Statistical data mining of streaming motion data for activity and fall recognition in assistive environments
The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 107; pp. 87 - 96 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio and video sensors on the monitored subject (wearable sensors) or devices installed at the surrounding environment. Visual data captured from the user's environment, using overhead cameras along with motion data, which are collected from accelerometers on the subject's body, can be fed to activity detection systems that can detect emergency situations like falls and injuries. The output of these sensors is data streams that require real time recognition, especially in such emergency situations. In this paper, we study motion and activity related streaming data and we propose classification schemes using traditional classification approaches. However, such approaches may not be always applicable for immediate alarm triggering and fall prevention or when CPU power and memory resources are limited (e.g.running the detection algorithm on a mobile device such as smartphones). To this end, we also propose a statistical mining methodology that may be used for real time motion data processing. The paper includes details of the stream data analysis methodology incorporated in the activity recognition and fall detection system along with an initial evaluation of the achieved accuracy in detecting falls. The results are promising and indicate that using the proposed methodology real time fall detection is feasible. |
---|---|
AbstractList | The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio and video sensors on the monitored subject (wearable sensors) or devices installed at the surrounding environment. Visual data captured from the user's environment, using overhead cameras along with motion data, which are collected from accelerometers on the subject's body, can be fed to activity detection systems that can detect emergency situations like falls and injuries. The output of these sensors is data streams that require real time recognition, especially in such emergency situations. In this paper, we study motion and activity related streaming data and we propose classification schemes using traditional classification approaches. However, such approaches may not be always applicable for immediate alarm triggering and fall prevention or when CPU power and memory resources are limited (e.g.running the detection algorithm on a mobile device such as smartphones). To this end, we also propose a statistical mining methodology that may be used for real time motion data processing. The paper includes details of the stream data analysis methodology incorporated in the activity recognition and fall detection system along with an initial evaluation of the achieved accuracy in detecting falls. The results are promising and indicate that using the proposed methodology real time fall detection is feasible. |
Author | Doukas, C.N. Plagianakos, V.P. Tasoulis, S.K. Maglogiannis, I. |
Author_xml | – sequence: 1 givenname: S.K. surname: Tasoulis fullname: Tasoulis, S.K. email: stas@ucg.gr organization: Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, Lamia 35100, Greece – sequence: 2 givenname: C.N. surname: Doukas fullname: Doukas, C.N. email: doukas@aegean.gr organization: Information and Communication Systems Engineering, University of the Aegean, Karlovassi, Samos 83200, Greece – sequence: 3 givenname: V.P. surname: Plagianakos fullname: Plagianakos, V.P. email: vpp@ucg.gr organization: Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, Lamia 35100, Greece – sequence: 4 givenname: I. surname: Maglogiannis fullname: Maglogiannis, I. email: imaglo@ucg.gr, imaglo@gmail.com, imaglo@aegean.gr organization: Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, Lamia 35100, Greece |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27313478$$DView record in Pascal Francis |
BookMark | eNqFkMtqHDEQRUVwIGPHf5CFNl52W49-qLMIBBM_YMCLxGuhUZeGGrqlQVIG5u-jTgcvsrBXpaLOvaBzSS588EDIF85qznh3e6g9_LZhrgXjomaqZrL7QDZc9aJSQnUXZMMG0VZCcvGJXKZ0YIz3XAwbMv3MJmPKaM1ER5MNndGj39PgaMoRzLwsc8gY_Hp3IVJjM54wn6nxI3VmmmgEG_Ye_2LoqUlpKT0BBX_CGPwMPqfP5GOBE1z_m1fk5f7Hr7vHavv88HT3fVtZKbtctZ2Sqht2O85HydVgGJeuL2-Axsi27Vs-MGnLBVrrLGuA7ZgbOyebBoadk1fkZu09mlT-5aLxFpM-RpxNPGvRSy6bXhWuWTkbQ0oR3CvCmV7M6oNezerFrGZKF7Ml9vW_mMXFYvA5GpzeC39bw1AEnBCiThbBWxixOMx6DPh2wR_gh5tH |
CitedBy_id | crossref_primary_10_1016_j_neucom_2015_07_085 crossref_primary_10_1109_ACCESS_2021_3117667 crossref_primary_10_1016_j_cmpb_2021_106357 crossref_primary_10_1016_j_future_2017_11_029 crossref_primary_10_1007_s00530_016_0518_5 crossref_primary_10_1016_j_neucom_2017_02_082 crossref_primary_10_1007_s10916_018_0948_z crossref_primary_10_1016_j_bspc_2018_03_012 crossref_primary_10_3390_s17071528 crossref_primary_10_1155_2016_7483536 crossref_primary_10_1016_j_ijleo_2017_07_064 crossref_primary_10_1109_TGRS_2024_3495662 crossref_primary_10_1155_2016_6931789 crossref_primary_10_1109_TSP_2014_2347260 crossref_primary_10_1016_j_knosys_2017_09_032 crossref_primary_10_1007_s00521_020_05208_8 crossref_primary_10_1016_j_neucom_2016_03_020 crossref_primary_10_3390_s17071487 |
Cites_doi | 10.2307/2981662 10.1109/DDHH.2006.1624792 10.1109/ICCV.2003.1238383 10.1145/1656274.1656278 10.1016/S0893-6080(00)00026-5 10.1016/j.patcog.2010.05.025 10.1142/S0218213010000108 10.1016/j.puhe.2004.02.006 10.1023/A:1010933404324 10.1080/09593980490487500 10.1109/72.761722 10.1093/ageing/afh218 10.1093/biomet/41.1-2.100 10.1145/1579114.1579128 10.2307/2346830 10.1214/aos/1028144844 10.1109/TITB.2010.2091140 10.7551/mitpress/1130.003.0016 10.1109/MMB.2000.893857 10.1214/aos/1176349519 10.1109/IEMBS.2011.6090632 10.1007/s10209-010-0196-6 10.1007/978-3-642-14571-1_17 10.1016/B978-1-55860-377-6.50022-0 10.1109/IEMBS.2006.259613 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.neucom.2012.08.036 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1872-8286 |
EndPage | 96 |
ExternalDocumentID | 27313478 10_1016_j_neucom_2012_08_036 S0925231212007606 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH WUQ XPP EFKBS IQODW |
ID | FETCH-LOGICAL-c336t-5683869bb11d3189a013f71d3ee4a355751903c189e5cfc04e0b0fd6f344e9bf3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Mon Jul 21 09:17:15 EDT 2025 Sun Jul 06 05:08:50 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Fri Feb 23 02:27:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cumulative sum (CUSUM) algorithm Streaming motion data Fall detection Visual data Classification scheme Mobile phone Event detection Mobility Activity Data mining Statistical data CUSUM method Displacement measurement Human Multimedia Streaming Data analysis Statistical analysis Motion estimation Measurement sensor Distributed system Real time Physical handicap Body area network Scene analysis Alarm Body movement Emergency Motion analysis Elderly Central unit Mobile computing |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Timely Neural Networks Applications in Engineering, Selected Papers from the 12th EANN International Conference, 2011 |
MergedId | FETCHMERGED-LOGICAL-c336t-5683869bb11d3189a013f71d3ee4a355751903c189e5cfc04e0b0fd6f344e9bf3 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_27313478 crossref_primary_10_1016_j_neucom_2012_08_036 crossref_citationtrail_10_1016_j_neucom_2012_08_036 elsevier_sciencedirect_doi_10_1016_j_neucom_2012_08_036 |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Shany, Redmond, Narayanan, Lovell (bib12) 2011 Miaou, Sung, Huang (bib6) 2006; 0 M. Basseville, I.V. Nikiforov, Detection of abrupt changes: Theory and Application, 1993. Hartigan, Wong (bib30) 1979; 28 Hyvärinen, Oja (bib19) 2000; 13 Hall (bib28) 1998 Breiman (bib25) 2001; 45 Hyvärinen (bib18) 1999; 10 S. Tasoulis, V. Plagianakos, D. Tasoulis, Independent component divisive clustering of gene expression data, in: Proceedings of Eighth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Gargnano Lago di Garda, Italy, 2011, pp. 1–9. C. Doukas, I. Maglogiannis, An Assistive Environment for Improving Human Safety Utilizing Advanced Sound and Motion Data Classification, Universal Access in the Information Society, 2010, pp. 1–12. C. Doukas, I. Maglogiannis, Advanced classification and rules-based evaluation of motion, visual and biosignal data for patient fall incident detection, Int. J. Artif. Intell. Tools (2010) 175–191. N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron, Monitoring behavior in home using a smart fall sensor and position sensors, in: Proceedings of 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 607–610. Jones, Sibson (bib17) 1987; 150 S. Tasoulis, C. Doukas, I. Maglogiannis, V. Plagianakos, Statistical data mining of streaming motion data for fall detection in assistive environments, in: Proceedings of 33nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 3720–3723. Robinson, Gordon, Wallentine, Visio (bib2) 2004; 20 G. H. John, P. Langley, Estimating continuous distributions in bayesian classifiers, in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 1995, pp. 338–345. West, Hippisley-Cox, Coupland, Price, Groom, Kendrick, Webber (bib1) 2004; 118 Melzer, Benjuya, Kaplanski (bib3) 2004; 33 C. Doukas, I. Maglogiannis, A. Rouskas, A. Pneumatikakis, Emergency incidents detection in assisted living environments utilizing sound and visual perceptual components, in: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, PETRA '09, ACM, Corfu, Greece, 2009, pp. 14:1–14:7. an instance-based learner using an entropic distance measure, in: 12th International Conference on Machine Learning, 1995, pp. 108–114. Doukas, Athanasiou, Fakos, Maglogiannis (bib8) 2009; 7 Doukas, Maglogiannis (bib11) 2011; 15 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib21) 2009; 11 T. Hastie, R. Tibshirani, Classification by pairwise coupling, in: Advances in Neural Information Processing Systems, vol. 4597, 1998. J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Support Vector Learning, Advances in Kernel Methods, 1998. C. Yang, R. Duraiswami, N.A. Gumerov, L. Davis, Improved fast gauss transform and efficient kernel density estimation, in: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 664–671. Tasoulis, Tasoulis, Plagianakos (bib20) 2010; 43 Ester, Kriegel, Sander, Xu (bib31) 1996; 1996 F. Allen, E. Ambikairajah, N. Lovell, B. Celler, An adapted gaussian mixture model approach to accelerometry-based movement classification using time-domain features, in: Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 3600–3603. Huber (bib16) 1985; 13 J.G. Cleary, L.E. Trigg A. Rosenberg, J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, in: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410–420. Quinlan (bib26) 1993 Page (bib4) 1954; 41 Hall (10.1016/j.neucom.2012.08.036_bib21) 2009; 11 Doukas (10.1016/j.neucom.2012.08.036_bib8) 2009; 7 Shany (10.1016/j.neucom.2012.08.036_bib12) 2011 Hall (10.1016/j.neucom.2012.08.036_bib28) 1998 Quinlan (10.1016/j.neucom.2012.08.036_bib26) 1993 Ester (10.1016/j.neucom.2012.08.036_bib31) 1996; 1996 Page (10.1016/j.neucom.2012.08.036_bib4) 1954; 41 10.1016/j.neucom.2012.08.036_bib15 10.1016/j.neucom.2012.08.036_bib14 10.1016/j.neucom.2012.08.036_bib13 10.1016/j.neucom.2012.08.036_bib33 10.1016/j.neucom.2012.08.036_bib10 10.1016/j.neucom.2012.08.036_bib32 Robinson (10.1016/j.neucom.2012.08.036_bib2) 2004; 20 Miaou (10.1016/j.neucom.2012.08.036_bib6) 2006; 0 Melzer (10.1016/j.neucom.2012.08.036_bib3) 2004; 33 10.1016/j.neucom.2012.08.036_bib7 10.1016/j.neucom.2012.08.036_bib5 Breiman (10.1016/j.neucom.2012.08.036_bib25) 2001; 45 West (10.1016/j.neucom.2012.08.036_bib1) 2004; 118 10.1016/j.neucom.2012.08.036_bib9 10.1016/j.neucom.2012.08.036_bib29 Tasoulis (10.1016/j.neucom.2012.08.036_bib20) 2010; 43 10.1016/j.neucom.2012.08.036_bib27 10.1016/j.neucom.2012.08.036_bib24 10.1016/j.neucom.2012.08.036_bib23 Doukas (10.1016/j.neucom.2012.08.036_bib11) 2011; 15 10.1016/j.neucom.2012.08.036_bib22 Huber (10.1016/j.neucom.2012.08.036_bib16) 1985; 13 Hartigan (10.1016/j.neucom.2012.08.036_bib30) 1979; 28 Hyvärinen (10.1016/j.neucom.2012.08.036_bib19) 2000; 13 Jones (10.1016/j.neucom.2012.08.036_bib17) 1987; 150 Hyvärinen (10.1016/j.neucom.2012.08.036_bib18) 1999; 10 |
References_xml | – volume: 1996 start-page: 226 year: 1996 end-page: 231 ident: bib31 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Computer – reference: T. Hastie, R. Tibshirani, Classification by pairwise coupling, in: Advances in Neural Information Processing Systems, vol. 4597, 1998. – start-page: 1 year: 2011 ident: bib12 article-title: Sensors-based wearable systems for monitoring of human movement and falls publication-title: IEEE Sensors J. – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: bib30 article-title: A K-means clustering algorithm publication-title: Appl. Statist. – reference: G. H. John, P. Langley, Estimating continuous distributions in bayesian classifiers, in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 1995, pp. 338–345. – volume: 43 start-page: 3391 year: 2010 end-page: 3411 ident: bib20 article-title: Enhancing principal direction divisive clustering publication-title: Pattern Recognition – reference: S. Tasoulis, C. Doukas, I. Maglogiannis, V. Plagianakos, Statistical data mining of streaming motion data for fall detection in assistive environments, in: Proceedings of 33nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 3720–3723. – volume: 15 start-page: 277 year: 2011 end-page: 289 ident: bib11 article-title: Emergency fall incidents detection in assisted living environments utilizing motion, sound and visual perceptual components publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: C. Doukas, I. Maglogiannis, A. Rouskas, A. Pneumatikakis, Emergency incidents detection in assisted living environments utilizing sound and visual perceptual components, in: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, PETRA '09, ACM, Corfu, Greece, 2009, pp. 14:1–14:7. – volume: 150 start-page: 1 year: 1987 end-page: 37 ident: bib17 article-title: What is projection pursuit? publication-title: J. R. Statist. Soc. Ser. A General – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib21 article-title: The weka data mining software publication-title: SIGKDD Explor. Newslett. – reference: F. Allen, E. Ambikairajah, N. Lovell, B. Celler, An adapted gaussian mixture model approach to accelerometry-based movement classification using time-domain features, in: Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 3600–3603. – volume: 13 start-page: 435 year: 1985 end-page: 475 ident: bib16 article-title: Projection pursuit publication-title: Ann. Statist. – reference: J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Support Vector Learning, Advances in Kernel Methods, 1998. – reference: A. Rosenberg, J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, in: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410–420. – reference: C. Doukas, I. Maglogiannis, Advanced classification and rules-based evaluation of motion, visual and biosignal data for patient fall incident detection, Int. J. Artif. Intell. Tools (2010) 175–191. – reference: M. Basseville, I.V. Nikiforov, Detection of abrupt changes: Theory and Application, 1993. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib25 article-title: Random forests publication-title: Mach. Learn. – reference: N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron, Monitoring behavior in home using a smart fall sensor and position sensors, in: Proceedings of 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 607–610. – reference: C. Yang, R. Duraiswami, N.A. Gumerov, L. Davis, Improved fast gauss transform and efficient kernel density estimation, in: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 664–671. – volume: 33 start-page: 602 year: 2004 end-page: 607 ident: bib3 article-title: Postural stability in the elderly publication-title: Age Age. – reference: S. Tasoulis, V. Plagianakos, D. Tasoulis, Independent component divisive clustering of gene expression data, in: Proceedings of Eighth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Gargnano Lago di Garda, Italy, 2011, pp. 1–9. – volume: 0 start-page: 39 year: 2006 end-page: 42 ident: bib6 article-title: A customized human fall detection system using omni-camera images and personal information publication-title: Distrib. Diagn. Home Healthcare – year: 1993 ident: bib26 article-title: C4.5 – volume: 118 start-page: 576 year: 2004 end-page: 581 ident: bib1 article-title: Do rates of hospital admission for falls and hip fracture in elderly people vary by socio-economic status? publication-title: Public Health – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: bib18 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Networks – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib19 article-title: Independent component analysis publication-title: Neural Networks – reference: : an instance-based learner using an entropic distance measure, in: 12th International Conference on Machine Learning, 1995, pp. 108–114. – reference: C. Doukas, I. Maglogiannis, An Assistive Environment for Improving Human Safety Utilizing Advanced Sound and Motion Data Classification, Universal Access in the Information Society, 2010, pp. 1–12. – volume: 41 start-page: 100 year: 1954 end-page: 115 ident: bib4 article-title: Continuous inspection schemes publication-title: Biometrika – volume: 7 start-page: 111 year: 2009 end-page: 117 ident: bib8 article-title: Advanced sound and distress speech expression classification for human status awareness in assistive environments publication-title: J. Inf. Technol. Healthcare – reference: J.G. Cleary, L.E. Trigg, – volume: 20 start-page: 155 year: 2004 end-page: 173 ident: bib2 article-title: Relationship between lower-extremity joint torque and the risk for falls in a group of community dwelling older adults publication-title: Physiotherapy Theory Pract. – year: 1998 ident: bib28 article-title: Correlation-based Feature Subset Selection for Machine Learning – volume: 150 start-page: 1 year: 1987 ident: 10.1016/j.neucom.2012.08.036_bib17 article-title: What is projection pursuit? publication-title: J. R. Statist. Soc. Ser. A General doi: 10.2307/2981662 – volume: 0 start-page: 39 year: 2006 ident: 10.1016/j.neucom.2012.08.036_bib6 article-title: A customized human fall detection system using omni-camera images and personal information publication-title: Distrib. Diagn. Home Healthcare doi: 10.1109/DDHH.2006.1624792 – ident: 10.1016/j.neucom.2012.08.036_bib32 doi: 10.1109/ICCV.2003.1238383 – volume: 11 start-page: 10 year: 2009 ident: 10.1016/j.neucom.2012.08.036_bib21 article-title: The weka data mining software publication-title: SIGKDD Explor. Newslett. doi: 10.1145/1656274.1656278 – ident: 10.1016/j.neucom.2012.08.036_bib22 – year: 1993 ident: 10.1016/j.neucom.2012.08.036_bib26 – volume: 13 start-page: 411 year: 2000 ident: 10.1016/j.neucom.2012.08.036_bib19 article-title: Independent component analysis publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00026-5 – volume: 43 start-page: 3391 year: 2010 ident: 10.1016/j.neucom.2012.08.036_bib20 article-title: Enhancing principal direction divisive clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.05.025 – ident: 10.1016/j.neucom.2012.08.036_bib9 doi: 10.1142/S0218213010000108 – volume: 118 start-page: 576 year: 2004 ident: 10.1016/j.neucom.2012.08.036_bib1 article-title: Do rates of hospital admission for falls and hip fracture in elderly people vary by socio-economic status? publication-title: Public Health doi: 10.1016/j.puhe.2004.02.006 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.neucom.2012.08.036_bib25 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 10.1016/j.neucom.2012.08.036_bib29 – volume: 20 start-page: 155 year: 2004 ident: 10.1016/j.neucom.2012.08.036_bib2 article-title: Relationship between lower-extremity joint torque and the risk for falls in a group of community dwelling older adults publication-title: Physiotherapy Theory Pract. doi: 10.1080/09593980490487500 – volume: 7 start-page: 111 year: 2009 ident: 10.1016/j.neucom.2012.08.036_bib8 article-title: Advanced sound and distress speech expression classification for human status awareness in assistive environments publication-title: J. Inf. Technol. Healthcare – volume: 10 start-page: 626 year: 1999 ident: 10.1016/j.neucom.2012.08.036_bib18 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.761722 – volume: 33 start-page: 602 year: 2004 ident: 10.1016/j.neucom.2012.08.036_bib3 article-title: Postural stability in the elderly publication-title: Age Age. doi: 10.1093/ageing/afh218 – volume: 41 start-page: 100 year: 1954 ident: 10.1016/j.neucom.2012.08.036_bib4 article-title: Continuous inspection schemes publication-title: Biometrika doi: 10.1093/biomet/41.1-2.100 – ident: 10.1016/j.neucom.2012.08.036_bib13 doi: 10.1145/1579114.1579128 – volume: 28 start-page: 100 year: 1979 ident: 10.1016/j.neucom.2012.08.036_bib30 article-title: A K-means clustering algorithm publication-title: Appl. Statist. doi: 10.2307/2346830 – ident: 10.1016/j.neucom.2012.08.036_bib24 doi: 10.1214/aos/1028144844 – volume: 15 start-page: 277 year: 2011 ident: 10.1016/j.neucom.2012.08.036_bib11 article-title: Emergency fall incidents detection in assisted living environments utilizing motion, sound and visual perceptual components publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2091140 – volume: 1996 start-page: 226 year: 1996 ident: 10.1016/j.neucom.2012.08.036_bib31 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Computer – ident: 10.1016/j.neucom.2012.08.036_bib23 doi: 10.7551/mitpress/1130.003.0016 – year: 1998 ident: 10.1016/j.neucom.2012.08.036_bib28 – ident: 10.1016/j.neucom.2012.08.036_bib15 – ident: 10.1016/j.neucom.2012.08.036_bib5 doi: 10.1109/MMB.2000.893857 – volume: 13 start-page: 435 year: 1985 ident: 10.1016/j.neucom.2012.08.036_bib16 article-title: Projection pursuit publication-title: Ann. Statist. doi: 10.1214/aos/1176349519 – ident: 10.1016/j.neucom.2012.08.036_bib33 doi: 10.1109/IEMBS.2011.6090632 – start-page: 1 year: 2011 ident: 10.1016/j.neucom.2012.08.036_bib12 article-title: Sensors-based wearable systems for monitoring of human movement and falls publication-title: IEEE Sensors J. – ident: 10.1016/j.neucom.2012.08.036_bib10 doi: 10.1007/s10209-010-0196-6 – ident: 10.1016/j.neucom.2012.08.036_bib14 doi: 10.1007/978-3-642-14571-1_17 – ident: 10.1016/j.neucom.2012.08.036_bib27 doi: 10.1016/B978-1-55860-377-6.50022-0 – ident: 10.1016/j.neucom.2012.08.036_bib7 doi: 10.1109/IEMBS.2006.259613 |
SSID | ssj0017129 |
Score | 2.2107441 |
Snippet | The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Applied sciences Computer science; control theory; systems Computer systems and distributed systems. User interface Cumulative sum (CUSUM) algorithm Data processing. List processing. Character string processing Exact sciences and technology Fall detection Memory organisation. Data processing Software Streaming motion data Visual data |
Title | Statistical data mining of streaming motion data for activity and fall recognition in assistive environments |
URI | https://dx.doi.org/10.1016/j.neucom.2012.08.036 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DXwTxW5wfIw--1rVNmraPYzim4l50sLeStAlMtm7o5qN_u3dJWzYQBr61zSUtueTyO3p3P0Luo0RIEavEY4rl4KD42kulMrDdo4ApyRLNMDn5dSSGY_48iSYt0q9zYTCssrL9zqZba1096Vaz2V1Op903Pw3BiwrA9trfS1h2m_MYV_nDTxPmEcRB6OrthZGH0nX6nI3xKvUaY0bgEAxtIU9bqPnP4-lwKb9g0oxju9g4ggYn5KjCjrTnPu-UtHR5Ro5rXgZabdNzMkMEaQswgzSGgNK5pYGgC0MxN0TO8cbx97h2QK4UMxyQSILKsqBGzma0CS4CsWlJAWbjoN-abmbHXZDx4PG9P_QqVgUvZ0ysvEgkLBGpUkFQwIZOJYBAE8O11lwC-ogB0_kshxYd5Sb3ufaVbwphGOc6VYZdkr1yUeorQrUW4GBIcFGkBrcyTH0leMHjSAYAS8KwTVg9mVlelRxH5otZVseWfWROBRmqIENCTCbaxGt6LV3JjR3yca2nbGvpZHAq7OjZ2VJr8zrAdJhim1z_e-gbchBa4gwMjbwle6vPtb4D-LJSHbs-O2S_9_QyHP0CHk_w4w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zPiiI3-L8mHnwta5t2rR9lKFM3fbiBnsrSZvApOuGbj76t3uXfrCBMPCtbS5pyeWS39G7-xFy74dc8ECGFpMsAQfFVlYkpAZz9x0mBQsVw-TkwZD3xt7rxJ80SLfKhcGwynLvL_Z0s1uXTzrlbHYW02nn3Y5c8KIc2HvN7yW-Q3Y9MF-kMXj4qeM8nMBxi4J7rm-heJU_Z4K8crXCoBE4BV1TydNUav7zfDpYiC-YNV3QXaydQc_H5LAEj_Sx-L4T0lD5KTmqiBloaadnJEMIaSowgzTGgNKZ4YGgc00xOUTM8KYg8CnaAbpSTHFAJgkq8pRqkWW0ji4CsWlOAWfjoN-KrqfHnZPx89Oo27NKWgUrYYwvLZ-HLOSRlI6TgkVHAlCgDuBaKU8A_AgA1NksgRblJzqxPWVLW6dcM89TkdTsgjTzea4uCVWKg4chwEcRCvxKN7Il91Iv8IUDuMR1W4RVkxknZc1xpL7I4iq47CMuVBCjCmJkxGS8Ray616KoubFFPqj0FG-snRiOhS092xtqrV8HoA5zbMOrfw99R_Z6o0E_7r8M367JvmtYNDBO8oY0l58rdQtYZinbZq3-AqKB8nE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Neurocomputing+%28Amsterdam%29&rft.atitle=Statistical+data+mining+of+streaming+motion+data+for+activity+and+fall+recognition+in+assistive+environments&rft.au=TASOULIS%2C+S.+K&rft.au=DOUKAS%2C+C.+N&rft.au=PLAGIANAKOS%2C+V.+P&rft.au=MAGLOGIANNIS%2C+I&rft.date=2013-05-01&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=107&rft.spage=87&rft.epage=96&rft_id=info:doi/10.1016%2Fj.neucom.2012.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=27313478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |