Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models
Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Althoug...
Saved in:
Published in | Advances in data analysis and classification Vol. 10; no. 2; pp. 209 - 224 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1862-5347 1862-5355 |
DOI | 10.1007/s11634-016-0251-0 |
Cover
Loading…
Abstract | Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Although power analysis is rarely conducted for this test, it is important to identify, clarify, and specify the design issues that influence the statistical inference on the number of latent classes based on the BLRT. This paper proposes a computationally efficient ‘short-cut’ method to evaluate the power of the BLRT, as well as presents a procedure to determine a required sample size to attain a specific power level. Results of our numerical study showed that this short-cut method yields reliable estimates of the power of the BLRT. The numerical study also showed that the sample size required to achieve a specified power level depends on various factors of which the class separation plays a dominant role. In some situations, a sample size of 200 may be enough, while in others 2000 or more subjects are required to achieve the required power. |
---|---|
AbstractList | Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Although power analysis is rarely conducted for this test, it is important to identify, clarify, and specify the design issues that influence the statistical inference on the number of latent classes based on the BLRT. This paper proposes a computationally efficient ‘short-cut’ method to evaluate the power of the BLRT, as well as presents a procedure to determine a required sample size to attain a specific power level. Results of our numerical study showed that this short-cut method yields reliable estimates of the power of the BLRT. The numerical study also showed that the sample size required to achieve a specified power level depends on various factors of which the class separation plays a dominant role. In some situations, a sample size of 200 may be enough, while in others 2000 or more subjects are required to achieve the required power. |
Author | Tekle, Fetene B. Gudicha, Dereje W. Vermunt, Jeroen K. |
Author_xml | – sequence: 1 givenname: Fetene B. surname: Tekle fullname: Tekle, Fetene B. email: ftekle@ITS.JNJ.com organization: Department of Nonclinical Statistics and Computing, Janssen Research and Development – sequence: 2 givenname: Dereje W. surname: Gudicha fullname: Gudicha, Dereje W. organization: Department of Methodology and Statistics, Tilburg University – sequence: 3 givenname: Jeroen K. surname: Vermunt fullname: Vermunt, Jeroen K. organization: Department of Methodology and Statistics, Tilburg University |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A6v52mz3KMUvKOhBzyGbTtrUbVIyKdJ_75ZKDx48zTC8zwzzTMgopgiE3HJ2xxlr7pFzLVXFuK6YqHnFLsiYz7SoalnXo3OvmisyQdwwppli9Zis3tM3ZGqj7Q8YkPqUaVkD7VIqWLLd0T58QR_WKS1ptiUkWgDLORf3227gk6eut4iANETa2wKxnCZ0m5bQ4zW59LZHuPmtU_L59Pgxf6kWb8-v84dF5aTUpdLSM9YK4KpW2nZu5rTVM8mla4XTSrQKGGgQjZMt7xrVaec4F9Ipz_3Sg5wSftrrckLM4M0uh63NB8OZOZoyJ1NmMGWOpgwbmOYP40I5vhoHAaH_lxQnEocrcQXZbNI-Dy7xH-gH9y-Acg |
CitedBy_id | crossref_primary_10_1007_s12144_022_03408_0 crossref_primary_10_1016_j_chiabu_2017_01_005 crossref_primary_10_3389_fpsyt_2020_00241 crossref_primary_10_3390_bs14030178 crossref_primary_10_1016_j_hrtlng_2019_01_001 crossref_primary_10_1007_s10342_020_01281_9 crossref_primary_10_1177_08862605241284087 crossref_primary_10_1007_s11409_021_09271_x crossref_primary_10_1080_09638237_2018_1437615 crossref_primary_10_1016_j_spasta_2023_100753 crossref_primary_10_1177_1525107118801301 crossref_primary_10_3389_fpsyt_2023_1173441 crossref_primary_10_1080_10705511_2017_1335206 crossref_primary_10_1016_j_chiabu_2025_107425 crossref_primary_10_1007_s40653_022_00449_2 crossref_primary_10_1111_2041_210X_12565 crossref_primary_10_1080_03075079_2018_1493097 crossref_primary_10_1080_13691058_2022_2086709 crossref_primary_10_1016_j_ijlp_2024_102040 crossref_primary_10_1016_j_lindif_2017_11_001 crossref_primary_10_1093_molbev_msz243 crossref_primary_10_1016_j_actpsy_2023_103896 crossref_primary_10_1371_journal_pone_0276808 crossref_primary_10_1080_20008066_2024_2434316 crossref_primary_10_1007_s00357_018_9291_9 crossref_primary_10_1080_10705511_2023_2213842 crossref_primary_10_1177_0013164417719111 crossref_primary_10_7717_peerj_14297 crossref_primary_10_3354_meps13864 crossref_primary_10_1111_evo_13482 crossref_primary_10_1007_s11634_021_00456_5 crossref_primary_10_1080_10705511_2020_1802280 crossref_primary_10_1016_j_seps_2019_100743 crossref_primary_10_1080_24709360_2019_1618653 crossref_primary_10_1017_edp_2017_3 crossref_primary_10_1016_j_alcr_2019_100323 crossref_primary_10_1186_s12859_023_05567_8 crossref_primary_10_1177_1094428117752467 crossref_primary_10_1016_j_jpsychires_2023_10_031 |
Cites_doi | 10.1093/biomet/90.4.991 10.2307/2532736 10.1093/biomet/72.1.133 10.1093/pan/mpq025 10.1109/TAC.1974.1100705 10.1177/014662168901300301 10.1016/j.jeconom.2005.06.002 10.1016/j.jretconser.2007.02.007 10.1214/aos/1176345338 10.1016/j.csda.2008.04.037 10.1207/s15327906mbr1602_3 10.1016/j.schres.2009.09.017 10.1093/biomet/88.3.767 10.1002/0471721182 10.1007/s11634-013-0156-0 10.1007/BF02294104 10.1177/0049124196024004004 10.1207/s15327906mbr0503_6 10.1111/j.1467-9868.2009.00730.x 10.1016/0167-9473(96)88919-5 10.2307/3172888 10.1348/000711003770480048 10.1080/10705510701575396 10.1214/aos/1176344136 10.1016/B978-0-12-714250-0.50007-3 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11634-016-0251-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Economics Law Computer Science Mathematics Statistics Physics |
EISSN | 1862-5355 |
EndPage | 224 |
ExternalDocumentID | 10_1007_s11634_016_0251_0 |
GrantInformation_xml | – fundername: the Netherlands Organization for Scientific Research (NOW) grantid: 453-10-002 – fundername: the Netherlands Organization for Scientific Research (NOW) grantid: 453-10-002; 406-11-039 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c336t-63f0092e14546abc8c6a68313c92c64294e0e6e27c391b74b6cc1123c4f1fdfe3 |
IEDL.DBID | U2A |
ISSN | 1862-5347 |
IngestDate | Tue Jul 01 01:10:26 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Fri Feb 21 02:36:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bootstrap Latent class models Sample size 62F03 Likelihood ratio test Power |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-63f0092e14546abc8c6a68313c92c64294e0e6e27c391b74b6cc1123c4f1fdfe3 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1007_s11634_016_0251_0 crossref_citationtrail_10_1007_s11634_016_0251_0 springer_journals_10_1007_s11634_016_0251_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | Theory, Methods, and Applications in Data Science |
PublicationTitle | Advances in data analysis and classification |
PublicationTitleAbbrev | Adv Data Anal Classif |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Lo, Mendell, Rubin (CR16) 2001; 88 Davidson, MacKinnon (CR5) 2006; 133 Oberski (CR23) 2015 Johnson, Rossell (CR12) 2010; 27 Vermunt (CR34) 2010; 18 Bock (CR2) 1996; 23 CR19 CR36 Cohen (CR3) 1988 CR35 CR30 Van der Heijden, HitHart, Dessens, Rost, Langeheine (CR33) 1997 Langeheine, Pannekoek, van de Pol (CR13) 1996; 24 Magidson, Vermunt, Kaplan (CR17) 2004 Everitt (CR7) 1981; 16 McLachlan, Peel (CR20) 2000 Leask, Vermunt, Done, Crowd, Blows, Boks (CR15) 2009; 115 Self, Mauritsen, Ohara (CR27) 1992; 48 Holt, Macready (CR10) 1989; 13 Lazarsfeld, Henry (CR14) 1968 Steiger, Shapiro, Browne (CR29) 1985; 50 Zenor, Srivastava (CR38) 1993; 25 Schwarz (CR26) 1978; 6 Shapiro (CR28) 1985; 72 Tollenaar, Mooijaart (CR32) 2003; 56 Jeffries (CR11) 2003; 90 McLachlan (CR18) 1987; 36 Rindskopf (CR24) 2002 Nylund, Muthen, Muthen (CR22) 2007; 14 Akaike (CR1) 1974; 19 Dias, Vermunt (CR6) 2007; 14 Hartigan, Ryzin (CR9) 1977 CR21 Tekle, Tan, Berger (CR31) 2008; 52 Collins, Lanza (CR4) 2010 Rubin (CR25) 1981; 9 Wolfe (CR37) 1970; 5 Genge (CR8) 2014; 8 YT Lo (251_CR16) 2001; 88 251_CR30 G McLachlan (251_CR20) 2000 D Rindskopf (251_CR24) 2002 H Akaike (251_CR1) 1974; 19 SJ Leask (251_CR15) 2009; 115 VE Johnson (251_CR12) 2010; 27 A Shapiro (251_CR28) 1985; 72 JK Vermunt (251_CR34) 2010; 18 JA Holt (251_CR10) 1989; 13 JA Hartigan (251_CR9) 1977 LM Collins (251_CR4) 2010 JH Steiger (251_CR29) 1985; 50 D Oberski (251_CR23) 2015 JG Dias (251_CR6) 2007; 14 BS Everitt (251_CR7) 1981; 16 G Schwarz (251_CR26) 1978; 6 DB Rubin (251_CR25) 1981; 9 251_CR21 N Tollenaar (251_CR32) 2003; 56 J Magidson (251_CR17) 2004 HH Bock (251_CR2) 1996; 23 JH Wolfe (251_CR37) 1970; 5 PF Lazarsfeld (251_CR14) 1968 MJ Zenor (251_CR38) 1993; 25 SG Self (251_CR27) 1992; 48 J Cohen (251_CR3) 1988 FB Tekle (251_CR31) 2008; 52 251_CR19 PGM Heijden Van der (251_CR33) 1997 G McLachlan (251_CR18) 1987; 36 R Davidson (251_CR5) 2006; 133 NO Jeffries (251_CR11) 2003; 90 E Genge (251_CR8) 2014; 8 R Langeheine (251_CR13) 1996; 24 KL Nylund (251_CR22) 2007; 14 251_CR35 251_CR36 |
References_xml | – volume: 90 start-page: 991 year: 2003 end-page: 994 ident: CR11 article-title: A note on ’testing the number of components in a normal mixture publication-title: Biometrika doi: 10.1093/biomet/90.4.991 – year: 2010 ident: CR4 publication-title: Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences – year: 2015 ident: CR23 article-title: Beyond the number of classes: separating substantive from non-substantive dependence in latent class analysis publication-title: Adv Data Anal Classif – start-page: 2912 year: 2002 end-page: 2916 ident: CR24 publication-title: The use of latent class analysis in medical diagnosis – volume: 48 start-page: 31 year: 1992 end-page: 39 ident: CR27 article-title: Power calculations for likelihood ratio tests in generalized linear models publication-title: Biometrics doi: 10.2307/2532736 – volume: 72 start-page: 133 year: 1985 end-page: 144 ident: CR28 article-title: Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints publication-title: Biometrika doi: 10.1093/biomet/72.1.133 – start-page: 190 year: 1997 end-page: 202 ident: CR33 article-title: A parametric bootstrap procedure to perform statistical tests in latent class analysis publication-title: Applications of latent trait and latent class models in the social sciences – volume: 18 start-page: 450 year: 2010 end-page: 469 ident: CR34 article-title: Latent class modeling with covariates: two improved three-step approaches publication-title: Political Anal doi: 10.1093/pan/mpq025 – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: CR1 article-title: A new look at the statistical model identification publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.1974.1100705 – start-page: 45 year: 1977 end-page: 72 ident: CR9 article-title: Distribution problems in clustering publication-title: Classification and Clustering – volume: 13 start-page: 221 year: 1989 end-page: 231 ident: CR10 article-title: A simulation study of the difference Chi-square statistic for comparing latent class models under violation of regularity conditions publication-title: Appl Psychol Meas doi: 10.1177/014662168901300301 – volume: 133 start-page: 421 year: 2006 end-page: 441 ident: CR5 article-title: The power of bootstrap and asymptotic tests publication-title: J Econom doi: 10.1016/j.jeconom.2005.06.002 – volume: 14 start-page: 359 year: 2007 end-page: 368 ident: CR6 article-title: Latent class modeling of website users’ search patterns: implications for online market segmentation publication-title: J Retail Consum Serv doi: 10.1016/j.jretconser.2007.02.007 – volume: 9 start-page: 130 issue: 1 year: 1981 end-page: 134 ident: CR25 article-title: The Bayesian bootstrap publication-title: Ann Stat doi: 10.1214/aos/1176345338 – ident: CR30 – volume: 52 start-page: 5253 issue: 12 year: 2008 end-page: 5262 ident: CR31 article-title: Maximin D-optimal designs for binary longitudinal responses publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.04.037 – volume: 16 start-page: 171 year: 1981 end-page: 180 ident: CR7 article-title: A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr1602_3 – volume: 115 start-page: 346 year: 2009 end-page: 350 ident: CR15 article-title: Beyond symptom dimensions: Schizophrenia risk factors for patient groups derived by latent class analysis publication-title: Schizophr Res doi: 10.1016/j.schres.2009.09.017 – year: 1968 ident: CR14 publication-title: Latent Structure Analysis – start-page: 175 year: 2004 end-page: 198 ident: CR17 article-title: Latent class models publication-title: The sage handbook of quantitative methodology for the social sciences – ident: CR35 – volume: 88 start-page: 767 year: 2001 end-page: 778 ident: CR16 article-title: Testing the number of components in a normal mixture publication-title: Biometrika doi: 10.1093/biomet/88.3.767 – year: 2000 ident: CR20 publication-title: Finite mixture models doi: 10.1002/0471721182 – volume: 8 start-page: 427 year: 2014 end-page: 442 ident: CR8 article-title: A latent class analysis of the public attitude towards the euro adoption in Poland publication-title: Adv Data Anal Classif doi: 10.1007/s11634-013-0156-0 – ident: CR21 – volume: 50 start-page: 253 year: 1985 end-page: 263 ident: CR29 article-title: On the multivariate asymptotic distribution of sequential Chi-square statistics publication-title: Psychometrika doi: 10.1007/BF02294104 – ident: CR19 – volume: 24 start-page: 492 year: 1996 end-page: 616 ident: CR13 article-title: Bootstrapping goodness-of-fit measures in categorical data analysis publication-title: Sociol Methods Res doi: 10.1177/0049124196024004004 – volume: 5 start-page: 329 year: 1970 end-page: 350 ident: CR37 article-title: Pattern clustering by multivariate mixture analysis publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr0503_6 – year: 1988 ident: CR3 publication-title: Statistical power analysis for the behavioral sciences – volume: 27 start-page: 143 year: 2010 end-page: 170 ident: CR12 article-title: On the use of non-local prior densities in Bayesian hypothesis tests publication-title: J R Stat Soc doi: 10.1111/j.1467-9868.2009.00730.x – volume: 23 start-page: 6 year: 1996 end-page: 28 ident: CR2 article-title: Probabilistic models in cluster analysis publication-title: Comput Stat Data Anal doi: 10.1016/0167-9473(96)88919-5 – volume: 25 start-page: 369 year: 1993 end-page: 379 ident: CR38 article-title: Inferring market structure with aggregate data: a latent segment logit approach publication-title: J Mark Res doi: 10.2307/3172888 – volume: 56 start-page: 271 year: 2003 end-page: 288 ident: CR32 article-title: Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information publication-title: Br J Math Stat Psychol doi: 10.1348/000711003770480048 – ident: CR36 – volume: 36 start-page: 318 year: 1987 end-page: 324 ident: CR18 article-title: On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture publication-title: Appl Stat J R Stat Soc – volume: 14 start-page: 535 year: 2007 end-page: 569 ident: CR22 article-title: Deciding on the number of classes in latent class analysis and growth mixture modeling: a monte carlo simulation study publication-title: Struct Equ Model doi: 10.1080/10705510701575396 – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: CR26 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 14 start-page: 359 year: 2007 ident: 251_CR6 publication-title: J Retail Consum Serv doi: 10.1016/j.jretconser.2007.02.007 – volume: 18 start-page: 450 year: 2010 ident: 251_CR34 publication-title: Political Anal doi: 10.1093/pan/mpq025 – ident: 251_CR36 – volume: 90 start-page: 991 year: 2003 ident: 251_CR11 publication-title: Biometrika doi: 10.1093/biomet/90.4.991 – volume: 23 start-page: 6 year: 1996 ident: 251_CR2 publication-title: Comput Stat Data Anal – year: 2015 ident: 251_CR23 publication-title: Adv Data Anal Classif – volume: 13 start-page: 221 year: 1989 ident: 251_CR10 publication-title: Appl Psychol Meas doi: 10.1177/014662168901300301 – ident: 251_CR19 – volume: 24 start-page: 492 year: 1996 ident: 251_CR13 publication-title: Sociol Methods Res doi: 10.1177/0049124196024004004 – volume: 72 start-page: 133 year: 1985 ident: 251_CR28 publication-title: Biometrika doi: 10.1093/biomet/72.1.133 – volume: 9 start-page: 130 issue: 1 year: 1981 ident: 251_CR25 publication-title: Ann Stat doi: 10.1214/aos/1176345338 – volume: 52 start-page: 5253 issue: 12 year: 2008 ident: 251_CR31 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.04.037 – volume: 16 start-page: 171 year: 1981 ident: 251_CR7 publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr1602_3 – volume: 88 start-page: 767 year: 2001 ident: 251_CR16 publication-title: Biometrika doi: 10.1093/biomet/88.3.767 – ident: 251_CR21 – ident: 251_CR30 – volume: 115 start-page: 346 year: 2009 ident: 251_CR15 publication-title: Schizophr Res doi: 10.1016/j.schres.2009.09.017 – volume: 27 start-page: 143 year: 2010 ident: 251_CR12 publication-title: J R Stat Soc doi: 10.1111/j.1467-9868.2009.00730.x – start-page: 175 volume-title: The sage handbook of quantitative methodology for the social sciences year: 2004 ident: 251_CR17 – start-page: 2912 volume-title: The use of latent class analysis in medical diagnosis year: 2002 ident: 251_CR24 – volume: 56 start-page: 271 year: 2003 ident: 251_CR32 publication-title: Br J Math Stat Psychol doi: 10.1348/000711003770480048 – start-page: 190 volume-title: Applications of latent trait and latent class models in the social sciences year: 1997 ident: 251_CR33 – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: 251_CR3 – volume: 19 start-page: 716 year: 1974 ident: 251_CR1 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.1974.1100705 – ident: 251_CR35 – volume: 8 start-page: 427 year: 2014 ident: 251_CR8 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-013-0156-0 – volume-title: Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences year: 2010 ident: 251_CR4 – volume: 14 start-page: 535 year: 2007 ident: 251_CR22 publication-title: Struct Equ Model doi: 10.1080/10705510701575396 – volume: 25 start-page: 369 year: 1993 ident: 251_CR38 publication-title: J Mark Res doi: 10.2307/3172888 – volume: 48 start-page: 31 year: 1992 ident: 251_CR27 publication-title: Biometrics doi: 10.2307/2532736 – volume: 36 start-page: 318 year: 1987 ident: 251_CR18 publication-title: Appl Stat J R Stat Soc – volume: 50 start-page: 253 year: 1985 ident: 251_CR29 publication-title: Psychometrika doi: 10.1007/BF02294104 – volume-title: Latent Structure Analysis year: 1968 ident: 251_CR14 – volume-title: Finite mixture models year: 2000 ident: 251_CR20 doi: 10.1002/0471721182 – volume: 5 start-page: 329 year: 1970 ident: 251_CR37 publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr0503_6 – volume: 6 start-page: 461 year: 1978 ident: 251_CR26 publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 133 start-page: 421 year: 2006 ident: 251_CR5 publication-title: J Econom doi: 10.1016/j.jeconom.2005.06.002 – start-page: 45 volume-title: Classification and Clustering year: 1977 ident: 251_CR9 doi: 10.1016/B978-0-12-714250-0.50007-3 |
SSID | ssj0060405 |
Score | 2.2412112 |
Snippet | Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 209 |
SubjectTerms | Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Economics Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Physics Regular Article Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences |
Title | Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models |
URI | https://link.springer.com/article/10.1007/s11634-016-0251-0 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oK4HH1XxueTgSSm0TZpujov4QF3x4IKeSpsmsrh0F1vx7zvTxy6CCl7DNIfOZPJNZuYbgFMV2EhYk7nc-JkrEo-jH0x916qejQz6zCSlB_3Bg7wZitvn8Lnp4y7aavc2JVl56nmzG0IHqpigotkQY-BFWA4xdKc6vmHQb92vRKukukUfobobchG1qcyftvh-GX3PhFYXzNUWbDTIkPVrVW7Dgskd2GynLrDmEDqw1vYSFw4s3iefDqwPZtyruLY6aNLlDqxU9Z202CFQWXMy78DrI41GY0nDR8IQtzLcgCHgLunlY8rGozczHhHjMasshCEgLWdy9RQRNrFME_Y2BRvlbIygNS_rFVbN1yl2YXh1-XRx4zYDF1zNuSxdyS1xMBlfhEImqe5pmcge97lWgcZARQnjGWmCSHPlp5FIpdaI17gW1reZNXwPlvJJbvaBBSpF8JFJIzIhMNhNuQrJOdhEeSKT6gC89s_HumEjp6EY43jOo0zKiqkCjZQVewdwNvtkWlNx_CV83qozbk5l8bv04b-kj6ATVDZEbzHHsFS-f5gThCZl2oXl_vXL3WW3MskvVwPZjA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2VRS30UNpAVUo_fOipVVASO876iCrotuyiHhaJnqLYsdGKVUBNEBK_vjOJvYiqReJqjS1LMx6_8YzfAHxSmSuEs3XMbVrHoko4-kGdxk6NXWHRZ1aaHvRnJ3JyKn6c5Wf-H3cbqt1DSrL31Hef3RA6UMUEFc3mGAOvwbrAEFyMYP3g26_jw-CAJdolVS6mCNbjnIsiJDP_tcj96-h-LrS_Yo62YB42N1SWXOxfd3rf3P7F2_jI3b-EFx5ysoPBRl7BE9tEsBXaOTB_uiPYCJ-U2wjWptVNBM9nK1JXHHs283n4CJ72haM0uElodSB73obzn9RzjVWe6IQhIGa4AEMk39GTyhVbLi7sckFUyqw3PYZIt1vJDe1J2KVjhkC9bdmiYUtEw003jLC-cU-7A6dHh_Ovk9h3cogN57KLJXdE7mRTkQtZaTM2spJjnnKjMoMRkBI2sdJmheEq1YXQ0hgEgtwIl7raWf4aRs1lY98Ay5RGVFNLK2ohMIrWXOXkdVylElFLtQtJUGhpPM05ddtYlncEzaSKkkrbSBVlsgufV1OuBo6Ph4S_BAWX_ri3_5d--yjpj7Axmc-m5fT7yfEebGa9tdCDzzsYdb-v7XvEP53-4O39D7th96A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BolI4FAhUQL986IkqkMSOsz4iypYWFnEAiZ5C7NhoxSqsSBASvx5PYi8CtUiIqzWxEs1k_OwZvwfwXSQmY0aXIdVxGbIiojYPyjg0om8ybXNmIfFAf3jMD87Yn_P03Omc1r7b3ZckuzsNyNJUNTuT0uw8XnyzMAK7J7CBNrX74VmYY8jN3oO53V9_D_d9MuY2RrGLMbbAPUwpy3xh81-TPF2antZF2-VmsAQX_kW7LpOr7dtGbqv7ZxyOb_iSZfjgoCjZ7WJnBWZ0FcCSl3kg7q8P4L2_vFwHMHtU3AWwOJySvdqx-aGrzwfwrm0oxcEFRLEdCfQqXJ6gFhspHAEKsUCZ2AmIRfgNHrVMyHh0pccjpFgmbUgSi4CbqV0nW0KuDVEI9nVNRhUZF_iZ3QhpBX3qNTgb7J_uHYRO4SFUlPIm5NQg6ZOOWcp4IVVf8YL3aUyVSJTdGQmmI811kikqYpkxyZWyAJEqZmJTGk0_Qq-6rvQ6kERIi3ZKrlnJmN1dSypSzEamEBErudiAyDs3V47-HFU4xvkjcTO6IseWN3RFHm3A1vSRScf98ZLxD-_s3KWB-v_Wm6-y_gbzJz8H-dHv48NPsJC0wYLnQJ-h19zc6i8WFjXyqwv9B8HSAJM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+analysis+for+the+bootstrap+likelihood+ratio+test+for+the+number+of+classes+in+latent+class+models&rft.jtitle=Advances+in+data+analysis+and+classification&rft.au=Tekle%2C+Fetene+B.&rft.au=Gudicha%2C+Dereje+W.&rft.au=Vermunt%2C+Jeroen+K.&rft.date=2016-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-5347&rft.eissn=1862-5355&rft.volume=10&rft.issue=2&rft.spage=209&rft.epage=224&rft_id=info:doi/10.1007%2Fs11634-016-0251-0&rft.externalDocID=10_1007_s11634_016_0251_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-5347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-5347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-5347&client=summon |