Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models

Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Althoug...

Full description

Saved in:
Bibliographic Details
Published inAdvances in data analysis and classification Vol. 10; no. 2; pp. 209 - 224
Main Authors Tekle, Fetene B., Gudicha, Dereje W., Vermunt, Jeroen K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Subjects
Online AccessGet full text
ISSN1862-5347
1862-5355
DOI10.1007/s11634-016-0251-0

Cover

Loading…
Abstract Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Although power analysis is rarely conducted for this test, it is important to identify, clarify, and specify the design issues that influence the statistical inference on the number of latent classes based on the BLRT. This paper proposes a computationally efficient ‘short-cut’ method to evaluate the power of the BLRT, as well as presents a procedure to determine a required sample size to attain a specific power level. Results of our numerical study showed that this short-cut method yields reliable estimates of the power of the BLRT. The numerical study also showed that the sample size required to achieve a specified power level depends on various factors of which the class separation plays a dominant role. In some situations, a sample size of 200 may be enough, while in others 2000 or more subjects are required to achieve the required power.
AbstractList Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed discrete variables. One of the tests used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test (BLRT). Although power analysis is rarely conducted for this test, it is important to identify, clarify, and specify the design issues that influence the statistical inference on the number of latent classes based on the BLRT. This paper proposes a computationally efficient ‘short-cut’ method to evaluate the power of the BLRT, as well as presents a procedure to determine a required sample size to attain a specific power level. Results of our numerical study showed that this short-cut method yields reliable estimates of the power of the BLRT. The numerical study also showed that the sample size required to achieve a specified power level depends on various factors of which the class separation plays a dominant role. In some situations, a sample size of 200 may be enough, while in others 2000 or more subjects are required to achieve the required power.
Author Tekle, Fetene B.
Gudicha, Dereje W.
Vermunt, Jeroen K.
Author_xml – sequence: 1
  givenname: Fetene B.
  surname: Tekle
  fullname: Tekle, Fetene B.
  email: ftekle@ITS.JNJ.com
  organization: Department of Nonclinical Statistics and Computing, Janssen Research and Development
– sequence: 2
  givenname: Dereje W.
  surname: Gudicha
  fullname: Gudicha, Dereje W.
  organization: Department of Methodology and Statistics, Tilburg University
– sequence: 3
  givenname: Jeroen K.
  surname: Vermunt
  fullname: Vermunt, Jeroen K.
  organization: Department of Methodology and Statistics, Tilburg University
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A6v52mz3KMUvKOhBzyGbTtrUbVIyKdJ_75ZKDx48zTC8zwzzTMgopgiE3HJ2xxlr7pFzLVXFuK6YqHnFLsiYz7SoalnXo3OvmisyQdwwppli9Zis3tM3ZGqj7Q8YkPqUaVkD7VIqWLLd0T58QR_WKS1ptiUkWgDLORf3227gk6eut4iANETa2wKxnCZ0m5bQ4zW59LZHuPmtU_L59Pgxf6kWb8-v84dF5aTUpdLSM9YK4KpW2nZu5rTVM8mla4XTSrQKGGgQjZMt7xrVaec4F9Ipz_3Sg5wSftrrckLM4M0uh63NB8OZOZoyJ1NmMGWOpgwbmOYP40I5vhoHAaH_lxQnEocrcQXZbNI-Dy7xH-gH9y-Acg
CitedBy_id crossref_primary_10_1007_s12144_022_03408_0
crossref_primary_10_1016_j_chiabu_2017_01_005
crossref_primary_10_3389_fpsyt_2020_00241
crossref_primary_10_3390_bs14030178
crossref_primary_10_1016_j_hrtlng_2019_01_001
crossref_primary_10_1007_s10342_020_01281_9
crossref_primary_10_1177_08862605241284087
crossref_primary_10_1007_s11409_021_09271_x
crossref_primary_10_1080_09638237_2018_1437615
crossref_primary_10_1016_j_spasta_2023_100753
crossref_primary_10_1177_1525107118801301
crossref_primary_10_3389_fpsyt_2023_1173441
crossref_primary_10_1080_10705511_2017_1335206
crossref_primary_10_1016_j_chiabu_2025_107425
crossref_primary_10_1007_s40653_022_00449_2
crossref_primary_10_1111_2041_210X_12565
crossref_primary_10_1080_03075079_2018_1493097
crossref_primary_10_1080_13691058_2022_2086709
crossref_primary_10_1016_j_ijlp_2024_102040
crossref_primary_10_1016_j_lindif_2017_11_001
crossref_primary_10_1093_molbev_msz243
crossref_primary_10_1016_j_actpsy_2023_103896
crossref_primary_10_1371_journal_pone_0276808
crossref_primary_10_1080_20008066_2024_2434316
crossref_primary_10_1007_s00357_018_9291_9
crossref_primary_10_1080_10705511_2023_2213842
crossref_primary_10_1177_0013164417719111
crossref_primary_10_7717_peerj_14297
crossref_primary_10_3354_meps13864
crossref_primary_10_1111_evo_13482
crossref_primary_10_1007_s11634_021_00456_5
crossref_primary_10_1080_10705511_2020_1802280
crossref_primary_10_1016_j_seps_2019_100743
crossref_primary_10_1080_24709360_2019_1618653
crossref_primary_10_1017_edp_2017_3
crossref_primary_10_1016_j_alcr_2019_100323
crossref_primary_10_1186_s12859_023_05567_8
crossref_primary_10_1177_1094428117752467
crossref_primary_10_1016_j_jpsychires_2023_10_031
Cites_doi 10.1093/biomet/90.4.991
10.2307/2532736
10.1093/biomet/72.1.133
10.1093/pan/mpq025
10.1109/TAC.1974.1100705
10.1177/014662168901300301
10.1016/j.jeconom.2005.06.002
10.1016/j.jretconser.2007.02.007
10.1214/aos/1176345338
10.1016/j.csda.2008.04.037
10.1207/s15327906mbr1602_3
10.1016/j.schres.2009.09.017
10.1093/biomet/88.3.767
10.1002/0471721182
10.1007/s11634-013-0156-0
10.1007/BF02294104
10.1177/0049124196024004004
10.1207/s15327906mbr0503_6
10.1111/j.1467-9868.2009.00730.x
10.1016/0167-9473(96)88919-5
10.2307/3172888
10.1348/000711003770480048
10.1080/10705510701575396
10.1214/aos/1176344136
10.1016/B978-0-12-714250-0.50007-3
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
DBID AAYXX
CITATION
DOI 10.1007/s11634-016-0251-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Law
Computer Science
Mathematics
Statistics
Physics
EISSN 1862-5355
EndPage 224
ExternalDocumentID 10_1007_s11634_016_0251_0
GrantInformation_xml – fundername: the Netherlands Organization for Scientific Research (NOW)
  grantid: 453-10-002
– fundername: the Netherlands Organization for Scientific Research (NOW)
  grantid: 453-10-002; 406-11-039
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c336t-63f0092e14546abc8c6a68313c92c64294e0e6e27c391b74b6cc1123c4f1fdfe3
IEDL.DBID U2A
ISSN 1862-5347
IngestDate Tue Jul 01 01:10:26 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 21 02:36:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bootstrap
Latent class models
Sample size
62F03
Likelihood ratio test
Power
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-63f0092e14546abc8c6a68313c92c64294e0e6e27c391b74b6cc1123c4f1fdfe3
PageCount 16
ParticipantIDs crossref_primary_10_1007_s11634_016_0251_0
crossref_citationtrail_10_1007_s11634_016_0251_0
springer_journals_10_1007_s11634_016_0251_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle Theory, Methods, and Applications in Data Science
PublicationTitle Advances in data analysis and classification
PublicationTitleAbbrev Adv Data Anal Classif
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Lo, Mendell, Rubin (CR16) 2001; 88
Davidson, MacKinnon (CR5) 2006; 133
Oberski (CR23) 2015
Johnson, Rossell (CR12) 2010; 27
Vermunt (CR34) 2010; 18
Bock (CR2) 1996; 23
CR19
CR36
Cohen (CR3) 1988
CR35
CR30
Van der Heijden, HitHart, Dessens, Rost, Langeheine (CR33) 1997
Langeheine, Pannekoek, van de Pol (CR13) 1996; 24
Magidson, Vermunt, Kaplan (CR17) 2004
Everitt (CR7) 1981; 16
McLachlan, Peel (CR20) 2000
Leask, Vermunt, Done, Crowd, Blows, Boks (CR15) 2009; 115
Self, Mauritsen, Ohara (CR27) 1992; 48
Holt, Macready (CR10) 1989; 13
Lazarsfeld, Henry (CR14) 1968
Steiger, Shapiro, Browne (CR29) 1985; 50
Zenor, Srivastava (CR38) 1993; 25
Schwarz (CR26) 1978; 6
Shapiro (CR28) 1985; 72
Tollenaar, Mooijaart (CR32) 2003; 56
Jeffries (CR11) 2003; 90
McLachlan (CR18) 1987; 36
Rindskopf (CR24) 2002
Nylund, Muthen, Muthen (CR22) 2007; 14
Akaike (CR1) 1974; 19
Dias, Vermunt (CR6) 2007; 14
Hartigan, Ryzin (CR9) 1977
CR21
Tekle, Tan, Berger (CR31) 2008; 52
Collins, Lanza (CR4) 2010
Rubin (CR25) 1981; 9
Wolfe (CR37) 1970; 5
Genge (CR8) 2014; 8
YT Lo (251_CR16) 2001; 88
251_CR30
G McLachlan (251_CR20) 2000
D Rindskopf (251_CR24) 2002
H Akaike (251_CR1) 1974; 19
SJ Leask (251_CR15) 2009; 115
VE Johnson (251_CR12) 2010; 27
A Shapiro (251_CR28) 1985; 72
JK Vermunt (251_CR34) 2010; 18
JA Holt (251_CR10) 1989; 13
JA Hartigan (251_CR9) 1977
LM Collins (251_CR4) 2010
JH Steiger (251_CR29) 1985; 50
D Oberski (251_CR23) 2015
JG Dias (251_CR6) 2007; 14
BS Everitt (251_CR7) 1981; 16
G Schwarz (251_CR26) 1978; 6
DB Rubin (251_CR25) 1981; 9
251_CR21
N Tollenaar (251_CR32) 2003; 56
J Magidson (251_CR17) 2004
HH Bock (251_CR2) 1996; 23
JH Wolfe (251_CR37) 1970; 5
PF Lazarsfeld (251_CR14) 1968
MJ Zenor (251_CR38) 1993; 25
SG Self (251_CR27) 1992; 48
J Cohen (251_CR3) 1988
FB Tekle (251_CR31) 2008; 52
251_CR19
PGM Heijden Van der (251_CR33) 1997
G McLachlan (251_CR18) 1987; 36
R Davidson (251_CR5) 2006; 133
NO Jeffries (251_CR11) 2003; 90
E Genge (251_CR8) 2014; 8
R Langeheine (251_CR13) 1996; 24
KL Nylund (251_CR22) 2007; 14
251_CR35
251_CR36
References_xml – volume: 90
  start-page: 991
  year: 2003
  end-page: 994
  ident: CR11
  article-title: A note on ’testing the number of components in a normal mixture
  publication-title: Biometrika
  doi: 10.1093/biomet/90.4.991
– year: 2010
  ident: CR4
  publication-title: Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences
– year: 2015
  ident: CR23
  article-title: Beyond the number of classes: separating substantive from non-substantive dependence in latent class analysis
  publication-title: Adv Data Anal Classif
– start-page: 2912
  year: 2002
  end-page: 2916
  ident: CR24
  publication-title: The use of latent class analysis in medical diagnosis
– volume: 48
  start-page: 31
  year: 1992
  end-page: 39
  ident: CR27
  article-title: Power calculations for likelihood ratio tests in generalized linear models
  publication-title: Biometrics
  doi: 10.2307/2532736
– volume: 72
  start-page: 133
  year: 1985
  end-page: 144
  ident: CR28
  article-title: Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints
  publication-title: Biometrika
  doi: 10.1093/biomet/72.1.133
– start-page: 190
  year: 1997
  end-page: 202
  ident: CR33
  article-title: A parametric bootstrap procedure to perform statistical tests in latent class analysis
  publication-title: Applications of latent trait and latent class models in the social sciences
– volume: 18
  start-page: 450
  year: 2010
  end-page: 469
  ident: CR34
  article-title: Latent class modeling with covariates: two improved three-step approaches
  publication-title: Political Anal
  doi: 10.1093/pan/mpq025
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: CR1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1974.1100705
– start-page: 45
  year: 1977
  end-page: 72
  ident: CR9
  article-title: Distribution problems in clustering
  publication-title: Classification and Clustering
– volume: 13
  start-page: 221
  year: 1989
  end-page: 231
  ident: CR10
  article-title: A simulation study of the difference Chi-square statistic for comparing latent class models under violation of regularity conditions
  publication-title: Appl Psychol Meas
  doi: 10.1177/014662168901300301
– volume: 133
  start-page: 421
  year: 2006
  end-page: 441
  ident: CR5
  article-title: The power of bootstrap and asymptotic tests
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.06.002
– volume: 14
  start-page: 359
  year: 2007
  end-page: 368
  ident: CR6
  article-title: Latent class modeling of website users’ search patterns: implications for online market segmentation
  publication-title: J Retail Consum Serv
  doi: 10.1016/j.jretconser.2007.02.007
– volume: 9
  start-page: 130
  issue: 1
  year: 1981
  end-page: 134
  ident: CR25
  article-title: The Bayesian bootstrap
  publication-title: Ann Stat
  doi: 10.1214/aos/1176345338
– ident: CR30
– volume: 52
  start-page: 5253
  issue: 12
  year: 2008
  end-page: 5262
  ident: CR31
  article-title: Maximin D-optimal designs for binary longitudinal responses
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.04.037
– volume: 16
  start-page: 171
  year: 1981
  end-page: 180
  ident: CR7
  article-title: A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr1602_3
– volume: 115
  start-page: 346
  year: 2009
  end-page: 350
  ident: CR15
  article-title: Beyond symptom dimensions: Schizophrenia risk factors for patient groups derived by latent class analysis
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2009.09.017
– year: 1968
  ident: CR14
  publication-title: Latent Structure Analysis
– start-page: 175
  year: 2004
  end-page: 198
  ident: CR17
  article-title: Latent class models
  publication-title: The sage handbook of quantitative methodology for the social sciences
– ident: CR35
– volume: 88
  start-page: 767
  year: 2001
  end-page: 778
  ident: CR16
  article-title: Testing the number of components in a normal mixture
  publication-title: Biometrika
  doi: 10.1093/biomet/88.3.767
– year: 2000
  ident: CR20
  publication-title: Finite mixture models
  doi: 10.1002/0471721182
– volume: 8
  start-page: 427
  year: 2014
  end-page: 442
  ident: CR8
  article-title: A latent class analysis of the public attitude towards the euro adoption in Poland
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-013-0156-0
– ident: CR21
– volume: 50
  start-page: 253
  year: 1985
  end-page: 263
  ident: CR29
  article-title: On the multivariate asymptotic distribution of sequential Chi-square statistics
  publication-title: Psychometrika
  doi: 10.1007/BF02294104
– ident: CR19
– volume: 24
  start-page: 492
  year: 1996
  end-page: 616
  ident: CR13
  article-title: Bootstrapping goodness-of-fit measures in categorical data analysis
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124196024004004
– volume: 5
  start-page: 329
  year: 1970
  end-page: 350
  ident: CR37
  article-title: Pattern clustering by multivariate mixture analysis
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr0503_6
– year: 1988
  ident: CR3
  publication-title: Statistical power analysis for the behavioral sciences
– volume: 27
  start-page: 143
  year: 2010
  end-page: 170
  ident: CR12
  article-title: On the use of non-local prior densities in Bayesian hypothesis tests
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2009.00730.x
– volume: 23
  start-page: 6
  year: 1996
  end-page: 28
  ident: CR2
  article-title: Probabilistic models in cluster analysis
  publication-title: Comput Stat Data Anal
  doi: 10.1016/0167-9473(96)88919-5
– volume: 25
  start-page: 369
  year: 1993
  end-page: 379
  ident: CR38
  article-title: Inferring market structure with aggregate data: a latent segment logit approach
  publication-title: J Mark Res
  doi: 10.2307/3172888
– volume: 56
  start-page: 271
  year: 2003
  end-page: 288
  ident: CR32
  article-title: Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information
  publication-title: Br J Math Stat Psychol
  doi: 10.1348/000711003770480048
– ident: CR36
– volume: 36
  start-page: 318
  year: 1987
  end-page: 324
  ident: CR18
  article-title: On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
  publication-title: Appl Stat J R Stat Soc
– volume: 14
  start-page: 535
  year: 2007
  end-page: 569
  ident: CR22
  article-title: Deciding on the number of classes in latent class analysis and growth mixture modeling: a monte carlo simulation study
  publication-title: Struct Equ Model
  doi: 10.1080/10705510701575396
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: CR26
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 14
  start-page: 359
  year: 2007
  ident: 251_CR6
  publication-title: J Retail Consum Serv
  doi: 10.1016/j.jretconser.2007.02.007
– volume: 18
  start-page: 450
  year: 2010
  ident: 251_CR34
  publication-title: Political Anal
  doi: 10.1093/pan/mpq025
– ident: 251_CR36
– volume: 90
  start-page: 991
  year: 2003
  ident: 251_CR11
  publication-title: Biometrika
  doi: 10.1093/biomet/90.4.991
– volume: 23
  start-page: 6
  year: 1996
  ident: 251_CR2
  publication-title: Comput Stat Data Anal
– year: 2015
  ident: 251_CR23
  publication-title: Adv Data Anal Classif
– volume: 13
  start-page: 221
  year: 1989
  ident: 251_CR10
  publication-title: Appl Psychol Meas
  doi: 10.1177/014662168901300301
– ident: 251_CR19
– volume: 24
  start-page: 492
  year: 1996
  ident: 251_CR13
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124196024004004
– volume: 72
  start-page: 133
  year: 1985
  ident: 251_CR28
  publication-title: Biometrika
  doi: 10.1093/biomet/72.1.133
– volume: 9
  start-page: 130
  issue: 1
  year: 1981
  ident: 251_CR25
  publication-title: Ann Stat
  doi: 10.1214/aos/1176345338
– volume: 52
  start-page: 5253
  issue: 12
  year: 2008
  ident: 251_CR31
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.04.037
– volume: 16
  start-page: 171
  year: 1981
  ident: 251_CR7
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr1602_3
– volume: 88
  start-page: 767
  year: 2001
  ident: 251_CR16
  publication-title: Biometrika
  doi: 10.1093/biomet/88.3.767
– ident: 251_CR21
– ident: 251_CR30
– volume: 115
  start-page: 346
  year: 2009
  ident: 251_CR15
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2009.09.017
– volume: 27
  start-page: 143
  year: 2010
  ident: 251_CR12
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2009.00730.x
– start-page: 175
  volume-title: The sage handbook of quantitative methodology for the social sciences
  year: 2004
  ident: 251_CR17
– start-page: 2912
  volume-title: The use of latent class analysis in medical diagnosis
  year: 2002
  ident: 251_CR24
– volume: 56
  start-page: 271
  year: 2003
  ident: 251_CR32
  publication-title: Br J Math Stat Psychol
  doi: 10.1348/000711003770480048
– start-page: 190
  volume-title: Applications of latent trait and latent class models in the social sciences
  year: 1997
  ident: 251_CR33
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: 251_CR3
– volume: 19
  start-page: 716
  year: 1974
  ident: 251_CR1
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1974.1100705
– ident: 251_CR35
– volume: 8
  start-page: 427
  year: 2014
  ident: 251_CR8
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-013-0156-0
– volume-title: Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences
  year: 2010
  ident: 251_CR4
– volume: 14
  start-page: 535
  year: 2007
  ident: 251_CR22
  publication-title: Struct Equ Model
  doi: 10.1080/10705510701575396
– volume: 25
  start-page: 369
  year: 1993
  ident: 251_CR38
  publication-title: J Mark Res
  doi: 10.2307/3172888
– volume: 48
  start-page: 31
  year: 1992
  ident: 251_CR27
  publication-title: Biometrics
  doi: 10.2307/2532736
– volume: 36
  start-page: 318
  year: 1987
  ident: 251_CR18
  publication-title: Appl Stat J R Stat Soc
– volume: 50
  start-page: 253
  year: 1985
  ident: 251_CR29
  publication-title: Psychometrika
  doi: 10.1007/BF02294104
– volume-title: Latent Structure Analysis
  year: 1968
  ident: 251_CR14
– volume-title: Finite mixture models
  year: 2000
  ident: 251_CR20
  doi: 10.1002/0471721182
– volume: 5
  start-page: 329
  year: 1970
  ident: 251_CR37
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr0503_6
– volume: 6
  start-page: 461
  year: 1978
  ident: 251_CR26
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 133
  start-page: 421
  year: 2006
  ident: 251_CR5
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.06.002
– start-page: 45
  volume-title: Classification and Clustering
  year: 1977
  ident: 251_CR9
  doi: 10.1016/B978-0-12-714250-0.50007-3
SSID ssj0060405
Score 2.2412112
Snippet Latent class (LC) analysis is used to construct empirical evidence on the existence of latent subgroups based on the associations among a set of observed...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Economics
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Physics
Regular Article
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Title Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models
URI https://link.springer.com/article/10.1007/s11634-016-0251-0
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oK4HH1XxueTgSSm0TZpujov4QF3x4IKeSpsmsrh0F1vx7zvTxy6CCl7DNIfOZPJNZuYbgFMV2EhYk7nc-JkrEo-jH0x916qejQz6zCSlB_3Bg7wZitvn8Lnp4y7aavc2JVl56nmzG0IHqpigotkQY-BFWA4xdKc6vmHQb92vRKukukUfobobchG1qcyftvh-GX3PhFYXzNUWbDTIkPVrVW7Dgskd2GynLrDmEDqw1vYSFw4s3iefDqwPZtyruLY6aNLlDqxU9Z202CFQWXMy78DrI41GY0nDR8IQtzLcgCHgLunlY8rGozczHhHjMasshCEgLWdy9RQRNrFME_Y2BRvlbIygNS_rFVbN1yl2YXh1-XRx4zYDF1zNuSxdyS1xMBlfhEImqe5pmcge97lWgcZARQnjGWmCSHPlp5FIpdaI17gW1reZNXwPlvJJbvaBBSpF8JFJIzIhMNhNuQrJOdhEeSKT6gC89s_HumEjp6EY43jOo0zKiqkCjZQVewdwNvtkWlNx_CV83qozbk5l8bv04b-kj6ATVDZEbzHHsFS-f5gThCZl2oXl_vXL3WW3MskvVwPZjA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2VRS30UNpAVUo_fOipVVASO876iCrotuyiHhaJnqLYsdGKVUBNEBK_vjOJvYiqReJqjS1LMx6_8YzfAHxSmSuEs3XMbVrHoko4-kGdxk6NXWHRZ1aaHvRnJ3JyKn6c5Wf-H3cbqt1DSrL31Hef3RA6UMUEFc3mGAOvwbrAEFyMYP3g26_jw-CAJdolVS6mCNbjnIsiJDP_tcj96-h-LrS_Yo62YB42N1SWXOxfd3rf3P7F2_jI3b-EFx5ysoPBRl7BE9tEsBXaOTB_uiPYCJ-U2wjWptVNBM9nK1JXHHs283n4CJ72haM0uElodSB73obzn9RzjVWe6IQhIGa4AEMk39GTyhVbLi7sckFUyqw3PYZIt1vJDe1J2KVjhkC9bdmiYUtEw003jLC-cU-7A6dHh_Ovk9h3cogN57KLJXdE7mRTkQtZaTM2spJjnnKjMoMRkBI2sdJmheEq1YXQ0hgEgtwIl7raWf4aRs1lY98Ay5RGVFNLK2ohMIrWXOXkdVylElFLtQtJUGhpPM05ddtYlncEzaSKkkrbSBVlsgufV1OuBo6Ph4S_BAWX_ri3_5d--yjpj7Axmc-m5fT7yfEebGa9tdCDzzsYdb-v7XvEP53-4O39D7th96A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BolI4FAhUQL986IkqkMSOsz4iypYWFnEAiZ5C7NhoxSqsSBASvx5PYi8CtUiIqzWxEs1k_OwZvwfwXSQmY0aXIdVxGbIiojYPyjg0om8ybXNmIfFAf3jMD87Yn_P03Omc1r7b3ZckuzsNyNJUNTuT0uw8XnyzMAK7J7CBNrX74VmYY8jN3oO53V9_D_d9MuY2RrGLMbbAPUwpy3xh81-TPF2antZF2-VmsAQX_kW7LpOr7dtGbqv7ZxyOb_iSZfjgoCjZ7WJnBWZ0FcCSl3kg7q8P4L2_vFwHMHtU3AWwOJySvdqx-aGrzwfwrm0oxcEFRLEdCfQqXJ6gFhspHAEKsUCZ2AmIRfgNHrVMyHh0pccjpFgmbUgSi4CbqV0nW0KuDVEI9nVNRhUZF_iZ3QhpBX3qNTgb7J_uHYRO4SFUlPIm5NQg6ZOOWcp4IVVf8YL3aUyVSJTdGQmmI811kikqYpkxyZWyAJEqZmJTGk0_Qq-6rvQ6kERIi3ZKrlnJmN1dSypSzEamEBErudiAyDs3V47-HFU4xvkjcTO6IseWN3RFHm3A1vSRScf98ZLxD-_s3KWB-v_Wm6-y_gbzJz8H-dHv48NPsJC0wYLnQJ-h19zc6i8WFjXyqwv9B8HSAJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+analysis+for+the+bootstrap+likelihood+ratio+test+for+the+number+of+classes+in+latent+class+models&rft.jtitle=Advances+in+data+analysis+and+classification&rft.au=Tekle%2C+Fetene+B.&rft.au=Gudicha%2C+Dereje+W.&rft.au=Vermunt%2C+Jeroen+K.&rft.date=2016-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-5347&rft.eissn=1862-5355&rft.volume=10&rft.issue=2&rft.spage=209&rft.epage=224&rft_id=info:doi/10.1007%2Fs11634-016-0251-0&rft.externalDocID=10_1007_s11634_016_0251_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-5347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-5347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-5347&client=summon