Statistical data mining of streaming motion data for activity and fall recognition in assistive environments

The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 107; pp. 87 - 96
Main Authors Tasoulis, S.K., Doukas, C.N., Plagianakos, V.P., Maglogiannis, I.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio and video sensors on the monitored subject (wearable sensors) or devices installed at the surrounding environment. Visual data captured from the user's environment, using overhead cameras along with motion data, which are collected from accelerometers on the subject's body, can be fed to activity detection systems that can detect emergency situations like falls and injuries. The output of these sensors is data streams that require real time recognition, especially in such emergency situations. In this paper, we study motion and activity related streaming data and we propose classification schemes using traditional classification approaches. However, such approaches may not be always applicable for immediate alarm triggering and fall prevention or when CPU power and memory resources are limited (e.g.running the detection algorithm on a mobile device such as smartphones). To this end, we also propose a statistical mining methodology that may be used for real time motion data processing. The paper includes details of the stream data analysis methodology incorporated in the activity recognition and fall detection system along with an initial evaluation of the achieved accuracy in detecting falls. The results are promising and indicate that using the proposed methodology real time fall detection is feasible.
AbstractList The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio and video sensors on the monitored subject (wearable sensors) or devices installed at the surrounding environment. Visual data captured from the user's environment, using overhead cameras along with motion data, which are collected from accelerometers on the subject's body, can be fed to activity detection systems that can detect emergency situations like falls and injuries. The output of these sensors is data streams that require real time recognition, especially in such emergency situations. In this paper, we study motion and activity related streaming data and we propose classification schemes using traditional classification approaches. However, such approaches may not be always applicable for immediate alarm triggering and fall prevention or when CPU power and memory resources are limited (e.g.running the detection algorithm on a mobile device such as smartphones). To this end, we also propose a statistical mining methodology that may be used for real time motion data processing. The paper includes details of the stream data analysis methodology incorporated in the activity recognition and fall detection system along with an initial evaluation of the achieved accuracy in detecting falls. The results are promising and indicate that using the proposed methodology real time fall detection is feasible.
Author Doukas, C.N.
Plagianakos, V.P.
Tasoulis, S.K.
Maglogiannis, I.
Author_xml – sequence: 1
  givenname: S.K.
  surname: Tasoulis
  fullname: Tasoulis, S.K.
  email: stas@ucg.gr
  organization: Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, Lamia 35100, Greece
– sequence: 2
  givenname: C.N.
  surname: Doukas
  fullname: Doukas, C.N.
  email: doukas@aegean.gr
  organization: Information and Communication Systems Engineering, University of the Aegean, Karlovassi, Samos 83200, Greece
– sequence: 3
  givenname: V.P.
  surname: Plagianakos
  fullname: Plagianakos, V.P.
  email: vpp@ucg.gr
  organization: Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, Lamia 35100, Greece
– sequence: 4
  givenname: I.
  surname: Maglogiannis
  fullname: Maglogiannis, I.
  email: imaglo@ucg.gr, imaglo@gmail.com, imaglo@aegean.gr
  organization: Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, Lamia 35100, Greece
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27313478$$DView record in Pascal Francis
BookMark eNqFkMtqHDEQRUVwIGPHf5CFNl52W49-qLMIBBM_YMCLxGuhUZeGGrqlQVIG5u-jTgcvsrBXpaLOvaBzSS588EDIF85qznh3e6g9_LZhrgXjomaqZrL7QDZc9aJSQnUXZMMG0VZCcvGJXKZ0YIz3XAwbMv3MJmPKaM1ER5MNndGj39PgaMoRzLwsc8gY_Hp3IVJjM54wn6nxI3VmmmgEG_Ye_2LoqUlpKT0BBX_CGPwMPqfP5GOBE1z_m1fk5f7Hr7vHavv88HT3fVtZKbtctZ2Sqht2O85HydVgGJeuL2-Axsi27Vs-MGnLBVrrLGuA7ZgbOyebBoadk1fkZu09mlT-5aLxFpM-RpxNPGvRSy6bXhWuWTkbQ0oR3CvCmV7M6oNezerFrGZKF7Ml9vW_mMXFYvA5GpzeC39bw1AEnBCiThbBWxixOMx6DPh2wR_gh5tH
CitedBy_id crossref_primary_10_1016_j_neucom_2015_07_085
crossref_primary_10_1109_ACCESS_2021_3117667
crossref_primary_10_1016_j_cmpb_2021_106357
crossref_primary_10_1016_j_future_2017_11_029
crossref_primary_10_1007_s00530_016_0518_5
crossref_primary_10_1016_j_neucom_2017_02_082
crossref_primary_10_1007_s10916_018_0948_z
crossref_primary_10_1016_j_bspc_2018_03_012
crossref_primary_10_3390_s17071528
crossref_primary_10_1155_2016_7483536
crossref_primary_10_1016_j_ijleo_2017_07_064
crossref_primary_10_1109_TGRS_2024_3495662
crossref_primary_10_1155_2016_6931789
crossref_primary_10_1109_TSP_2014_2347260
crossref_primary_10_1016_j_knosys_2017_09_032
crossref_primary_10_1007_s00521_020_05208_8
crossref_primary_10_1016_j_neucom_2016_03_020
crossref_primary_10_3390_s17071487
Cites_doi 10.2307/2981662
10.1109/DDHH.2006.1624792
10.1109/ICCV.2003.1238383
10.1145/1656274.1656278
10.1016/S0893-6080(00)00026-5
10.1016/j.patcog.2010.05.025
10.1142/S0218213010000108
10.1016/j.puhe.2004.02.006
10.1023/A:1010933404324
10.1080/09593980490487500
10.1109/72.761722
10.1093/ageing/afh218
10.1093/biomet/41.1-2.100
10.1145/1579114.1579128
10.2307/2346830
10.1214/aos/1028144844
10.1109/TITB.2010.2091140
10.7551/mitpress/1130.003.0016
10.1109/MMB.2000.893857
10.1214/aos/1176349519
10.1109/IEMBS.2011.6090632
10.1007/s10209-010-0196-6
10.1007/978-3-642-14571-1_17
10.1016/B978-1-55860-377-6.50022-0
10.1109/IEMBS.2006.259613
ContentType Journal Article
Conference Proceeding
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.neucom.2012.08.036
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 96
ExternalDocumentID 27313478
10_1016_j_neucom_2012_08_036
S0925231212007606
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
EFKBS
IQODW
ID FETCH-LOGICAL-c336t-5683869bb11d3189a013f71d3ee4a355751903c189e5cfc04e0b0fd6f344e9bf3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Mon Jul 21 09:17:15 EDT 2025
Sun Jul 06 05:08:50 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Fri Feb 23 02:27:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cumulative sum (CUSUM) algorithm
Streaming motion data
Fall detection
Visual data
Classification scheme
Mobile phone
Event detection
Mobility
Activity
Data mining
Statistical data
CUSUM method
Displacement measurement
Human
Multimedia
Streaming
Data analysis
Statistical analysis
Motion estimation
Measurement sensor
Distributed system
Real time
Physical handicap
Body area network
Scene analysis
Alarm
Body movement
Emergency
Motion analysis
Elderly
Central unit
Mobile computing
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName Timely Neural Networks Applications in Engineering, Selected Papers from the 12th EANN International Conference, 2011
MergedId FETCHMERGED-LOGICAL-c336t-5683869bb11d3189a013f71d3ee4a355751903c189e5cfc04e0b0fd6f344e9bf3
PageCount 10
ParticipantIDs pascalfrancis_primary_27313478
crossref_primary_10_1016_j_neucom_2012_08_036
crossref_citationtrail_10_1016_j_neucom_2012_08_036
elsevier_sciencedirect_doi_10_1016_j_neucom_2012_08_036
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Shany, Redmond, Narayanan, Lovell (bib12) 2011
Miaou, Sung, Huang (bib6) 2006; 0
M. Basseville, I.V. Nikiforov, Detection of abrupt changes: Theory and Application, 1993.
Hartigan, Wong (bib30) 1979; 28
Hyvärinen, Oja (bib19) 2000; 13
Hall (bib28) 1998
Breiman (bib25) 2001; 45
Hyvärinen (bib18) 1999; 10
S. Tasoulis, V. Plagianakos, D. Tasoulis, Independent component divisive clustering of gene expression data, in: Proceedings of Eighth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Gargnano Lago di Garda, Italy, 2011, pp. 1–9.
C. Doukas, I. Maglogiannis, An Assistive Environment for Improving Human Safety Utilizing Advanced Sound and Motion Data Classification, Universal Access in the Information Society, 2010, pp. 1–12.
C. Doukas, I. Maglogiannis, Advanced classification and rules-based evaluation of motion, visual and biosignal data for patient fall incident detection, Int. J. Artif. Intell. Tools (2010) 175–191.
N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron, Monitoring behavior in home using a smart fall sensor and position sensors, in: Proceedings of 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 607–610.
Jones, Sibson (bib17) 1987; 150
S. Tasoulis, C. Doukas, I. Maglogiannis, V. Plagianakos, Statistical data mining of streaming motion data for fall detection in assistive environments, in: Proceedings of 33nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 3720–3723.
Robinson, Gordon, Wallentine, Visio (bib2) 2004; 20
G. H. John, P. Langley, Estimating continuous distributions in bayesian classifiers, in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 1995, pp. 338–345.
West, Hippisley-Cox, Coupland, Price, Groom, Kendrick, Webber (bib1) 2004; 118
Melzer, Benjuya, Kaplanski (bib3) 2004; 33
C. Doukas, I. Maglogiannis, A. Rouskas, A. Pneumatikakis, Emergency incidents detection in assisted living environments utilizing sound and visual perceptual components, in: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, PETRA '09, ACM, Corfu, Greece, 2009, pp. 14:1–14:7.
an instance-based learner using an entropic distance measure, in: 12th International Conference on Machine Learning, 1995, pp. 108–114.
Doukas, Athanasiou, Fakos, Maglogiannis (bib8) 2009; 7
Doukas, Maglogiannis (bib11) 2011; 15
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib21) 2009; 11
T. Hastie, R. Tibshirani, Classification by pairwise coupling, in: Advances in Neural Information Processing Systems, vol. 4597, 1998.
J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Support Vector Learning, Advances in Kernel Methods, 1998.
C. Yang, R. Duraiswami, N.A. Gumerov, L. Davis, Improved fast gauss transform and efficient kernel density estimation, in: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 664–671.
Tasoulis, Tasoulis, Plagianakos (bib20) 2010; 43
Ester, Kriegel, Sander, Xu (bib31) 1996; 1996
F. Allen, E. Ambikairajah, N. Lovell, B. Celler, An adapted gaussian mixture model approach to accelerometry-based movement classification using time-domain features, in: Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 3600–3603.
Huber (bib16) 1985; 13
J.G. Cleary, L.E. Trigg
A. Rosenberg, J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, in: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410–420.
Quinlan (bib26) 1993
Page (bib4) 1954; 41
Hall (10.1016/j.neucom.2012.08.036_bib21) 2009; 11
Doukas (10.1016/j.neucom.2012.08.036_bib8) 2009; 7
Shany (10.1016/j.neucom.2012.08.036_bib12) 2011
Hall (10.1016/j.neucom.2012.08.036_bib28) 1998
Quinlan (10.1016/j.neucom.2012.08.036_bib26) 1993
Ester (10.1016/j.neucom.2012.08.036_bib31) 1996; 1996
Page (10.1016/j.neucom.2012.08.036_bib4) 1954; 41
10.1016/j.neucom.2012.08.036_bib15
10.1016/j.neucom.2012.08.036_bib14
10.1016/j.neucom.2012.08.036_bib13
10.1016/j.neucom.2012.08.036_bib33
10.1016/j.neucom.2012.08.036_bib10
10.1016/j.neucom.2012.08.036_bib32
Robinson (10.1016/j.neucom.2012.08.036_bib2) 2004; 20
Miaou (10.1016/j.neucom.2012.08.036_bib6) 2006; 0
Melzer (10.1016/j.neucom.2012.08.036_bib3) 2004; 33
10.1016/j.neucom.2012.08.036_bib7
10.1016/j.neucom.2012.08.036_bib5
Breiman (10.1016/j.neucom.2012.08.036_bib25) 2001; 45
West (10.1016/j.neucom.2012.08.036_bib1) 2004; 118
10.1016/j.neucom.2012.08.036_bib9
10.1016/j.neucom.2012.08.036_bib29
Tasoulis (10.1016/j.neucom.2012.08.036_bib20) 2010; 43
10.1016/j.neucom.2012.08.036_bib27
10.1016/j.neucom.2012.08.036_bib24
10.1016/j.neucom.2012.08.036_bib23
Doukas (10.1016/j.neucom.2012.08.036_bib11) 2011; 15
10.1016/j.neucom.2012.08.036_bib22
Huber (10.1016/j.neucom.2012.08.036_bib16) 1985; 13
Hartigan (10.1016/j.neucom.2012.08.036_bib30) 1979; 28
Hyvärinen (10.1016/j.neucom.2012.08.036_bib19) 2000; 13
Jones (10.1016/j.neucom.2012.08.036_bib17) 1987; 150
Hyvärinen (10.1016/j.neucom.2012.08.036_bib18) 1999; 10
References_xml – volume: 1996
  start-page: 226
  year: 1996
  end-page: 231
  ident: bib31
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Computer
– reference: T. Hastie, R. Tibshirani, Classification by pairwise coupling, in: Advances in Neural Information Processing Systems, vol. 4597, 1998.
– start-page: 1
  year: 2011
  ident: bib12
  article-title: Sensors-based wearable systems for monitoring of human movement and falls
  publication-title: IEEE Sensors J.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: bib30
  article-title: A K-means clustering algorithm
  publication-title: Appl. Statist.
– reference: G. H. John, P. Langley, Estimating continuous distributions in bayesian classifiers, in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 1995, pp. 338–345.
– volume: 43
  start-page: 3391
  year: 2010
  end-page: 3411
  ident: bib20
  article-title: Enhancing principal direction divisive clustering
  publication-title: Pattern Recognition
– reference: S. Tasoulis, C. Doukas, I. Maglogiannis, V. Plagianakos, Statistical data mining of streaming motion data for fall detection in assistive environments, in: Proceedings of 33nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 3720–3723.
– volume: 15
  start-page: 277
  year: 2011
  end-page: 289
  ident: bib11
  article-title: Emergency fall incidents detection in assisted living environments utilizing motion, sound and visual perceptual components
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– reference: C. Doukas, I. Maglogiannis, A. Rouskas, A. Pneumatikakis, Emergency incidents detection in assisted living environments utilizing sound and visual perceptual components, in: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, PETRA '09, ACM, Corfu, Greece, 2009, pp. 14:1–14:7.
– volume: 150
  start-page: 1
  year: 1987
  end-page: 37
  ident: bib17
  article-title: What is projection pursuit?
  publication-title: J. R. Statist. Soc. Ser. A General
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib21
  article-title: The weka data mining software
  publication-title: SIGKDD Explor. Newslett.
– reference: F. Allen, E. Ambikairajah, N. Lovell, B. Celler, An adapted gaussian mixture model approach to accelerometry-based movement classification using time-domain features, in: Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 3600–3603.
– volume: 13
  start-page: 435
  year: 1985
  end-page: 475
  ident: bib16
  article-title: Projection pursuit
  publication-title: Ann. Statist.
– reference: J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Support Vector Learning, Advances in Kernel Methods, 1998.
– reference: A. Rosenberg, J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, in: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410–420.
– reference: C. Doukas, I. Maglogiannis, Advanced classification and rules-based evaluation of motion, visual and biosignal data for patient fall incident detection, Int. J. Artif. Intell. Tools (2010) 175–191.
– reference: M. Basseville, I.V. Nikiforov, Detection of abrupt changes: Theory and Application, 1993.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib25
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron, Monitoring behavior in home using a smart fall sensor and position sensors, in: Proceedings of 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 607–610.
– reference: C. Yang, R. Duraiswami, N.A. Gumerov, L. Davis, Improved fast gauss transform and efficient kernel density estimation, in: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 664–671.
– volume: 33
  start-page: 602
  year: 2004
  end-page: 607
  ident: bib3
  article-title: Postural stability in the elderly
  publication-title: Age Age.
– reference: S. Tasoulis, V. Plagianakos, D. Tasoulis, Independent component divisive clustering of gene expression data, in: Proceedings of Eighth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Gargnano Lago di Garda, Italy, 2011, pp. 1–9.
– volume: 0
  start-page: 39
  year: 2006
  end-page: 42
  ident: bib6
  article-title: A customized human fall detection system using omni-camera images and personal information
  publication-title: Distrib. Diagn. Home Healthcare
– year: 1993
  ident: bib26
  article-title: C4.5
– volume: 118
  start-page: 576
  year: 2004
  end-page: 581
  ident: bib1
  article-title: Do rates of hospital admission for falls and hip fracture in elderly people vary by socio-economic status?
  publication-title: Public Health
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: bib18
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Networks
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib19
  article-title: Independent component analysis
  publication-title: Neural Networks
– reference: : an instance-based learner using an entropic distance measure, in: 12th International Conference on Machine Learning, 1995, pp. 108–114.
– reference: C. Doukas, I. Maglogiannis, An Assistive Environment for Improving Human Safety Utilizing Advanced Sound and Motion Data Classification, Universal Access in the Information Society, 2010, pp. 1–12.
– volume: 41
  start-page: 100
  year: 1954
  end-page: 115
  ident: bib4
  article-title: Continuous inspection schemes
  publication-title: Biometrika
– volume: 7
  start-page: 111
  year: 2009
  end-page: 117
  ident: bib8
  article-title: Advanced sound and distress speech expression classification for human status awareness in assistive environments
  publication-title: J. Inf. Technol. Healthcare
– reference: J.G. Cleary, L.E. Trigg,
– volume: 20
  start-page: 155
  year: 2004
  end-page: 173
  ident: bib2
  article-title: Relationship between lower-extremity joint torque and the risk for falls in a group of community dwelling older adults
  publication-title: Physiotherapy Theory Pract.
– year: 1998
  ident: bib28
  article-title: Correlation-based Feature Subset Selection for Machine Learning
– volume: 150
  start-page: 1
  year: 1987
  ident: 10.1016/j.neucom.2012.08.036_bib17
  article-title: What is projection pursuit?
  publication-title: J. R. Statist. Soc. Ser. A General
  doi: 10.2307/2981662
– volume: 0
  start-page: 39
  year: 2006
  ident: 10.1016/j.neucom.2012.08.036_bib6
  article-title: A customized human fall detection system using omni-camera images and personal information
  publication-title: Distrib. Diagn. Home Healthcare
  doi: 10.1109/DDHH.2006.1624792
– ident: 10.1016/j.neucom.2012.08.036_bib32
  doi: 10.1109/ICCV.2003.1238383
– volume: 11
  start-page: 10
  year: 2009
  ident: 10.1016/j.neucom.2012.08.036_bib21
  article-title: The weka data mining software
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/1656274.1656278
– ident: 10.1016/j.neucom.2012.08.036_bib22
– year: 1993
  ident: 10.1016/j.neucom.2012.08.036_bib26
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.neucom.2012.08.036_bib19
  article-title: Independent component analysis
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 43
  start-page: 3391
  year: 2010
  ident: 10.1016/j.neucom.2012.08.036_bib20
  article-title: Enhancing principal direction divisive clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.05.025
– ident: 10.1016/j.neucom.2012.08.036_bib9
  doi: 10.1142/S0218213010000108
– volume: 118
  start-page: 576
  year: 2004
  ident: 10.1016/j.neucom.2012.08.036_bib1
  article-title: Do rates of hospital admission for falls and hip fracture in elderly people vary by socio-economic status?
  publication-title: Public Health
  doi: 10.1016/j.puhe.2004.02.006
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.neucom.2012.08.036_bib25
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 10.1016/j.neucom.2012.08.036_bib29
– volume: 20
  start-page: 155
  year: 2004
  ident: 10.1016/j.neucom.2012.08.036_bib2
  article-title: Relationship between lower-extremity joint torque and the risk for falls in a group of community dwelling older adults
  publication-title: Physiotherapy Theory Pract.
  doi: 10.1080/09593980490487500
– volume: 7
  start-page: 111
  year: 2009
  ident: 10.1016/j.neucom.2012.08.036_bib8
  article-title: Advanced sound and distress speech expression classification for human status awareness in assistive environments
  publication-title: J. Inf. Technol. Healthcare
– volume: 10
  start-page: 626
  year: 1999
  ident: 10.1016/j.neucom.2012.08.036_bib18
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.761722
– volume: 33
  start-page: 602
  year: 2004
  ident: 10.1016/j.neucom.2012.08.036_bib3
  article-title: Postural stability in the elderly
  publication-title: Age Age.
  doi: 10.1093/ageing/afh218
– volume: 41
  start-page: 100
  year: 1954
  ident: 10.1016/j.neucom.2012.08.036_bib4
  article-title: Continuous inspection schemes
  publication-title: Biometrika
  doi: 10.1093/biomet/41.1-2.100
– ident: 10.1016/j.neucom.2012.08.036_bib13
  doi: 10.1145/1579114.1579128
– volume: 28
  start-page: 100
  year: 1979
  ident: 10.1016/j.neucom.2012.08.036_bib30
  article-title: A K-means clustering algorithm
  publication-title: Appl. Statist.
  doi: 10.2307/2346830
– ident: 10.1016/j.neucom.2012.08.036_bib24
  doi: 10.1214/aos/1028144844
– volume: 15
  start-page: 277
  year: 2011
  ident: 10.1016/j.neucom.2012.08.036_bib11
  article-title: Emergency fall incidents detection in assisted living environments utilizing motion, sound and visual perceptual components
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2091140
– volume: 1996
  start-page: 226
  year: 1996
  ident: 10.1016/j.neucom.2012.08.036_bib31
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Computer
– ident: 10.1016/j.neucom.2012.08.036_bib23
  doi: 10.7551/mitpress/1130.003.0016
– year: 1998
  ident: 10.1016/j.neucom.2012.08.036_bib28
– ident: 10.1016/j.neucom.2012.08.036_bib15
– ident: 10.1016/j.neucom.2012.08.036_bib5
  doi: 10.1109/MMB.2000.893857
– volume: 13
  start-page: 435
  year: 1985
  ident: 10.1016/j.neucom.2012.08.036_bib16
  article-title: Projection pursuit
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176349519
– ident: 10.1016/j.neucom.2012.08.036_bib33
  doi: 10.1109/IEMBS.2011.6090632
– start-page: 1
  year: 2011
  ident: 10.1016/j.neucom.2012.08.036_bib12
  article-title: Sensors-based wearable systems for monitoring of human movement and falls
  publication-title: IEEE Sensors J.
– ident: 10.1016/j.neucom.2012.08.036_bib10
  doi: 10.1007/s10209-010-0196-6
– ident: 10.1016/j.neucom.2012.08.036_bib14
  doi: 10.1007/978-3-642-14571-1_17
– ident: 10.1016/j.neucom.2012.08.036_bib27
  doi: 10.1016/B978-1-55860-377-6.50022-0
– ident: 10.1016/j.neucom.2012.08.036_bib7
  doi: 10.1109/IEMBS.2006.259613
SSID ssj0017129
Score 2.2107441
Snippet The analysis of human motion data is interesting in the context of activity recognition or emergency event detection, especially in the case of elderly or...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Applied sciences
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Cumulative sum (CUSUM) algorithm
Data processing. List processing. Character string processing
Exact sciences and technology
Fall detection
Memory organisation. Data processing
Software
Streaming motion data
Visual data
Title Statistical data mining of streaming motion data for activity and fall recognition in assistive environments
URI https://dx.doi.org/10.1016/j.neucom.2012.08.036
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DXwTxW5wfIw--1rVNmraPYzim4l50sLeStAlMtm7o5qN_u3dJWzYQBr61zSUtueTyO3p3P0Luo0RIEavEY4rl4KD42kulMrDdo4ApyRLNMDn5dSSGY_48iSYt0q9zYTCssrL9zqZba1096Vaz2V1Op903Pw3BiwrA9trfS1h2m_MYV_nDTxPmEcRB6OrthZGH0nX6nI3xKvUaY0bgEAxtIU9bqPnP4-lwKb9g0oxju9g4ggYn5KjCjrTnPu-UtHR5Ro5rXgZabdNzMkMEaQswgzSGgNK5pYGgC0MxN0TO8cbx97h2QK4UMxyQSILKsqBGzma0CS4CsWlJAWbjoN-abmbHXZDx4PG9P_QqVgUvZ0ysvEgkLBGpUkFQwIZOJYBAE8O11lwC-ogB0_kshxYd5Sb3ufaVbwphGOc6VYZdkr1yUeorQrUW4GBIcFGkBrcyTH0leMHjSAYAS8KwTVg9mVlelRxH5otZVseWfWROBRmqIENCTCbaxGt6LV3JjR3yca2nbGvpZHAq7OjZ2VJr8zrAdJhim1z_e-gbchBa4gwMjbwle6vPtb4D-LJSHbs-O2S_9_QyHP0CHk_w4w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zPiiI3-L8mHnwta5t2rR9lKFM3fbiBnsrSZvApOuGbj76t3uXfrCBMPCtbS5pyeWS39G7-xFy74dc8ECGFpMsAQfFVlYkpAZz9x0mBQsVw-TkwZD3xt7rxJ80SLfKhcGwynLvL_Z0s1uXTzrlbHYW02nn3Y5c8KIc2HvN7yW-Q3Y9MF-kMXj4qeM8nMBxi4J7rm-heJU_Z4K8crXCoBE4BV1TydNUav7zfDpYiC-YNV3QXaydQc_H5LAEj_Sx-L4T0lD5KTmqiBloaadnJEMIaSowgzTGgNKZ4YGgc00xOUTM8KYg8CnaAbpSTHFAJgkq8pRqkWW0ji4CsWlOAWfjoN-KrqfHnZPx89Oo27NKWgUrYYwvLZ-HLOSRlI6TgkVHAlCgDuBaKU8A_AgA1NksgRblJzqxPWVLW6dcM89TkdTsgjTzea4uCVWKg4chwEcRCvxKN7Il91Iv8IUDuMR1W4RVkxknZc1xpL7I4iq47CMuVBCjCmJkxGS8Ray616KoubFFPqj0FG-snRiOhS092xtqrV8HoA5zbMOrfw99R_Z6o0E_7r8M367JvmtYNDBO8oY0l58rdQtYZinbZq3-AqKB8nE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Neurocomputing+%28Amsterdam%29&rft.atitle=Statistical+data+mining+of+streaming+motion+data+for+activity+and+fall+recognition+in+assistive+environments&rft.au=TASOULIS%2C+S.+K&rft.au=DOUKAS%2C+C.+N&rft.au=PLAGIANAKOS%2C+V.+P&rft.au=MAGLOGIANNIS%2C+I&rft.date=2013-05-01&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=107&rft.spage=87&rft.epage=96&rft_id=info:doi/10.1016%2Fj.neucom.2012.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=27313478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon