo-de-la Pena (10.1016/j.physa.2016.05.035_br000270) 2000; 30 Gao (10.1016/j.physa.2016.05.035_br000125) 2016 Gao (10.1016/j.physa.2016.05.035_br000030) 2015; 18 Sun (10.1016/j.physa.2016.05.035_br000235) 2014; 85 Gao (10.1016/j.physa.2016.05.035_br000140) 2012; 13 Ioannides (10.1016/j.physa.2016.05.035_br000210) 2012; 2012 Marwan (10.1016/j.physa.2016.05.035_br000110) 2009; 373 Xu (10.1016/j.physa.2016.05.035_br000100) 2008; 105 Dimitriadis (10.1016/j.physa.2016.05.035_br000240) 2014; 41 Gao (10.1016/j.physa.2016.05.035_br000090) 2016; 530 Sporns (10.1016/j.physa.2016.05.035_br000160) 2004; 8 Cui (10.1016/j.physa.2016.05.035_br000255) 2016; 37 Dimitriadis (10.1016/j.physa.2016.05.035_br000205) 2012; 59 Wang (10.1016/j.physa.2016.05.035_br000075) 2015; 88 Gao (10.1016/j.physa.2016.05.035_br000130) 2015; 5 Zhang (10.1016/j.physa.2016.05.035_br000250) 2014; 25 Gao (10.1016/j.physa.2016.05.035_br000145) 2016; 291 Lehnertz (10.1016/j.physa.2016.05.035_br000215) 2014; 267 Liu (10.1016/j.physa.2016.05.035_br000085) 2016; 113 Peng (10.1016/j.physa.2016.05.035_br000020) 2012; 7 Wang (10.1016/j.physa.2016.05.035_br000080) 2015; 14 Subramaniyam (10.1016/j.physa.2016.05.035_br000220) 2014; 378 Gao (10.1016/j.physa.2016.05.035_br000155) 2015; 60 Zhang (10.1016/j.physa.2016.05.035_br000225) 2012; 7 10.1016/j.physa.2016.05.035_br000040 Gao (10.1016/j.physa.2016.05.035_br000120) 2015; 109 Gao (10.1016/j.physa.2016.05.035_br000050) 2011; 107 Zhou (10.1016/j.physa.2016.05.035_br000065) 2013; 87 Kramer (10.1016/j.physa.2016.05.035_br000200) 2012; 18 Eguíluz (10.1016/j.physa.2016.05.035_br000165) 2005; 94 Weng (10.1016/j.physa.2016.05.035_br000150) 2014; 90 Dimitriadis (10.1016/j.physa.2016.05.035_br000195) 2010; 193 Bassett (10.1016/j.physa.2016.05.035_br000180) 2006; 12 Sun (10.1016/j.physa.2016.05.035_br000245) 2012; 7 Bullmore (10.1016/j.physa.2016.05.035_br000185) 2009; 10 Saggar (10.1016/j.physa.2016.05.035_br000170) 2015; 120 Hoffmann (10.1016/j.physa.2016.05.035_br000010) 2008; 167 Jin (10.1016/j.physa.2016.05.035_br000055) 2015; 427 Zou (10.1016/j.physa.2016.05.035_br000060) 2015; 6 Maslov (10.1016/j.physa.2016.05.035_br000265) 2002; 296 Gao (10.1016/j.physa.2016.05.035_br000115) 2013; 103 Onishi (10.1016/j.physa.2016.05.035_br000025) 2014; 9 |
References_xml | – volume: 7 start-page: e36733 year: 2012 ident: br000225 publication-title: PLoS One – volume: 7 start-page: e34163 year: 2012 ident: br000020 publication-title: PLoS One – volume: 8 start-page: 418 year: 2004 ident: br000160 publication-title: Trends Cogn. Sci. – volume: 7 start-page: e36733 year: 2012 ident: br000245 publication-title: PLoS One – volume: 12 start-page: 512 year: 2006 ident: br000180 publication-title: Neuroscientist – volume: 25 start-page: 3475 year: 2014 ident: br000250 publication-title: Cereb. Cortex – volume: 2011 year: 2011 ident: br000015 publication-title: Comput. Intell. Neurosci. – volume: 244 start-page: 8 year: 2015 ident: br000035 publication-title: J. Neurosci. Methods – volume: 96 year: 2006 ident: br000095 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 232 year: 2000 ident: br000270 publication-title: Neurophysiol. Clin./Clin. Neurophysiol. – volume: 427 start-page: 302 year: 2015 ident: br000055 publication-title: Physica A – volume: 373 start-page: 4246 year: 2009 ident: br000110 publication-title: Phys. Lett. A – volume: 5 start-page: 8222 year: 2015 ident: br000130 publication-title: Sci. Rep. – volume: 4 start-page: 6787 year: 2014 ident: br000070 publication-title: Sci. Rep. – volume: 87 year: 2001 ident: br000260 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 563 year: 2005 ident: br000005 publication-title: Neuroscientist – volume: 59 start-page: 1302 year: 2012 ident: br000205 publication-title: IEEE Trans. Biomed. Eng. – volume: 103 start-page: 50004 year: 2013 ident: br000115 publication-title: Europhys. Lett. – volume: 18 start-page: 360 year: 2012 ident: br000200 publication-title: Neuroscientist – year: 2016 ident: br000125 publication-title: IEEE Trans. Instrum. Meas. – volume: 87 year: 2013 ident: br000065 publication-title: Phys. Rev. E – volume: 88 start-page: 124 year: 2015 ident: br000075 publication-title: Eur. Phys. J. B – volume: 378 start-page: 3464 year: 2014 ident: br000220 publication-title: Phys. Lett. A – volume: 37 start-page: 1459 year: 2016 ident: br000255 publication-title: Hum. Brain Mapp. – volume: 79 year: 2009 ident: br000105 publication-title: Phys. Rev. E – volume: 77 year: 2008 ident: br000175 publication-title: Phys. Rev. E – volume: 6 start-page: 7709 year: 2015 ident: br000060 publication-title: Nature Commun. – volume: 60 start-page: 157 year: 2015 ident: br000155 publication-title: Exp. Therm Fluid Sci. – volume: 94 year: 2005 ident: br000165 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 1529 year: 2013 ident: br000230 publication-title: Cereb. Cortex – reference: M.E.J. Newman, Oxford University Press, 2010. – volume: 14 start-page: 1 year: 2015 ident: br000080 publication-title: Phys. Life Rev. – volume: 291 start-page: 74 year: 2016 ident: br000145 publication-title: Chem. Eng. J. – volume: 10 start-page: 186 year: 2009 ident: br000185 publication-title: Nat. Rev. Neurosci. – volume: 104 year: 2010 ident: br000190 publication-title: Phys. Rev. Lett. – volume: 530 start-page: 307 year: 2016 ident: br000090 publication-title: Nature – volume: 120 start-page: 274 year: 2015 ident: br000170 publication-title: Neuroimage – volume: 296 start-page: 910 year: 2002 ident: br000265 publication-title: Science – volume: 9 start-page: e93045 year: 2014 ident: br000025 publication-title: PLoS One – volume: 22 start-page: 1250236 year: 2012 ident: br000135 publication-title: Internat. J. Bifur. Chaos – volume: 113 start-page: 1138 year: 2016 ident: br000085 publication-title: Proc. Natl. Acad. Sci. USA – volume: 107 year: 2011 ident: br000050 publication-title: Phys. Rev. Lett. – volume: 167 start-page: 115 year: 2008 ident: br000010 publication-title: J. Neurosci. Methods – volume: 18 start-page: 127 year: 2015 ident: br000030 publication-title: Biomed. Signal Process. – volume: 13 start-page: 947 year: 2012 ident: br000140 publication-title: Nonlinear Anal.-Real – volume: 109 start-page: 30005 year: 2015 ident: br000120 publication-title: Europhys. Lett. – volume: 85 start-page: 220 year: 2014 ident: br000235 publication-title: Brain Cogn. – volume: 41 start-page: 1710 year: 2014 ident: br000240 article-title: XIII mediterranean conference on medical and biological engineering and computing 2013 publication-title: IFMBE Proc. – volume: 544 start-page: 1 year: 2014 ident: br000045 publication-title: Phys. Rep. – volume: 267 start-page: 7 year: 2014 ident: br000215 publication-title: Physica D – volume: 90 start-page: 1 year: 2014 ident: br000150 publication-title: Phys. Rev. E – volume: 2012 year: 2012 ident: br000210 publication-title: Comput. Math. Methods Med. – volume: 105 start-page: 19601 year: 2008 ident: br000100 publication-title: Proc. Natl. Acad. Sci. USA – volume: 193 start-page: 145 year: 2010 ident: br000195 publication-title: J. Neurosci. Methods – volume: 87 year: 2001 ident: 10.1016/j.physa.2016.05.035_br000260 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.198701 – ident: 10.1016/j.physa.2016.05.035_br000040 – volume: 87 year: 2013 ident: 10.1016/j.physa.2016.05.035_br000065 publication-title: Phys. Rev. E – volume: 104 year: 2010 ident: 10.1016/j.physa.2016.05.035_br000190 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.118701 – volume: 41 start-page: 1710 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000240 article-title: XIII mediterranean conference on medical and biological engineering and computing 2013 publication-title: IFMBE Proc. doi: 10.1007/978-3-319-00846-2_422 – volume: 5 start-page: 8222 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000130 publication-title: Sci. Rep. doi: 10.1038/srep08222 – volume: 90 start-page: 1 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000150 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.022804 – volume: 291 start-page: 74 year: 2016 ident: 10.1016/j.physa.2016.05.035_br000145 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.039 – volume: 13 start-page: 947 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000140 publication-title: Nonlinear Anal.-Real doi: 10.1016/j.nonrwa.2011.08.029 – volume: 378 start-page: 3464 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000220 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2014.10.005 – volume: 11 start-page: 563 year: 2005 ident: 10.1016/j.physa.2016.05.035_br000005 publication-title: Neuroscientist doi: 10.1177/1073858405280524 – volume: 18 start-page: 127 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000030 publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2014.12.007 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.physa.2016.05.035_br000185 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 2012 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000210 publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/452503 – volume: 79 year: 2009 ident: 10.1016/j.physa.2016.05.035_br000105 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.061916 – volume: 24 start-page: 1529 year: 2013 ident: 10.1016/j.physa.2016.05.035_br000230 publication-title: Cereb. Cortex doi: 10.1093/cercor/bht004 – volume: 193 start-page: 145 year: 2010 ident: 10.1016/j.physa.2016.05.035_br000195 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.08.027 – volume: 9 start-page: e93045 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000025 publication-title: PLoS One doi: 10.1371/journal.pone.0093045 – volume: 30 start-page: 232 year: 2000 ident: 10.1016/j.physa.2016.05.035_br000270 publication-title: Neurophysiol. Clin./Clin. Neurophysiol. doi: 10.1016/S0987-7053(00)00220-3 – volume: 244 start-page: 8 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000035 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.03.012 – volume: 120 start-page: 274 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000170 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.006 – volume: 296 start-page: 910 year: 2002 ident: 10.1016/j.physa.2016.05.035_br000265 publication-title: Science doi: 10.1126/science.1065103 – volume: 96 year: 2006 ident: 10.1016/j.physa.2016.05.035_br000095 publication-title: Phys. Rev. Lett. – year: 2016 ident: 10.1016/j.physa.2016.05.035_br000125 publication-title: IEEE Trans. Instrum. Meas. – volume: 14 start-page: 1 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000080 publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2015.04.033 – volume: 103 start-page: 50004 year: 2013 ident: 10.1016/j.physa.2016.05.035_br000115 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/50004 – volume: 7 start-page: e36733 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000225 publication-title: PLoS One doi: 10.1371/journal.pone.0036733 – volume: 7 start-page: e34163 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000020 publication-title: PLoS One doi: 10.1371/journal.pone.0034163 – volume: 94 year: 2005 ident: 10.1016/j.physa.2016.05.035_br000165 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.018102 – volume: 544 start-page: 1 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000045 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2014.07.001 – volume: 88 start-page: 124 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000075 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2015-60270-7 – volume: 107 year: 2011 ident: 10.1016/j.physa.2016.05.035_br000050 publication-title: Phys. Rev. Lett. – volume: 59 start-page: 1302 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000205 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2186568 – volume: 77 year: 2008 ident: 10.1016/j.physa.2016.05.035_br000175 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.050905 – volume: 267 start-page: 7 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000215 publication-title: Physica D doi: 10.1016/j.physd.2013.06.009 – volume: 60 start-page: 157 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000155 publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2014.09.008 – volume: 2011 year: 2011 ident: 10.1016/j.physa.2016.05.035_br000015 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/519868 – volume: 109 start-page: 30005 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000120 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/109/30005 – volume: 18 start-page: 360 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000200 publication-title: Neuroscientist doi: 10.1177/1073858411422754 – volume: 85 start-page: 220 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000235 publication-title: Brain Cogn. doi: 10.1016/j.bandc.2013.12.011 – volume: 37 start-page: 1459 year: 2016 ident: 10.1016/j.physa.2016.05.035_br000255 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23113 – volume: 373 start-page: 4246 year: 2009 ident: 10.1016/j.physa.2016.05.035_br000110 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2009.09.042 – volume: 113 start-page: 1138 year: 2016 ident: 10.1016/j.physa.2016.05.035_br000085 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1523412113 – volume: 22 start-page: 1250236 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000135 publication-title: Internat. J. Bifur. Chaos doi: 10.1142/S0218127412502367 – volume: 530 start-page: 307 year: 2016 ident: 10.1016/j.physa.2016.05.035_br000090 publication-title: Nature doi: 10.1038/nature16948 – volume: 427 start-page: 302 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000055 publication-title: Physica A doi: 10.1016/j.physa.2015.02.035 – volume: 105 start-page: 19601 year: 2008 ident: 10.1016/j.physa.2016.05.035_br000100 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0806082105 – volume: 12 start-page: 512 year: 2006 ident: 10.1016/j.physa.2016.05.035_br000180 publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 167 start-page: 115 year: 2008 ident: 10.1016/j.physa.2016.05.035_br000010 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.005 – volume: 4 start-page: 6787 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000070 publication-title: Sci. Rep. doi: 10.1038/srep06787 – volume: 8 start-page: 418 year: 2004 ident: 10.1016/j.physa.2016.05.035_br000160 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.07.008 – volume: 6 start-page: 7709 year: 2015 ident: 10.1016/j.physa.2016.05.035_br000060 publication-title: Nature Commun. doi: 10.1038/ncomms8709 – volume: 7 start-page: e36733 year: 2012 ident: 10.1016/j.physa.2016.05.035_br000245 publication-title: PLoS One doi: 10.1371/journal.pone.0036733 – volume: 25 start-page: 3475 year: 2014 ident: 10.1016/j.physa.2016.05.035_br000250 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu173 |
SSID | ssj0001732 |
Score | 2.201487 |
Snippet | Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 294 |
SubjectTerms | Brain Brain network construction Channels Complex network Construction Inference Multiple sclerosis Multivariate time series analysis Networks P300 ERP Visual |
Title | Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects |
URI | https://dx.doi.org/10.1016/j.physa.2016.05.035 https://www.proquest.com/docview/1825545264 |
Volume | 460 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DIngRV1yHCB6t05qt9SYujIoiqOAtNMvAyNgROxUv-tt9L20VRTx4bJu0JS95S_J97xGyY5i3eexUJDPhIo4kLiSlRcyANTHS5JlB7vDllezf8fN7cd8hRy0XBmGVje6vdXrQ1s2dXjOavafhsHcTM5VyphLwKAJdFBnsXCGsb-_9C-aRKFafJEC0hK3bzEMB44W7B5h8KJEhfWeo-fardfqhp4PxOZ0nc43XSA_rH1sgHV8skpmA3rTlEnnDVT3yr7SoQd102NL4KNJH6DWLY4pIDZhrB_QYIk60WNRgeQgaKEUUuWTP9GVYVvAdWPaP1agqKXi0FLlVkYEe3tG8cNRhVt4RXJSVwU2ccpncnp7cHvWjpq5CZBmTk0hyB0GP8eAr2jj1aZrl-5lx6SBlfGAzaaTImFceBs8mDp5bcBSc4MqmznLBVshUMS78KqEKcYngxNmBlNzI3AwMOCR5onLDBbRdI_vtcGrb5BzH0hcj3YLLHnSQgUYZ6FhokMEa2f3s9FSn3Pi7uWzlpL_NHA1G4e-O261UNawpPCjJCz-uSg0xlwi11_n6f1--QWbxCq1cIjbJ1OS58lvgvkxMN8zPLpk-PLvoX30AMNHwhw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEB_8VuTzIvqp-DYfeLRsu0nT1pv4YH0tgit4C81jYWWtYrfixf_dmbQVFPHgsW2mLTPJPJL5zQDsae5MHtokkFlsA0EgLgKlBVyjNdFS55km7PDVQPZvxfldfDcDRy0WhtIqG91f63SvrZs73Yab3afxuHsT8iQVPInQo_Bw0T8wS9WpRAdmD88u-oMPhRwlvD5MwICJCNriQz7NizYQqP5QJH0FT9_27VsD9UVVe_tzuggLjePIDut_W4IZV_yDOZ_AacpleKOFPXGvrKjzutm4RfIxQpCwax6GjJI1cLodsGMMOsloMU0dIphHFTGCkz2zl3FZ4Xdw5T9Uk6pk6NQyglcFGimcZXlhmaXCvBO8KCtN-zjlCgxPT4ZH_aBprRAYzuU0kMJi3KMduosmTF2aZnkv0zYdpVyMTCa1jDPuEofMM5HF5wZ9BYvcNak1Iuar0CkeC7cGLKHURPTjzEhKoWWuRxp9kjxKci1iHLsOvZadyjRlx6n7xUS1-WX3ystAkQxUGCuUwTrsfxA91VU3fh4uWzmpT5NHoV34mfB_K1WFy4rOSvLCPValwrAr9u3XxcZvX74Lf_vDq0t1eTa42IR5ekJGL4q3oDN9rtw2ejNTvdPM1ndttvM4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+network+inference+from+P300+signals%3A+Decoding+brain+state+under+visual+stimulus+for+able-bodied+and+disabled+subjects&rft.jtitle=Physica+A&rft.au=Gaoa%2C+Zhong-Ke&rft.au=Caia%2C+Qing&rft.au=Donga%2C+Na&rft.au=Zhanga%2C+Shan-Shan&rft.date=2016-10-15&rft.issn=0378-4371&rft.volume=460&rft.spage=294&rft.epage=303&rft_id=info:doi/10.1016%2Fj.physa.2016.05.035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |