Construction of complex features for predicting soil total nitrogen content based on convolution operations

•Convolutional operations were introduced into screening characteristic wavelengths and constructing the features for predicting STN content.•Construction features with the soil total nitrogen characteristic wavelengths could clearly improve the performance of prediction.•Compare to the other 3 meth...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 213; p. 105109
Main Authors Wang, Yueting, Li, Minzan, Ji, Ronghua, Wang, Minjuan, Zhang, Yao, Zheng, Lihua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text
ISSN0167-1987
1879-3444
DOI10.1016/j.still.2021.105109

Cover

Abstract •Convolutional operations were introduced into screening characteristic wavelengths and constructing the features for predicting STN content.•Construction features with the soil total nitrogen characteristic wavelengths could clearly improve the performance of prediction.•Compare to the other 3 methods, the embedded method has great potential of overcoming the intercorrelation within the soil spectra.•Convolutional operations can be used to construct the STN features with the small number of STN characteristic wavelengths. On-demand fertilization does not only help to improve fertilizer use efficiency, but also to avoid over-use of chemical fertilizers. Rapid monitoring of the nutrient content constitutes the initial step of on-demand fertilization, and spectroscopy technology is considered as one of the most ideal nondestructive methods to detect the nutrient content. The typical soil spectra contain thousands of wavelengths, these spectral variables often contribute to collinearity and redundancies rather than relevant effective information. To resolve this issue, this paper selected soil total nitrogen (STN) content as the study subject, and the studies were carried out from two aspects, STN characteristic wavelengths screening and STN content prediction model building based on the limited number of independent variables. For the characteristic waveband screening process, four feature extraction methods (including F-test, mutual information, embedded method and deconvolution operation) were used and the results were compared and analyzed. The embedded method was selected as the benchmark method due to its advantages of simple, intuitive and reliable to screen the STN characteristic wavelengths. In the process of building the STN content prediction model, under-fitting problem is a major challenge which is driven by the limitation of soil nitrogen characteristic wavelengths. Towards this, this study proposed a method for constructing complex features for predicting STN content based on convolution operations which shows higher accuracy than those based on Multi-Layer Perceptron Neural Network and polynomial kernel functions. When the number of characteristic wavelengths is 16, the coefficient of determination (R2) is 0.69, root mean square error of prediction (RMSEP) is 4.34 g/kg, and the residual prediction deviation (RPD) is 0.86. After construction with convolution operations (256 features are calculated from these original 16 characteristic wavelengths), the R2 of the model reaches 0.86, the RMSEP is 1.98 g/kg, and the RPD is 1.89. This study provides a practical approach to extract target characteristics from soil spectra and enhance the relevant information for detecting STN based on the raw soil spectra.
AbstractList On-demand fertilization does not only help to improve fertilizer use efficiency, but also to avoid over-use of chemical fertilizers. Rapid monitoring of the nutrient content constitutes the initial step of on-demand fertilization, and spectroscopy technology is considered as one of the most ideal nondestructive methods to detect the nutrient content. The typical soil spectra contain thousands of wavelengths, these spectral variables often contribute to collinearity and redundancies rather than relevant effective information. To resolve this issue, this paper selected soil total nitrogen (STN) content as the study subject, and the studies were carried out from two aspects, STN characteristic wavelengths screening and STN content prediction model building based on the limited number of independent variables. For the characteristic waveband screening process, four feature extraction methods (including F-test, mutual information, embedded method and deconvolution operation) were used and the results were compared and analyzed. The embedded method was selected as the benchmark method due to its advantages of simple, intuitive and reliable to screen the STN characteristic wavelengths. In the process of building the STN content prediction model, under-fitting problem is a major challenge which is driven by the limitation of soil nitrogen characteristic wavelengths. Towards this, this study proposed a method for constructing complex features for predicting STN content based on convolution operations which shows higher accuracy than those based on Multi-Layer Perceptron Neural Network and polynomial kernel functions. When the number of characteristic wavelengths is 16, the coefficient of determination (R²) is 0.69, root mean square error of prediction (RMSEP) is 4.34 g/kg, and the residual prediction deviation (RPD) is 0.86. After construction with convolution operations (256 features are calculated from these original 16 characteristic wavelengths), the R² of the model reaches 0.86, the RMSEP is 1.98 g/kg, and the RPD is 1.89. This study provides a practical approach to extract target characteristics from soil spectra and enhance the relevant information for detecting STN based on the raw soil spectra.
•Convolutional operations were introduced into screening characteristic wavelengths and constructing the features for predicting STN content.•Construction features with the soil total nitrogen characteristic wavelengths could clearly improve the performance of prediction.•Compare to the other 3 methods, the embedded method has great potential of overcoming the intercorrelation within the soil spectra.•Convolutional operations can be used to construct the STN features with the small number of STN characteristic wavelengths. On-demand fertilization does not only help to improve fertilizer use efficiency, but also to avoid over-use of chemical fertilizers. Rapid monitoring of the nutrient content constitutes the initial step of on-demand fertilization, and spectroscopy technology is considered as one of the most ideal nondestructive methods to detect the nutrient content. The typical soil spectra contain thousands of wavelengths, these spectral variables often contribute to collinearity and redundancies rather than relevant effective information. To resolve this issue, this paper selected soil total nitrogen (STN) content as the study subject, and the studies were carried out from two aspects, STN characteristic wavelengths screening and STN content prediction model building based on the limited number of independent variables. For the characteristic waveband screening process, four feature extraction methods (including F-test, mutual information, embedded method and deconvolution operation) were used and the results were compared and analyzed. The embedded method was selected as the benchmark method due to its advantages of simple, intuitive and reliable to screen the STN characteristic wavelengths. In the process of building the STN content prediction model, under-fitting problem is a major challenge which is driven by the limitation of soil nitrogen characteristic wavelengths. Towards this, this study proposed a method for constructing complex features for predicting STN content based on convolution operations which shows higher accuracy than those based on Multi-Layer Perceptron Neural Network and polynomial kernel functions. When the number of characteristic wavelengths is 16, the coefficient of determination (R2) is 0.69, root mean square error of prediction (RMSEP) is 4.34 g/kg, and the residual prediction deviation (RPD) is 0.86. After construction with convolution operations (256 features are calculated from these original 16 characteristic wavelengths), the R2 of the model reaches 0.86, the RMSEP is 1.98 g/kg, and the RPD is 1.89. This study provides a practical approach to extract target characteristics from soil spectra and enhance the relevant information for detecting STN based on the raw soil spectra.
ArticleNumber 105109
Author Ji, Ronghua
Wang, Yueting
Zhang, Yao
Li, Minzan
Wang, Minjuan
Zheng, Lihua
Author_xml – sequence: 1
  givenname: Yueting
  orcidid: 0000-0001-5506-8828
  surname: Wang
  fullname: Wang, Yueting
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
– sequence: 2
  givenname: Minzan
  surname: Li
  fullname: Li, Minzan
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
– sequence: 3
  givenname: Ronghua
  surname: Ji
  fullname: Ji, Ronghua
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
– sequence: 4
  givenname: Minjuan
  surname: Wang
  fullname: Wang, Minjuan
  organization: Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
– sequence: 5
  givenname: Yao
  surname: Zhang
  fullname: Zhang, Yao
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
– sequence: 6
  givenname: Lihua
  orcidid: 0000-0002-0089-9437
  surname: Zheng
  fullname: Zheng, Lihua
  email: zhenglh@cau.edu.cn
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
BookMark eNqFkDFvGyEYQFGVSLWd_IIsjFnOhQNzx5AhstK0kqUu7Yw4_GHhYrgCZzX_vtiXqUM7gT7e-4TeEt2EGAChB0rWlFDx6bjOxXm_bklL62RDifyAFrTvZMM45zdoUamuobLvPqJlzkdCCGdtv0A_tzHkkiZTXAw4WmziafTwG1vQZUqQsY0Jjwn2riLhgHN0HpdYtMfBlRQPEKoTCoSCB51hj-N1cI5-mneOkPTllu_QrdU-w_37uUI_Pr98335pdt9ev26fd41hTJRmo60EM9BBsw3vNvtOSwFCaM5bTfggrCTMdlRUhhMtezu0PbfAiJXM1ie2Qo_z3jHFXxPkok4uG_BeB4hTVq1ggtOWdbyickZNijknsMq4cv1tSdp5RYm6BFZHdQ2sLoHVHLi67C93TO6k09t_rKfZglrg7CCpbBwEUwMnMEXto_un_wdF1ps0
CitedBy_id crossref_primary_10_1364_AO_458787
crossref_primary_10_1021_acs_analchem_4c04548
crossref_primary_10_3390_app14114744
crossref_primary_10_1016_j_compag_2024_109396
crossref_primary_10_1016_j_compag_2022_106967
crossref_primary_10_1016_j_compag_2021_106624
crossref_primary_10_3390_agriculture14060946
Cites_doi 10.1016/j.still.2011.05.001
10.1016/j.compag.2019.02.003
10.1016/j.still.2014.03.006
10.1016/j.still.2020.104753
10.1007/s11263-015-0816-y
10.1038/nature14539
10.3390/s20247078
10.1093/bioinformatics/bty991
10.1016/j.geoderma.2009.12.025
10.5194/isprs-annals-IV-2-W5-615-2019
10.1016/j.compag.2014.11.003
10.1016/j.geoderma.2018.07.004
10.1016/j.compag.2020.105275
10.3390/ijms20235883
10.1007/s10661-013-3109-3
10.1016/j.ecolind.2019.05.006
10.1016/j.scitotenv.2017.09.186
10.1186/s12911-018-0710-y
10.1016/j.biosystemseng.2016.04.018
10.1371/journal.pone.0087357
10.1016/j.compag.2020.105713
10.3390/ijerph17238830
10.1007/s12155-016-9763-x
10.1364/OE.414050
10.1016/j.aca.2019.01.002
10.1016/j.compag.2019.03.016
10.3390/s19020253
10.1016/j.ebiom.2019.08.023
10.1038/s41598-020-73978-1
10.1109/29.21701
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2021.105109
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2021_105109
S0167198721001823
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c336t-5af9ecb1ba35475d7a96e66a442a04b6f903f716ecb40a98fb284fe30f93f03f3
IEDL.DBID AIKHN
ISSN 0167-1987
IngestDate Fri Sep 05 09:25:45 EDT 2025
Tue Jul 01 00:57:05 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 23 02:38:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectroscopy
On-demand fertilization
Construction of features
Convolution operations
Characteristic wavelength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-5af9ecb1ba35475d7a96e66a442a04b6f903f716ecb40a98fb284fe30f93f03f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5506-8828
0000-0002-0089-9437
PQID 2636412374
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636412374
crossref_citationtrail_10_1016_j_still_2021_105109
crossref_primary_10_1016_j_still_2021_105109
elsevier_sciencedirect_doi_10_1016_j_still_2021_105109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tóth, Jones, Montanarella (bib0135) 2013; 185
Zhang, Lin, Xu, Luo, Ying (bib0180) 2019; 1058
Chacko, Jain, Patwardhan, Puri, Karande, Rai (bib0030) 2020; 10
Zhang, Li, Zheng, Qin, Lee (bib0185) 2019; 333
Pereira, Ferreira, Cardoso, Silva, De Mendonça, Guerreiro, Madeira (bib0100) 2018; 18
Zhou, Zhang, Yang, Li, Liu, Liu (bib0200) 2019; 160
An, Li, Zheng, Sun (bib0010) 2015; 112
Askari, Cui, O’Rourke, Holden (bib0015) 2015; 146
Zeiler, Taylor, Fergus (bib0175) 2011
Abulaiti, Sawut, Maimaitiaili, Chunyue (bib0005) 2020; 171
Chen, Lü, Zhang, Zhao, Li, Ning, Liu (bib0035) 2018; 613–614
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (bib0065) 2017; 50
Strafella, Simpson, Khanghahi, De Angelis, Gänzle, Minervini, Crecchio (bib0130) 2021; 9
Bai, Wang, Huo, Salim, Bloch, Zhang (bib0020) 2019; 104
Wang, Li, Ji, Wang, Zheng (bib0145) 2020; 20
Dai, Song, Zhou, Liu, Liang, He, Sun, Yuan, Liu, Yao, Cui (bib0040) 2021; 205
Fernández-Ugalde, Ballabio, Lugato, Scarpa, Jones (bib0045) 2020
Otto, Castro, Mariano, Castro, Franco (bib0090) 2016
Ng, Minasny, Malone, Sarathjith, Das (bib0085) 2019; 158
Waibel, Hanazawa, Hinton, Shikano, Lang (bib0140) 1989; 37
Bai, Zhang, Tian (bib0025) 2020; 17
Rossel, Behrens (bib0120) 2010; 158
Yang, Yang, Zhang, Shi, Du (bib0160) 2021; 29
Zeiler, Krishnan, Taylor, Fergus (bib0170) 2010
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0125) 2015; 115
Yoo, Kim, Chandran, Hong, Ahn, Lee, Kang, Suh, Kim, Kim, Jung (bib0165) 2019; 20
Khademi, Mohammadi, Simon (bib0055) 2019; 19
Lecun, Bengio, Hinton (bib0060) 2015; 521
Mazzoncini, Sapkota, Bàrberi, Antichi, Risaliti (bib0075) 2011; 114
Pardo, Lo (bib0095) 2012; vol. 118
Zheng, Li, Pan, Sun, Tang (bib0190) 2008; 28
Rehman, Ma, Wang, Zhang, Jin (bib0105) 2020; 177
Zhou, Yang, Li, Zheng, Chen (bib0195) 2017; 48
Yan, Calhoun, Song, Cui, Yan, Liu, Fan, Zuo, Yang, Xu, Yan, Lv, Chen, Chen, Guo, Li, Lu, Wan, Wang, Wang, Yang, Zhang, Zhang, Jiang, Sui (bib0155) 2019; 47
Hor, Yang, Yang, Tseng (bib0050) 2013; 2013
Riese, Keller (bib0110) 2019
Ross (bib0115) 2014; 9
Xia, Li, Zhang, Li, Hu, Chen, Gao (bib0150) 2019; 35
Li, Jia, Le (bib0070) 2019; 19
Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (bib0080) 2016; 152
Fernández-Ugalde (10.1016/j.still.2021.105109_bib0045) 2020
Tóth (10.1016/j.still.2021.105109_bib0135) 2013; 185
Yoo (10.1016/j.still.2021.105109_bib0165) 2019; 20
Yan (10.1016/j.still.2021.105109_bib0155) 2019; 47
Dai (10.1016/j.still.2021.105109_bib0040) 2021; 205
An (10.1016/j.still.2021.105109_bib0010) 2015; 112
Bai (10.1016/j.still.2021.105109_bib0025) 2020; 17
Mazzoncini (10.1016/j.still.2021.105109_bib0075) 2011; 114
Zhou (10.1016/j.still.2021.105109_bib0195) 2017; 48
Bai (10.1016/j.still.2021.105109_bib0020) 2019; 104
Abulaiti (10.1016/j.still.2021.105109_bib0005) 2020; 171
Strafella (10.1016/j.still.2021.105109_bib0130) 2021; 9
Zeiler (10.1016/j.still.2021.105109_bib0170) 2010
Zhou (10.1016/j.still.2021.105109_bib0200) 2019; 160
Ng (10.1016/j.still.2021.105109_bib0085) 2019; 158
Pardo (10.1016/j.still.2021.105109_bib0095) 2012; vol. 118
Rehman (10.1016/j.still.2021.105109_bib0105) 2020; 177
Xia (10.1016/j.still.2021.105109_bib0150) 2019; 35
Askari (10.1016/j.still.2021.105109_bib0015) 2015; 146
Zeiler (10.1016/j.still.2021.105109_bib0175) 2011
Li (10.1016/j.still.2021.105109_bib0070) 2019; 19
Yang (10.1016/j.still.2021.105109_bib0160) 2021; 29
Li (10.1016/j.still.2021.105109_bib0065) 2017; 50
Ross (10.1016/j.still.2021.105109_bib0115) 2014; 9
Zhang (10.1016/j.still.2021.105109_bib0185) 2019; 333
Chen (10.1016/j.still.2021.105109_bib0035) 2018; 613–614
Morellos (10.1016/j.still.2021.105109_bib0080) 2016; 152
Khademi (10.1016/j.still.2021.105109_bib0055) 2019; 19
Wang (10.1016/j.still.2021.105109_bib0145) 2020; 20
Pereira (10.1016/j.still.2021.105109_bib0100) 2018; 18
Chacko (10.1016/j.still.2021.105109_bib0030) 2020; 10
Zheng (10.1016/j.still.2021.105109_bib0190) 2008; 28
Zhang (10.1016/j.still.2021.105109_bib0180) 2019; 1058
Russakovsky (10.1016/j.still.2021.105109_bib0125) 2015; 115
Riese (10.1016/j.still.2021.105109_bib0110) 2019
Hor (10.1016/j.still.2021.105109_bib0050) 2013; 2013
Lecun (10.1016/j.still.2021.105109_bib0060) 2015; 521
Rossel (10.1016/j.still.2021.105109_bib0120) 2010; 158
Otto (10.1016/j.still.2021.105109_bib0090) 2016
Waibel (10.1016/j.still.2021.105109_bib0140) 1989; 37
References_xml – start-page: 615
  year: 2019
  end-page: 621
  ident: bib0110
  article-title: Soil texture classification with 1D convolutional neural networks based on hyperspectral data
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 48
  start-page: 271
  year: 2017
  end-page: 276
  ident: bib0195
  article-title: Soil total nitrogen content prediction based on gray correlation-extreme learning machine
  publication-title: Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach.
– volume: 160
  start-page: 51
  year: 2019
  end-page: 58
  ident: bib0200
  article-title: Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 9
  start-page: 1
  year: 2021
  end-page: 18
  ident: bib0130
  article-title: Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere
  publication-title: Microorganisms
– volume: 152
  start-page: 104
  year: 2016
  end-page: 116
  ident: bib0080
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosyst. Eng.
– volume: 28
  start-page: 1160
  year: 2008
  end-page: 1164
  ident: bib0190
  article-title: Estimation of soil organic matter and soil total nitrogen based on NIR spectroscopy and BP neural network
  publication-title: Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy Spectr. Anal.
– volume: 171
  year: 2020
  ident: bib0005
  article-title: A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton
  publication-title: Comput. Electron. Agric.
– volume: 20
  year: 2019
  ident: bib0165
  article-title: Genome-wide transcriptome analysis of rice seedlings after seed dressing with paenibacillus yonginensis dcy84t and silicon
  publication-title: Int. J. Mol. Sci.
– volume: 1058
  start-page: 48
  year: 2019
  end-page: 57
  ident: bib0180
  article-title: DeepSpectra: an end-to-end deep learning approach for quantitative spectral analysis
  publication-title: Anal. Chim. Acta
– volume: 114
  start-page: 165
  year: 2011
  end-page: 174
  ident: bib0075
  article-title: Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content
  publication-title: Soil Tillage Res.
– volume: 50
  year: 2017
  ident: bib0065
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
– volume: 35
  start-page: 2371
  year: 2019
  end-page: 2379
  ident: bib0150
  article-title: DeeReCT-PolyA: a robust and generic deep learning method for PAS identification
  publication-title: Bioinformatics
– volume: 9
  year: 2014
  ident: bib0115
  article-title: Mutual information between discrete and continuous data sets
  publication-title: PLoS One
– volume: 333
  start-page: 23
  year: 2019
  end-page: 34
  ident: bib0185
  article-title: Spectral features extraction for estimation of soil total nitrogen content based on modified ant colony optimization algorithm
  publication-title: Geoderma
– volume: 47
  start-page: 543
  year: 2019
  end-page: 552
  ident: bib0155
  article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
  publication-title: EBioMedicine
– start-page: 1272
  year: 2016
  end-page: 1289
  ident: bib0090
  article-title: Nitrogen use efficiency for sugarcane-biofuel production : what is next?
  publication-title: Bioenergy Res.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 20
  ident: bib0145
  article-title: Comparison of soil total nitrogen content prediction models based on Vis-NIR spectroscopy
  publication-title: Sensors (Switzerland)
– volume: 29
  start-page: 400
  year: 2021
  ident: bib0160
  article-title: Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model
  publication-title: Opt. Express
– volume: vol. 118
  start-page: 32
  year: 2012
  end-page: 39
  ident: bib0095
  publication-title: Soil & Tillage Research Use of a Partial-Width Tillage System Maintains Benefits of No-Tillage in Increasing Total Soil Nitrogen
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0060
  article-title: Deep learning
  publication-title: Nature
– year: 2020
  ident: bib0045
  article-title: Assessment of Changes in Topsoil Properties in LUCAS Samples Between 2009 / 2012 and 2015 Surveys
– volume: 177
  year: 2020
  ident: bib0105
  article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 20
  ident: bib0100
  article-title: Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer’s disease: a feature selection ensemble combining stability and predictability
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: bib0120
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 146
  start-page: 108
  year: 2015
  end-page: 117
  ident: bib0015
  article-title: Evaluation of soil structural quality using VIS-NIR spectra
  publication-title: Soil Tillage Res.
– volume: 112
  start-page: 47
  year: 2015
  end-page: 53
  ident: bib0010
  article-title: Eliminating the interference of soil moisture and particle size on predicting soil total nitrogen content using a NIRS-based portable detector
  publication-title: Comput. Electron. Agric.
– volume: 205
  year: 2021
  ident: bib0040
  article-title: Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China
  publication-title: Soil Tillage Res.
– volume: 19
  year: 2019
  ident: bib0055
  article-title: Gradient-based multi-objective feature selection for gait mode recognition of transfemoral amputees
  publication-title: Sensors (Switzerland)
– volume: 19
  year: 2019
  ident: bib0070
  article-title: Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine
  publication-title: Sensors (Switzerland)
– volume: 37
  start-page: 328
  year: 1989
  end-page: 339
  ident: bib0140
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: IEEE Trans. Acoust.
– volume: 2013
  start-page: 387
  year: 2013
  end-page: 416
  ident: bib0050
  article-title: Prediction of protein essentiality by the support vector machine with statistical tests
  publication-title: Evol. Bioinforma
– start-page: 2018
  year: 2011
  end-page: 2025
  ident: bib0175
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
  publication-title: Proc. IEEE Int. Conf. Comput. Vis
– volume: 613–614
  start-page: 829
  year: 2018
  end-page: 839
  ident: bib0035
  article-title: Environmentally friendly fertilizers: a review of materials used and their effects on the environment
  publication-title: Sci. Total Environ.
– volume: 158
  start-page: 201
  year: 2019
  end-page: 210
  ident: bib0085
  article-title: Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling
  publication-title: Comput. Electron. Agric.
– volume: 104
  start-page: 268
  year: 2019
  end-page: 278
  ident: bib0020
  article-title: Assessing fertilizer use efficiency and its determinants for apple production in China
  publication-title: Ecol. Indic.
– volume: 185
  start-page: 7409
  year: 2013
  end-page: 7425
  ident: bib0135
  article-title: The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union
  publication-title: Environ. Monit. Assess.
– volume: 17
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib0025
  article-title: Evaluating fertilizer use efficiency and spatial correlation of its determinants in China: a geographically weighted regression approach
  publication-title: Int. J. Environ. Res. Public Health
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0030
  article-title: Data based predictive models for odor perception
  publication-title: Sci. Rep.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0125
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 2528
  year: 2010
  end-page: 2535
  ident: bib0170
  article-title: Deconvolutional networks
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit
– volume: 114
  start-page: 165
  year: 2011
  ident: 10.1016/j.still.2021.105109_bib0075
  article-title: Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2011.05.001
– volume: 158
  start-page: 201
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0085
  article-title: Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.02.003
– volume: 146
  start-page: 108
  year: 2015
  ident: 10.1016/j.still.2021.105109_bib0015
  article-title: Evaluation of soil structural quality using VIS-NIR spectra
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.03.006
– volume: 205
  year: 2021
  ident: 10.1016/j.still.2021.105109_bib0040
  article-title: Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104753
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.still.2021.105109_bib0125
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.still.2021.105109_bib0060
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.still.2021.105109_bib0145
  article-title: Comparison of soil total nitrogen content prediction models based on Vis-NIR spectroscopy
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20247078
– volume: 35
  start-page: 2371
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0150
  article-title: DeeReCT-PolyA: a robust and generic deep learning method for PAS identification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty991
– volume: 158
  start-page: 46
  year: 2010
  ident: 10.1016/j.still.2021.105109_bib0120
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: vol. 118
  start-page: 32
  year: 2012
  ident: 10.1016/j.still.2021.105109_bib0095
– year: 2020
  ident: 10.1016/j.still.2021.105109_bib0045
– volume: 2013
  start-page: 387
  year: 2013
  ident: 10.1016/j.still.2021.105109_bib0050
  article-title: Prediction of protein essentiality by the support vector machine with statistical tests
  publication-title: Evol. Bioinforma
– start-page: 615
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0110
  article-title: Soil texture classification with 1D convolutional neural networks based on hyperspectral data
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-annals-IV-2-W5-615-2019
– volume: 112
  start-page: 47
  year: 2015
  ident: 10.1016/j.still.2021.105109_bib0010
  article-title: Eliminating the interference of soil moisture and particle size on predicting soil total nitrogen content using a NIRS-based portable detector
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.11.003
– volume: 333
  start-page: 23
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0185
  article-title: Spectral features extraction for estimation of soil total nitrogen content based on modified ant colony optimization algorithm
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.004
– volume: 171
  year: 2020
  ident: 10.1016/j.still.2021.105109_bib0005
  article-title: A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105275
– volume: 20
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0165
  article-title: Genome-wide transcriptome analysis of rice seedlings after seed dressing with paenibacillus yonginensis dcy84t and silicon
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20235883
– volume: 185
  start-page: 7409
  year: 2013
  ident: 10.1016/j.still.2021.105109_bib0135
  article-title: The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3109-3
– volume: 104
  start-page: 268
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0020
  article-title: Assessing fertilizer use efficiency and its determinants for apple production in China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.05.006
– volume: 613–614
  start-page: 829
  year: 2018
  ident: 10.1016/j.still.2021.105109_bib0035
  article-title: Environmentally friendly fertilizers: a review of materials used and their effects on the environment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.186
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.still.2021.105109_bib0100
  article-title: Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer’s disease: a feature selection ensemble combining stability and predictability
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-018-0710-y
– volume: 152
  start-page: 104
  year: 2016
  ident: 10.1016/j.still.2021.105109_bib0080
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.04.018
– volume: 9
  year: 2014
  ident: 10.1016/j.still.2021.105109_bib0115
  article-title: Mutual information between discrete and continuous data sets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087357
– volume: 177
  year: 2020
  ident: 10.1016/j.still.2021.105109_bib0105
  article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105713
– volume: 17
  start-page: 1
  year: 2020
  ident: 10.1016/j.still.2021.105109_bib0025
  article-title: Evaluating fertilizer use efficiency and spatial correlation of its determinants in China: a geographically weighted regression approach
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17238830
– start-page: 1272
  year: 2016
  ident: 10.1016/j.still.2021.105109_bib0090
  article-title: Nitrogen use efficiency for sugarcane-biofuel production : what is next?
  publication-title: Bioenergy Res.
  doi: 10.1007/s12155-016-9763-x
– volume: 29
  start-page: 400
  year: 2021
  ident: 10.1016/j.still.2021.105109_bib0160
  article-title: Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model
  publication-title: Opt. Express
  doi: 10.1364/OE.414050
– volume: 1058
  start-page: 48
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0180
  article-title: DeepSpectra: an end-to-end deep learning approach for quantitative spectral analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.01.002
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.still.2021.105109_bib0130
  article-title: Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere
  publication-title: Microorganisms
– volume: 160
  start-page: 51
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0200
  article-title: Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.016
– volume: 19
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0055
  article-title: Gradient-based multi-objective feature selection for gait mode recognition of transfemoral amputees
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19020253
– volume: 50
  year: 2017
  ident: 10.1016/j.still.2021.105109_bib0065
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
– volume: 28
  start-page: 1160
  year: 2008
  ident: 10.1016/j.still.2021.105109_bib0190
  article-title: Estimation of soil organic matter and soil total nitrogen based on NIR spectroscopy and BP neural network
  publication-title: Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy Spectr. Anal.
– volume: 47
  start-page: 543
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0155
  article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.023
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.still.2021.105109_bib0030
  article-title: Data based predictive models for odor perception
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73978-1
– volume: 37
  start-page: 328
  year: 1989
  ident: 10.1016/j.still.2021.105109_bib0140
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: IEEE Trans. Acoust.
  doi: 10.1109/29.21701
– volume: 48
  start-page: 271
  year: 2017
  ident: 10.1016/j.still.2021.105109_bib0195
  article-title: Soil total nitrogen content prediction based on gray correlation-extreme learning machine
  publication-title: Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach.
– volume: 19
  year: 2019
  ident: 10.1016/j.still.2021.105109_bib0070
  article-title: Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine
  publication-title: Sensors (Switzerland)
– start-page: 2018
  year: 2011
  ident: 10.1016/j.still.2021.105109_bib0175
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
  publication-title: Proc. IEEE Int. Conf. Comput. Vis
– start-page: 2528
  year: 2010
  ident: 10.1016/j.still.2021.105109_bib0170
  article-title: Deconvolutional networks
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit
SSID ssj0004328
Score 2.3853486
Snippet •Convolutional operations were introduced into screening characteristic wavelengths and constructing the features for predicting STN content.•Construction...
On-demand fertilization does not only help to improve fertilizer use efficiency, but also to avoid over-use of chemical fertilizers. Rapid monitoring of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105109
SubjectTerms Characteristic wavelength
Construction of features
Convolution operations
fertilizer application
nitrogen
nutrient content
On-demand fertilization
prediction
soil
Spectroscopy
tillage
total nitrogen
Title Construction of complex features for predicting soil total nitrogen content based on convolution operations
URI https://dx.doi.org/10.1016/j.still.2021.105109
https://www.proquest.com/docview/2636412374
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscKqAgWqAyUo-km_gr6-OqolpA9FIq9WbZiY0WVpvV7rbqid_OjOO0AqEeOMaxo2hmPDPWPL8BOIkVNTaqQuFaEQsZuSgmrcejiuaNMsIoniqmXy_07Ep-vlbXO3A23IUhWGX2_b1PT946j4yzNMer-Xx8SQB6OjJzohGacLELe1wYrUawN_30ZXbxcD1SpBarieKbFgzkQwnmhRtpQSUIXlHL2wRM_HeA-stVp_hz_gz2c-LIpv2_PYedsHwBT6ff15k8IxzAT-q-OfDBsi6yhBcPdyyGRN-5YZihstWaajOEdmabbr5g2w7zb4Y7e92hMTHCrmMgYhTeWtalgdtsn6xbhd5iNi_h6vzjt7NZkZspFI0QelsoF01ofOWdULJWbe2MDlo7KbkrpdfRlCLi4QnnyNKZSfQYuGIQZTQi4ivxCkbLbhleAzPelUHXDY9KSkwfvRZlWypv6lJ7Efkh8EGCtslM49TwYmEHSNkPm8RuSey2F_shfLhftOqJNh6frgfV2D_sxWIoeHzh-0GRFncSlUfcMnQ3G8u10BIDeS2P_vfjb-AJPfUYtLcwQpWHd5i0bP0x7J7-qo6zaf4GMGnteg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxELXScKA9oPJRNaUUI3FkycZfGx8jBAoQuECk3Cx7164CUTZK0qonfjsz3t0iUMWh17W9Wo3H88aat28IOQ49bGzU84kteEhEYDzpFw6uKorlUnMtWayY3tyq4VhcTeSkRc6af2GQVlnH_iqmx2hdP-nW1uwuptPuHRLo8crMUEaoz_gHsiEkz5DXd_r0wvMQPDZYjQLfOL2RHookLzhGMyxAsB42vI20xH_D05tAHdHn4jPZqtNGOqi-bJu0_HyHfBr8XNbSGX6XPGLvzUYNlpaBRra4_0ODj-KdKwr5KV0ssTKDXGe6Kqczui4h-6ZwrpcluBJF5jrAEEVwK2gZH_yuvZOWC1_5y2qPjC_O78-GSd1KIck5V-tE2qB97nrOcikyWWRWK6-UFYLZVDgVdMoDXJ1gjkit7gcHsBU8T4PmAYb4F9Kel3P_lVDtbOpVlrMghYDk0SmeFql0OkuV44F1CGssaPJaZxzbXcxMQyh7MNHsBs1uKrN3yMnfRYtKZuP96arZGvPKWwwAwfsLj5qNNHCOsDhi5778tTJMcSUAxjPx7X9ffkg2h_c3IzO6vL3eJx9xpGKjfSdt2H5_AOnL2v2I7vkMNeHuRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+complex+features+for+predicting+soil+total+nitrogen+content+based+on+convolution+operations&rft.jtitle=Soil+%26+tillage+research&rft.au=Wang%2C+Yueting&rft.au=Li%2C+Minzan&rft.au=Ji%2C+Ronghua&rft.au=Wang%2C+Minjuan&rft.date=2021-09-01&rft.issn=0167-1987&rft.volume=213+p.105109-&rft_id=info:doi/10.1016%2Fj.still.2021.105109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon