Stochastic resonance in a tumor–immune system subject to bounded noises and time delay
Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor–immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulat...
Saved in:
Published in | Physica A Vol. 416; pp. 90 - 98 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor–immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.
•A model of tumor–immune interaction with a periodic immunotherapy treatment is investigated.•The synchronous response of tumor growth to the immunotherapy is obtained.•Double stochastic resonance versus the delay time is observed.•The results may be helpful for an immunotherapy treatment for the sufferer. |
---|---|
AbstractList | Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor–immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.
•A model of tumor–immune interaction with a periodic immunotherapy treatment is investigated.•The synchronous response of tumor growth to the immunotherapy is obtained.•Double stochastic resonance versus the delay time is observed.•The results may be helpful for an immunotherapy treatment for the sufferer. Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (AA) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus AA, but boosts up the SR versus the noise intensity BB in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time tau sub( alpha ) tau alpha (the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time tau sub( alpha ) tau alpha , double SR versus the delay time tau sub( beta ) tau beta (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer. |
Author | Guo, Wei Mei, Dong-Cheng |
Author_xml | – sequence: 1 givenname: Wei surname: Guo fullname: Guo, Wei – sequence: 2 givenname: Dong-Cheng orcidid: 0000-0001-9521-1561 surname: Mei fullname: Mei, Dong-Cheng email: meidch@ynu.edu.cn, meidch@126.com |
BookMark | eNqF0L1uFDEQwHELBYlL4AloXNLsMl57P66gQBEEpEgpAInOmrVnFZ927cPjRbqOd-ANeRI2XCoKqEYazX-K36W4iCmSEC8V1ApU9_pQH-9PjHUDytQw1AD6idipoddVo9T-QuxA90NldK-eiUvmAwCoXjc78fVTSe4euQQnM3GKGB3JECXKsi4p__rxMyzLGknyiQstktfxQK7IkuSY1ujJy5gCE0uMXpawkPQ04-m5eDrhzPTicV6JL-_ffb7-UN3e3Xy8fntbOa27UrXO6dE7pJGowUG1fe8NUDcB7nGkyTfGGehx6rYdTmCMbgwq0l6pvgWjr8Sr899jTt9W4mKXwI7mGSOlla3qWmVAt2bYTvX51OXEnGmyxxwWzCerwD442oP942gfHC0MdnPcqv1flQsFS0ixZAzzf9o355Y2ge-BsmUXaBP2IW-I1qfwz_43o7eU2A |
CitedBy_id | crossref_primary_10_1016_j_chaos_2022_111953 crossref_primary_10_1142_S0217984918502597 crossref_primary_10_1007_s40435_022_00959_9 crossref_primary_10_1007_s11071_020_05781_6 crossref_primary_10_1016_j_cjph_2019_05_005 crossref_primary_10_1080_07362994_2019_1694416 crossref_primary_10_1080_21655979_2015_1058453 crossref_primary_10_1088_1361_6501_ad6fc1 crossref_primary_10_3390_sym13091604 crossref_primary_10_1016_j_physa_2017_11_123 crossref_primary_10_1016_j_jtbi_2015_05_014 crossref_primary_10_1007_s12648_019_01676_4 crossref_primary_10_1088_1402_4896_ad7e5c crossref_primary_10_1007_s11071_022_08153_4 crossref_primary_10_1140_epjp_s13360_023_04622_w crossref_primary_10_1088_1742_5468_ac2a9f crossref_primary_10_1007_s11071_018_4669_0 crossref_primary_10_1016_j_mbm_2023_100011 crossref_primary_10_1016_j_chaos_2021_111124 crossref_primary_10_11948_20210464 crossref_primary_10_1016_j_physa_2015_12_102 crossref_primary_10_1140_epjb_e2016_70138_y crossref_primary_10_1140_epjb_e2020_100551_0 crossref_primary_10_1142_S0219477520500248 crossref_primary_10_1016_j_cnsns_2023_107489 crossref_primary_10_1007_s10955_018_2145_3 crossref_primary_10_1140_epjp_s13360_023_04613_x crossref_primary_10_1002_mma_7255 crossref_primary_10_11948_20220558 crossref_primary_10_1007_s11571_018_9475_3 crossref_primary_10_1016_j_cjph_2016_10_013 crossref_primary_10_1016_j_chaos_2018_01_022 crossref_primary_10_1016_j_chaos_2022_111801 |
Cites_doi | 10.1016/j.bpc.2007.10.002 10.1016/S0167-2789(03)00005-8 10.1142/S0218339007002313 10.1103/PhysRevE.79.051903 10.1111/j.2153-3490.1982.tb01787.x 10.1140/epjb/e2009-00163-x 10.1103/PhysRevE.59.3339 10.1088/1742-5468/2008/11/P11020 10.1103/PhysRevE.74.011916 10.1103/PhysRevE.64.051105 10.1103/PhysRevE.80.026206 10.1103/PhysRevLett.89.238101 10.1103/PhysRevLett.92.238101 10.1140/epjb/e2012-30116-1 10.1007/s10955-009-9864-4 10.1016/j.aml.2007.05.019 10.1016/j.physa.2013.05.026 10.1016/j.physa.2012.07.025 10.1172/JCI31405 10.1103/PhysRevA.39.4854 10.1209/0295-5075/79/20005 10.1016/S0378-4371(01)00435-6 10.1016/j.physleta.2010.06.003 10.1016/j.probengmech.2004.02.002 10.1016/j.biosystems.2007.10.002 10.1038/383770a0 10.1103/PhysRevE.74.041904 10.1142/S0217979210055317 10.1063/1.3133126 10.1016/j.physa.2005.03.055 10.1103/PhysRevLett.95.040601 10.1111/j.1365-2567.2007.02587.x 10.1088/0034-4885/77/2/026601 10.1063/1.3160017 10.1016/S0375-9601(98)00467-8 10.1103/PhysRevLett.90.020601 10.1007/s00285-003-0211-0 10.1103/PhysRevA.44.8032 10.1103/PhysRevLett.72.2125 10.1103/PhysRevE.75.041106 10.1016/S0167-2789(02)00505-5 10.1016/0375-9601(91)90619-J 10.1016/j.mcm.2009.11.005 10.1016/j.physa.2012.06.018 10.1016/j.physa.2011.11.007 10.1088/0305-4470/14/11/006 10.1103/PhysRevE.59.3970 10.1103/PhysRevE.77.031107 10.1038/nature03954 10.2307/3939 10.1103/PhysRevLett.87.250602 10.1103/PhysRevE.85.061905 10.1007/s11538-010-9526-3 10.1103/PhysRevE.82.061901 10.1016/j.physleta.2008.07.005 10.1103/PhysRevE.73.051107 10.1016/S0378-4371(01)00062-0 10.1103/PhysRevLett.82.2402 10.1111/j.2153-3490.1981.tb01746.x 10.1103/PhysRevE.81.021923 10.1103/PhysRevE.71.031106 10.1371/annotation/1935b388-2831-4fb1-b8f2-914ab91c1ddc 10.1038/383769a0 10.1016/j.physd.2004.01.017 10.1209/0295-5075/83/50008 10.1111/j.2153-3490.1982.tb01786.x 10.1007/s11071-007-9243-0 10.1103/RevModPhys.70.223 10.1016/S0140-6736(03)14470-4 10.1007/s11538-011-9653-5 10.1088/1674-1056/19/4/040508 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.physa.2014.08.003 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
EndPage | 98 |
ExternalDocumentID | 10_1016_j_physa_2014_08_003 S0378437114006748 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11165016 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXUO ABAOU ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 6TJ AAFFL AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 7TB 7U5 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c336t-5cc3bdcaebee2a81577d40e6f0a9abefd24c407af6e6faf044324a1e3d1175043 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Fri Jul 11 05:17:00 EDT 2025 Tue Jul 01 03:22:41 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Fri Feb 23 02:23:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cross-correlated sine-Wiener noises Tumor–immune system Time delay Stochastic resonance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-5cc3bdcaebee2a81577d40e6f0a9abefd24c407af6e6faf044324a1e3d1175043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9521-1561 |
PQID | 1651403548 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1651403548 crossref_primary_10_1016_j_physa_2014_08_003 crossref_citationtrail_10_1016_j_physa_2014_08_003 elsevier_sciencedirect_doi_10_1016_j_physa_2014_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-15 |
PublicationDateYYYYMMDD | 2014-12-15 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bobryk, Chrzeszczyk (br000015) 2005; 358 Wio, Toral, Fuentes, Wio, Toral, Revelli, Sanchez, Wio, Fuentes, Toral, Wio, Borland (br000080) 2004; 193 McNamara, Wiesenfeld (br000105) 1989; 39 Costa, Molina, Perez, Antoranz, Reyes (br000225) 2003; 178 Wu, Zhu (br000150) 2006; 73 A. Manwani, (Ph.D. thesis), Caltech, 2000. Fiasconaro, Spagnolo (br000280) 2006; 74 Guillouzic, L’Heureux, Longtin (br000115) 1999; 59 Long, Guo, Mei (br000195) 2012; 391 Bodnar, Fory’s (br000245) 2007; 15 Pérez, Grau, Riquelme, Costa, Santos-Miranda, Antoranz (br000220) Benzi, Sutera, Vulpiani, Benzi, Sutera, Vulpiani (br000090) 1982; 34 Nie, Mei (br000160) 2007; 79 Cordo, Inglis, Verschueren, Collins, Merfeld, Rosenblum, Buckley, Moss (br000260) 1996; 383 Collins, Imhoff, Grigg (br000265) 1996; 383 Cai, Wu (br000020) 2004; 19 Piwonski, Houlihan, Busch, Huyet (br000145) 2005; 95 Murray, Ludwig, Jones, Holling (br000295) 2002; 47 Wang, Perc, Duan, Chen, Wang, Perc, Duan, Chen (br000130) 2010; 24 Bobryk, Chrzeszczyk (br000060) 2008; 51 Guo, Du, Mei (br000140) 2012; 85 Guo, Wang, Perc, Wang, Chen, Perc, Wang, Perc, Duan, Chen, Wang, Duan, Perc, Chen (br000180) 2012; 85 Tsimring (br000250) 2014; 77 d’Onofrio, Gandolfi (br000065) 2010; 82 Borromeo, Marchesoni, Masoller (br000175) 2007; 75 (br000085) 2013 Bose, Trimper (br000285) 2009; 79 Guo, Wang, Du, Mei (br000155) 2013; 392 Eftimie, Bramson, Earn, Eftimie, Dushoff, Bridle, Bramson, Earn (br000300) 2011; 73 Castro, Kuperman, Fuentes, Wio (br000050) 2001; 64 Brú, Albertos, López García-Asenjo, Brú (br000275) 2004; 92 Willimsky, Blankenstein (br000205) 2005; 437 Jung, Hänggi (br000110) 1991; 44 Frank (br000120) 2005; 71 Du, Mei (br000185) 2008; 11 d’Onofrio, Gandolfi, Gattoni (br000055) 2012; 391 Mei, Du, Wang (br000170) 2009; 137 Priplata, Niemi, Harry, Lipsitz, Collins, Priplata, Niemi, Salen, Harry, Lipsitz, Collins (br000255) 2003; 362 d’Onofrio, Gatti, Cerrai, Freschi (br000240) 2010; 51 Perc, Rupnik, Gosak, Marhl (br000270) 2009; 19 Gan, Perc, Wang, Wang, Perc, Duan, Chen (br000165) 2010; 19 Perc, Green, Dixon, Marhl (br000040) 2008; 132 d’Onofrio (br000005) 2008; 21 Paul (br000210) 2003 d’Onofrio (br000010) 2010; 81 Nicolis, Nicolis, Nicolis (br000095) 1982; 34 Mato (br000035) 1999; 59 Wiesenfeld, Pierson, Pantazelou, Dames, Moss (br000025) 1994; 72 Tsimring, Pikovsky (br000125) 2001; 87 Swann, Smyth, Kim, Emi, Tanabe (br000200) 2007; 117 Nie, Mei (br000135) 2008; 77 Lefever, Garay (br000290) 1978 Gammaitoni, Hänggi, Jung, Marchesoni, Gammaitoni, Hänggi, Jung, Marchesoni (br000100) 2009; 69 Fulinski, Telejko (br000070) 1991; 152 Banerjee, Sarkar (br000235) 2008; 91 Guo, Du, Mei (br000075) 2012; 391 Du, Mei (br000190) 2010; 374 Zhong, Shao, He, Zhong, Shao, He (br000215) 2006; 73 Galach, Villasana, Radunskaya (br000230) 2003; 13 Nozaki, Mar, Grigg, Collins (br000030) 1999; 82 Guo (10.1016/j.physa.2014.08.003_br000075) 2012; 391 Guo (10.1016/j.physa.2014.08.003_sbref36a) 2012; 85 Tsimring (10.1016/j.physa.2014.08.003_br000250) 2014; 77 Du (10.1016/j.physa.2014.08.003_br000190) 2010; 374 Bose (10.1016/j.physa.2014.08.003_br000285) 2009; 79 Castro (10.1016/j.physa.2014.08.003_br000050) 2001; 64 Bodnar (10.1016/j.physa.2014.08.003_br000245) 2007; 15 Bobryk (10.1016/j.physa.2014.08.003_br000015) 2005; 358 Wu (10.1016/j.physa.2014.08.003_br000150) 2006; 73 Nie (10.1016/j.physa.2014.08.003_br000135) 2008; 77 Jung (10.1016/j.physa.2014.08.003_br000110) 1991; 44 Priplata (10.1016/j.physa.2014.08.003_sbref51b) 2002; 89 Nozaki (10.1016/j.physa.2014.08.003_br000030) 1999; 82 Wio (10.1016/j.physa.2014.08.003_sbref16a) 2004; 193 Zhong (10.1016/j.physa.2014.08.003_sbref43b) 2006; 74 Wiesenfeld (10.1016/j.physa.2014.08.003_br000025) 1994; 72 Willimsky (10.1016/j.physa.2014.08.003_br000205) 2005; 437 Gan (10.1016/j.physa.2014.08.003_sbref33a) 2010; 19 Wang (10.1016/j.physa.2014.08.003_sbref26a) 2010; 24 Nicolis (10.1016/j.physa.2014.08.003_sbref19b) 1981; 33 Masoller (10.1016/j.physa.2014.08.003_sbref35b) 2003; 90 Fuentes (10.1016/j.physa.2014.08.003_sbref16d) 2001; 295 Cai (10.1016/j.physa.2014.08.003_br000020) 2004; 19 (10.1016/j.physa.2014.08.003_br000085) 2013 d’Onofrio (10.1016/j.physa.2014.08.003_br000240) 2010; 51 Nie (10.1016/j.physa.2014.08.003_br000160) 2007; 79 Banerjee (10.1016/j.physa.2014.08.003_br000235) 2008; 91 McNamara (10.1016/j.physa.2014.08.003_br000105) 1989; 39 Guillouzic (10.1016/j.physa.2014.08.003_br000115) 1999; 59 Frank (10.1016/j.physa.2014.08.003_br000120) 2005; 71 Borromeo (10.1016/j.physa.2014.08.003_sbref35a) 2007; 75 Eftimie (10.1016/j.physa.2014.08.003_sbref60b) 2011; 73 Bobryk (10.1016/j.physa.2014.08.003_br000060) 2008; 51 Wang (10.1016/j.physa.2014.08.003_sbref33b) 2009; 19 Costa (10.1016/j.physa.2014.08.003_br000225) 2003; 178 Revelli (10.1016/j.physa.2014.08.003_sbref16c) 2002; 168–169 Tsimring (10.1016/j.physa.2014.08.003_br000125) 2001; 87 Borland (10.1016/j.physa.2014.08.003_sbref16e) 1998; 245 Galach (10.1016/j.physa.2014.08.003_sbref46a) 2003; 13 Brú (10.1016/j.physa.2014.08.003_br000275) 2004; 92 Benzi (10.1016/j.physa.2014.08.003_sbref18a) 1982; 34 Lefever (10.1016/j.physa.2014.08.003_br000290) 1978 Mei (10.1016/j.physa.2014.08.003_br000170) 2009; 137 Murray (10.1016/j.physa.2014.08.003_sbref59a) 2002 d’Onofrio (10.1016/j.physa.2014.08.003_br000010) 2010; 81 Piwonski (10.1016/j.physa.2014.08.003_br000145) 2005; 95 Guo (10.1016/j.physa.2014.08.003_br000155) 2013; 392 Mato (10.1016/j.physa.2014.08.003_br000035) 1999; 59 Priplata (10.1016/j.physa.2014.08.003_sbref51a) 2003; 362 Perc (10.1016/j.physa.2014.08.003_br000270) 2009; 19 Gammaitoni (10.1016/j.physa.2014.08.003_sbref20a) 2009; 69 Collins (10.1016/j.physa.2014.08.003_br000265) 1996; 383 Nicolis (10.1016/j.physa.2014.08.003_sbref19a) 1982; 34 Wang (10.1016/j.physa.2014.08.003_sbref36c) 2009; 80 Villasana (10.1016/j.physa.2014.08.003_sbref46b) 2003; 47 Du (10.1016/j.physa.2014.08.003_br000185) 2008; 11 Swann (10.1016/j.physa.2014.08.003_sbref40a) 2007; 117 Paul (10.1016/j.physa.2014.08.003_br000210) 2003 Eftimie (10.1016/j.physa.2014.08.003_sbref60a) 2011; 73 Wang (10.1016/j.physa.2014.08.003_sbref36b) 2011; 6 Kim (10.1016/j.physa.2014.08.003_sbref40b) 2007; 121 Fiasconaro (10.1016/j.physa.2014.08.003_br000280) 2006; 74 Ludwig (10.1016/j.physa.2014.08.003_sbref59b) 1978; 47 Gammaitoni (10.1016/j.physa.2014.08.003_sbref20b) 1998; 70 Benzi (10.1016/j.physa.2014.08.003_sbref18b) 1981; 14 d’Onofrio (10.1016/j.physa.2014.08.003_br000055) 2012; 391 Cordo (10.1016/j.physa.2014.08.003_br000260) 1996; 383 Wang (10.1016/j.physa.2014.08.003_sbref26b) 2008; 372 Fuentes (10.1016/j.physa.2014.08.003_sbref16b) 2002; 303 10.1016/j.physa.2014.08.003_br000045 Guo (10.1016/j.physa.2014.08.003_br000140) 2012; 85 Zhong (10.1016/j.physa.2014.08.003_sbref43a) 2006; 73 d’Onofrio (10.1016/j.physa.2014.08.003_br000065) 2010; 82 Long (10.1016/j.physa.2014.08.003_br000195) 2012; 391 d’Onofrio (10.1016/j.physa.2014.08.003_br000005) 2008; 21 Pérez (10.1016/j.physa.2014.08.003_br000220) Perc (10.1016/j.physa.2014.08.003_br000040) 2008; 132 Wang (10.1016/j.physa.2014.08.003_sbref36d) 2008; 83 Fulinski (10.1016/j.physa.2014.08.003_br000070) 1991; 152 |
References_xml | – volume: 178 start-page: 242 year: 2003 ident: br000225 publication-title: Physica D – volume: 85 start-page: 061905 year: 2012 ident: br000180 publication-title: Phys. Rev. E – year: 2003 ident: br000210 article-title: Fundamental Immunology – volume: 437 start-page: 141 year: 2005 ident: br000205 publication-title: Nature – year: 2013 ident: br000085 publication-title: Bounded Noises in Physics, Biology and Engineering – volume: 77 start-page: 026601 year: 2014 ident: br000250 publication-title: Rep. Progr. Phys. – volume: 137 start-page: 625 year: 2009 ident: br000170 publication-title: J. Stat. Phys. – volume: 44 start-page: 8032 year: 1991 ident: br000110 publication-title: Phys. Rev. A – volume: 19 start-page: 040508 year: 2010 ident: br000165 publication-title: Chin. Phys. B – volume: 34 start-page: 1 year: 1982 ident: br000095 publication-title: Tellus – volume: 34 start-page: 10 year: 1982 ident: br000090 publication-title: Tellus – volume: 391 start-page: 5305 year: 2012 ident: br000195 publication-title: Physica A – volume: 47 start-page: 315 year: 2002 ident: br000295 article-title: Mathematical Biology I: An Introduction publication-title: J. Anim. Ecol. – volume: 11 start-page: P11020 year: 2008 ident: br000185 publication-title: J. Stat. Mech. – volume: 51 start-page: 541 year: 2008 ident: br000060 publication-title: Nonlinear Dynam. – volume: 391 start-page: 6484 year: 2012 ident: br000055 publication-title: Physica A – volume: 69 start-page: 1 year: 2009 ident: br000100 publication-title: Eur. Phys. J. B – volume: 72 start-page: 2125 year: 1994 ident: br000025 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 1201 year: 2010 ident: br000130 publication-title: Internat. J. Modern Phys. B – volume: 117 start-page: 1137 year: 2007 ident: br000200 publication-title: J. Clin. Invest. – reference: A. Manwani, (Ph.D. thesis), Caltech, 2000. – volume: 85 start-page: 182 year: 2012 ident: br000140 publication-title: Eur. Phys. J. B – volume: 95 start-page: 040601 year: 2005 ident: br000145 publication-title: Phys. Rev. Lett. – volume: 92 start-page: 238101 year: 2004 ident: br000275 publication-title: Phys. Rev. Lett. – volume: 193 start-page: 161 year: 2004 ident: br000080 publication-title: Physica D – volume: 73 start-page: R060902 year: 2006 ident: br000215 publication-title: Phys. Rev. E – volume: 77 start-page: 031107 year: 2008 ident: br000135 publication-title: Phys. Rev. E – volume: 358 start-page: 263 year: 2005 ident: br000015 publication-title: Physica A – volume: 15 start-page: 453 year: 2007 ident: br000245 publication-title: J. Biol. Syst. – volume: 392 start-page: 4210 year: 2013 ident: br000155 publication-title: Physica A – volume: 19 start-page: 037113 year: 2009 ident: br000270 publication-title: Chaos – volume: 71 start-page: 031106 year: 2005 ident: br000120 publication-title: Phys. Rev. E – volume: 81 start-page: 021923 year: 2010 ident: br000010 publication-title: Phys. Rev. E – volume: 74 start-page: 041904 year: 2006 ident: br000280 publication-title: Phys. Rev. E – volume: 362 start-page: 1123 year: 2003 ident: br000255 publication-title: Lancet – volume: 59 start-page: 3339 year: 1999 ident: br000035 publication-title: Phys. Rev. E – ident: br000220 – volume: 383 start-page: 769 year: 1996 ident: br000260 publication-title: Nature – volume: 64 start-page: 051105 year: 2001 ident: br000050 publication-title: Phys. Rev. E – volume: 73 start-page: 051107 year: 2006 ident: br000150 publication-title: Phys. Rev. E – volume: 152 start-page: 11 year: 1991 ident: br000070 publication-title: Phys. Lett. A – volume: 79 start-page: 20005 year: 2007 ident: br000160 publication-title: Europhys. Lett. – start-page: 333 year: 1978 ident: br000290 publication-title: Local Description of Immune Tumor Rejection, Biomathematics and Cell Kinetics – volume: 82 start-page: 061901 year: 2010 ident: br000065 publication-title: Phys. Rev. E – volume: 39 start-page: 4854 year: 1989 ident: br000105 publication-title: Phys. Rev. A – volume: 19 start-page: 197 year: 2004 ident: br000020 publication-title: Probab. Eng. Mech. – volume: 59 start-page: 3970 year: 1999 ident: br000115 publication-title: Phys. Rev. E – volume: 82 start-page: 2402 year: 1999 ident: br000030 publication-title: Phys. Rev. Lett. – volume: 51 start-page: 572 year: 2010 ident: br000240 publication-title: Math. Comput. Modelling – volume: 91 start-page: 268 year: 2008 ident: br000235 publication-title: Biosystems – volume: 132 start-page: 33 year: 2008 ident: br000040 publication-title: Biophys. Chem. – volume: 75 start-page: 041106 year: 2007 ident: br000175 publication-title: Phys. Rev. E – volume: 13 start-page: 395 year: 2003 ident: br000230 publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 21 start-page: 662 year: 2008 ident: br000005 publication-title: Appl. Math. Lett. – volume: 374 start-page: 3275 year: 2010 ident: br000190 publication-title: Phys. Lett. A – volume: 79 start-page: 051903 year: 2009 ident: br000285 publication-title: Phys. Rev. E – volume: 391 start-page: 1270 year: 2012 ident: br000075 publication-title: Physica A – volume: 383 start-page: 770 year: 1996 ident: br000265 publication-title: Nature – volume: 87 start-page: 250602 year: 2001 ident: br000125 publication-title: Phys. Rev. Lett. – volume: 73 start-page: 2 year: 2011 ident: br000300 publication-title: Bull. Math. Biol. – volume: 132 start-page: 33 year: 2008 ident: 10.1016/j.physa.2014.08.003_br000040 publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2007.10.002 – volume: 178 start-page: 242 year: 2003 ident: 10.1016/j.physa.2014.08.003_br000225 publication-title: Physica D doi: 10.1016/S0167-2789(03)00005-8 – volume: 15 start-page: 453 year: 2007 ident: 10.1016/j.physa.2014.08.003_br000245 publication-title: J. Biol. Syst. doi: 10.1142/S0218339007002313 – volume: 79 start-page: 051903 year: 2009 ident: 10.1016/j.physa.2014.08.003_br000285 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.051903 – volume: 34 start-page: 10 year: 1982 ident: 10.1016/j.physa.2014.08.003_sbref18a publication-title: Tellus doi: 10.1111/j.2153-3490.1982.tb01787.x – volume: 69 start-page: 1 year: 2009 ident: 10.1016/j.physa.2014.08.003_sbref20a publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00163-x – volume: 59 start-page: 3339 year: 1999 ident: 10.1016/j.physa.2014.08.003_br000035 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.59.3339 – volume: 11 start-page: P11020 year: 2008 ident: 10.1016/j.physa.2014.08.003_br000185 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2008/11/P11020 – volume: 74 start-page: 011916 year: 2006 ident: 10.1016/j.physa.2014.08.003_sbref43b publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.011916 – volume: 64 start-page: 051105 year: 2001 ident: 10.1016/j.physa.2014.08.003_br000050 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.051105 – volume: 80 start-page: 026206 year: 2009 ident: 10.1016/j.physa.2014.08.003_sbref36c publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.026206 – volume: 89 start-page: 238101 year: 2002 ident: 10.1016/j.physa.2014.08.003_sbref51b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.238101 – volume: 92 start-page: 238101 year: 2004 ident: 10.1016/j.physa.2014.08.003_br000275 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.238101 – volume: 85 start-page: 182 year: 2012 ident: 10.1016/j.physa.2014.08.003_br000140 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2012-30116-1 – volume: 137 start-page: 625 year: 2009 ident: 10.1016/j.physa.2014.08.003_br000170 publication-title: J. Stat. Phys. doi: 10.1007/s10955-009-9864-4 – volume: 21 start-page: 662 year: 2008 ident: 10.1016/j.physa.2014.08.003_br000005 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2007.05.019 – start-page: 333 year: 1978 ident: 10.1016/j.physa.2014.08.003_br000290 – volume: 392 start-page: 4210 year: 2013 ident: 10.1016/j.physa.2014.08.003_br000155 publication-title: Physica A doi: 10.1016/j.physa.2013.05.026 – volume: 391 start-page: 6484 year: 2012 ident: 10.1016/j.physa.2014.08.003_br000055 publication-title: Physica A doi: 10.1016/j.physa.2012.07.025 – volume: 117 start-page: 1137 year: 2007 ident: 10.1016/j.physa.2014.08.003_sbref40a publication-title: J. Clin. Invest. doi: 10.1172/JCI31405 – volume: 39 start-page: 4854 year: 1989 ident: 10.1016/j.physa.2014.08.003_br000105 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.39.4854 – volume: 79 start-page: 20005 year: 2007 ident: 10.1016/j.physa.2014.08.003_br000160 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/79/20005 – volume: 303 start-page: 91 year: 2002 ident: 10.1016/j.physa.2014.08.003_sbref16b publication-title: Physica A doi: 10.1016/S0378-4371(01)00435-6 – volume: 374 start-page: 3275 year: 2010 ident: 10.1016/j.physa.2014.08.003_br000190 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.06.003 – volume: 19 start-page: 197 year: 2004 ident: 10.1016/j.physa.2014.08.003_br000020 publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2004.02.002 – volume: 91 start-page: 268 year: 2008 ident: 10.1016/j.physa.2014.08.003_br000235 publication-title: Biosystems doi: 10.1016/j.biosystems.2007.10.002 – volume: 383 start-page: 770 year: 1996 ident: 10.1016/j.physa.2014.08.003_br000265 publication-title: Nature doi: 10.1038/383770a0 – volume: 74 start-page: 041904 year: 2006 ident: 10.1016/j.physa.2014.08.003_br000280 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.041904 – volume: 24 start-page: 1201 year: 2010 ident: 10.1016/j.physa.2014.08.003_sbref26a publication-title: Internat. J. Modern Phys. B doi: 10.1142/S0217979210055317 – volume: 19 start-page: 023112 year: 2009 ident: 10.1016/j.physa.2014.08.003_sbref33b publication-title: Chaos doi: 10.1063/1.3133126 – volume: 358 start-page: 263 year: 2005 ident: 10.1016/j.physa.2014.08.003_br000015 publication-title: Physica A doi: 10.1016/j.physa.2005.03.055 – ident: 10.1016/j.physa.2014.08.003_br000045 – volume: 95 start-page: 040601 year: 2005 ident: 10.1016/j.physa.2014.08.003_br000145 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.040601 – volume: 121 start-page: 1 year: 2007 ident: 10.1016/j.physa.2014.08.003_sbref40b publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02587.x – volume: 77 start-page: 026601 year: 2014 ident: 10.1016/j.physa.2014.08.003_br000250 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/77/2/026601 – volume: 19 start-page: 037113 year: 2009 ident: 10.1016/j.physa.2014.08.003_br000270 publication-title: Chaos doi: 10.1063/1.3160017 – volume: 245 start-page: 67 year: 1998 ident: 10.1016/j.physa.2014.08.003_sbref16e publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00467-8 – volume: 90 start-page: 020601 year: 2003 ident: 10.1016/j.physa.2014.08.003_sbref35b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.020601 – volume: 47 start-page: 270 year: 2003 ident: 10.1016/j.physa.2014.08.003_sbref46b publication-title: J. Math. Biol. doi: 10.1007/s00285-003-0211-0 – year: 2013 ident: 10.1016/j.physa.2014.08.003_br000085 – volume: 44 start-page: 8032 year: 1991 ident: 10.1016/j.physa.2014.08.003_br000110 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.44.8032 – volume: 72 start-page: 2125 year: 1994 ident: 10.1016/j.physa.2014.08.003_br000025 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2125 – volume: 75 start-page: 041106 year: 2007 ident: 10.1016/j.physa.2014.08.003_sbref35a publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.041106 – year: 2002 ident: 10.1016/j.physa.2014.08.003_sbref59a – volume: 168–169 start-page: 165 year: 2002 ident: 10.1016/j.physa.2014.08.003_sbref16c publication-title: Physica D doi: 10.1016/S0167-2789(02)00505-5 – ident: 10.1016/j.physa.2014.08.003_br000220 – volume: 152 start-page: 11 year: 1991 ident: 10.1016/j.physa.2014.08.003_br000070 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(91)90619-J – volume: 51 start-page: 572 year: 2010 ident: 10.1016/j.physa.2014.08.003_br000240 publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2009.11.005 – volume: 391 start-page: 5305 year: 2012 ident: 10.1016/j.physa.2014.08.003_br000195 publication-title: Physica A doi: 10.1016/j.physa.2012.06.018 – volume: 391 start-page: 1270 year: 2012 ident: 10.1016/j.physa.2014.08.003_br000075 publication-title: Physica A doi: 10.1016/j.physa.2011.11.007 – volume: 14 start-page: L453 year: 1981 ident: 10.1016/j.physa.2014.08.003_sbref18b publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/14/11/006 – volume: 59 start-page: 3970 year: 1999 ident: 10.1016/j.physa.2014.08.003_br000115 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.59.3970 – volume: 77 start-page: 031107 year: 2008 ident: 10.1016/j.physa.2014.08.003_br000135 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.031107 – volume: 437 start-page: 141 year: 2005 ident: 10.1016/j.physa.2014.08.003_br000205 publication-title: Nature doi: 10.1038/nature03954 – volume: 47 start-page: 315 year: 1978 ident: 10.1016/j.physa.2014.08.003_sbref59b publication-title: J. Anim. Ecol. doi: 10.2307/3939 – volume: 87 start-page: 250602 year: 2001 ident: 10.1016/j.physa.2014.08.003_br000125 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.250602 – volume: 85 start-page: 061905 year: 2012 ident: 10.1016/j.physa.2014.08.003_sbref36a publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.061905 – volume: 73 start-page: 2 year: 2011 ident: 10.1016/j.physa.2014.08.003_sbref60a publication-title: Bull. Math. Biol. doi: 10.1007/s11538-010-9526-3 – volume: 82 start-page: 061901 year: 2010 ident: 10.1016/j.physa.2014.08.003_br000065 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.061901 – volume: 372 start-page: 5681 year: 2008 ident: 10.1016/j.physa.2014.08.003_sbref26b publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.07.005 – year: 2003 ident: 10.1016/j.physa.2014.08.003_br000210 – volume: 73 start-page: 051107 year: 2006 ident: 10.1016/j.physa.2014.08.003_br000150 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.73.051107 – volume: 295 start-page: 114 year: 2001 ident: 10.1016/j.physa.2014.08.003_sbref16d publication-title: Physica A doi: 10.1016/S0378-4371(01)00062-0 – volume: 82 start-page: 2402 year: 1999 ident: 10.1016/j.physa.2014.08.003_br000030 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.2402 – volume: 33 start-page: 225 year: 1981 ident: 10.1016/j.physa.2014.08.003_sbref19b publication-title: Tellus doi: 10.1111/j.2153-3490.1981.tb01746.x – volume: 81 start-page: 021923 year: 2010 ident: 10.1016/j.physa.2014.08.003_br000010 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.021923 – volume: 71 start-page: 031106 year: 2005 ident: 10.1016/j.physa.2014.08.003_br000120 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.031106 – volume: 6 start-page: e155851 year: 2011 ident: 10.1016/j.physa.2014.08.003_sbref36b publication-title: PLoS One doi: 10.1371/annotation/1935b388-2831-4fb1-b8f2-914ab91c1ddc – volume: 383 start-page: 769 year: 1996 ident: 10.1016/j.physa.2014.08.003_br000260 publication-title: Nature doi: 10.1038/383769a0 – volume: 193 start-page: 161 year: 2004 ident: 10.1016/j.physa.2014.08.003_sbref16a publication-title: Physica D doi: 10.1016/j.physd.2004.01.017 – volume: 13 start-page: 395 year: 2003 ident: 10.1016/j.physa.2014.08.003_sbref46a publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 83 start-page: 50008 year: 2008 ident: 10.1016/j.physa.2014.08.003_sbref36d publication-title: Europhys. Lett. doi: 10.1209/0295-5075/83/50008 – volume: 34 start-page: 1 year: 1982 ident: 10.1016/j.physa.2014.08.003_sbref19a publication-title: Tellus doi: 10.1111/j.2153-3490.1982.tb01786.x – volume: 51 start-page: 541 year: 2008 ident: 10.1016/j.physa.2014.08.003_br000060 publication-title: Nonlinear Dynam. doi: 10.1007/s11071-007-9243-0 – volume: 70 start-page: 223 year: 1998 ident: 10.1016/j.physa.2014.08.003_sbref20b publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.70.223 – volume: 73 start-page: R060902 year: 2006 ident: 10.1016/j.physa.2014.08.003_sbref43a publication-title: Phys. Rev. E – volume: 362 start-page: 1123 year: 2003 ident: 10.1016/j.physa.2014.08.003_sbref51a publication-title: Lancet doi: 10.1016/S0140-6736(03)14470-4 – volume: 73 start-page: 2932 year: 2011 ident: 10.1016/j.physa.2014.08.003_sbref60b publication-title: Bull. Math. Biol. doi: 10.1007/s11538-011-9653-5 – volume: 19 start-page: 040508 year: 2010 ident: 10.1016/j.physa.2014.08.003_sbref33a publication-title: Chin. Phys. B doi: 10.1088/1674-1056/19/4/040508 |
SSID | ssj0001732 |
Score | 2.295433 |
Snippet | Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor–immune interaction, subject to a periodic immunotherapy... Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 90 |
SubjectTerms | Antigens Cross-correlated sine-Wiener noises Delay Mathematical models Noise Noise intensity Stochastic resonance Time delay Tumors Tumor–immune system |
Title | Stochastic resonance in a tumor–immune system subject to bounded noises and time delay |
URI | https://dx.doi.org/10.1016/j.physa.2014.08.003 https://www.proquest.com/docview/1651403548 |
Volume | 416 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEICDrAhexCeuLyJ4tG7bTJp6FHFZFb2osLeQpClWtF1s9-BF_A_-Q3-JmT4UFfbgsSEpZSadZJKZbwg5AO7WPSGMF6Y69CAy1tOR8D0LRqs4VlzXGXJX19HoDi7GfDxHTrtcGAyrbG1_Y9Nra922DFppDiZZNrjxmYiBCbehR5MLmPALIHCWH71-h3kEgjU3Cc5bwt4deaiO8cLTA4QPBVBzPLvKWX9Xp192ul58hstkqd010pPmw1bInM1XyUIdvWnKNTK-qQpzrxC5TJ37XCBEw9Isp4pW06fi-ePtPcM8EEsbcDMtpxrPX2hVUI11lWxC8yIrbUlVnlCsN0-RHvmyTu6GZ7enI68tmeAZxqLK48YwnRjlVGNDFQdciAR8G6W-OlbapkkIxrlwKo1cm0p9QCCfCixLENnpA9sgvbzI7SahOuGJb0KIFaRguXGOFDciVBqBMcJCn4SdqKRpeeJY1uJRdoFjD7KWr0T5Six26bM-OfwaNGlwGrO7R50O5I9ZIZ3Bnz1wv9OYdP8LXoKo3BbTUgYRR0Shc9S2_vvybbKITxjUEvAd0quep3bXbU0qvVfPvT0yf3J-Obr-BLhE5eI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDC6IXccXdCB6t0zZbPYo4jMvMRQfmFpI0xYq2g-0cvIjfwW_oJzGvi6KCB69tUspL8pKXvPz-CB1S5uY9IYwXJjr0KDfW01z4nqVGqyhSTFc35PoD3hvSyxEbTaGz9i4MpFU2vr_26ZW3bp50Gmt2xmnaufGJiCgRbkEPLpdG02iWuuELMgbHL195HoEg9VGCC5egeIseqpK8YPsA6EMBrUCerXTW7-nph6OuZp_uElpslo34tP6zZTRlsxU0V6VvmmIVjW7K3NwpYC5jFz_nQNGwOM2wwuXkMX96f31L4SKIxTW5GRcTDRswuMyxBmElG-MsTwtbYJXFGATnMeAjn9fQsHt-e9bzGs0EzxDCS48ZQ3RslGsbG6ooYELE1Lc88dWJ0jaJQ2pcDKcS7p6pxKdA5FOBJTEwO31K1tFMlmd2A2Eds9g3IY0UTahlxkVSzIhQaSDGCEs3UdiaSpoGKA66Fg-yzRy7l5V9JdhXgtqlTzbR0Welcc3T-Ls4b9tAfusW0nn8vysetC0m3YCBUxCV2XxSyIAzYBS6SG3rvx_fR_O92_61vL4YXG2jBXgDGS4B20Ez5dPE7rp1Sqn3qn74AQls53A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+resonance+in+a+tumor%E2%80%93immune+system+subject+to+bounded+noises+and+time+delay&rft.jtitle=Physica+A&rft.au=Guo%2C+Wei&rft.au=Mei%2C+Dong-Cheng&rft.date=2014-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=416&rft.spage=90&rft.epage=98&rft_id=info:doi/10.1016%2Fj.physa.2014.08.003&rft.externalDocID=S0378437114006748 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |