Far-field theory for trajectories of magnetic ellipsoids in rectangular and circular channels

Abstract We report a method to control the positions of ellipsoidal magnets in flowing channels of rectangular or circular cross section at low Reynolds number. A static uniform magnetic field is used to pin the particle orientation and the particles move with translational drift velocities resultin...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 83; no. 4; pp. 767 - 782
Main Authors Matsunaga, Daiki, Zöttl, Andreas, Meng, Fanlong, Golestanian, Ramin, Yeomans, Julia M
Format Journal Article
LanguageEnglish
Published Oxford University Press 25.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract We report a method to control the positions of ellipsoidal magnets in flowing channels of rectangular or circular cross section at low Reynolds number. A static uniform magnetic field is used to pin the particle orientation and the particles move with translational drift velocities resulting from hydrodynamic interactions with the channel walls which can be described using Blake’s image tensor. Building on his insights, we are able to present a far-field theory predicting the particle motion in rectangular channels and validate the accuracy of the theory by comparing to numerical solutions using the boundary element method. We find that, by changing the direction of the applied magnetic field, the motion can be controlled so that particles move either to a curved focusing region or to the channel walls. We also use simulations to show that the particles are focused to a single line in a circular channel. Our results suggest ways to focus and segregate magnetic particles in lab-on-a-chip devices.
AbstractList Abstract We report a method to control the positions of ellipsoidal magnets in flowing channels of rectangular or circular cross section at low Reynolds number. A static uniform magnetic field is used to pin the particle orientation and the particles move with translational drift velocities resulting from hydrodynamic interactions with the channel walls which can be described using Blake’s image tensor. Building on his insights, we are able to present a far-field theory predicting the particle motion in rectangular channels and validate the accuracy of the theory by comparing to numerical solutions using the boundary element method. We find that, by changing the direction of the applied magnetic field, the motion can be controlled so that particles move either to a curved focusing region or to the channel walls. We also use simulations to show that the particles are focused to a single line in a circular channel. Our results suggest ways to focus and segregate magnetic particles in lab-on-a-chip devices.
Author Golestanian, Ramin
Yeomans, Julia M
Matsunaga, Daiki
Zöttl, Andreas
Meng, Fanlong
Author_xml – sequence: 1
  givenname: Daiki
  surname: Matsunaga
  fullname: Matsunaga, Daiki
  email: daiki.matsunaga@physics.ox.ac.uk
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
– sequence: 2
  givenname: Andreas
  surname: Zöttl
  fullname: Zöttl, Andreas
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
– sequence: 3
  givenname: Fanlong
  surname: Meng
  fullname: Meng, Fanlong
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
– sequence: 4
  givenname: Ramin
  surname: Golestanian
  fullname: Golestanian, Ramin
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
– sequence: 5
  givenname: Julia M
  surname: Yeomans
  fullname: Yeomans, Julia M
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
BookMark eNqFkMFLwzAchYNMcJsevefoJS5p0qQ9ynBOGHjRo5Rf0mTLaJORdOD-e6v17rs8Hny8w7dAsxCDReie0UdGa77yPfQwrA5fF8rqKzRnQgrCJRczNKeFKoioJb1Bi5yPlFJWKjpHnxtIxHnbtXg42Jgu2MWEhwRHa4aYvM04OtzDPtjBG2y7zp9y9G3GPuA0MhD25w4ShtBi45P5HeYAIdgu36JrB122d3-9RB-b5_f1luzeXl7XTztiOJcDKUWt7RipKycVUwoq7ZRipXYSpDGMlq0obFFwRtu6hlZIajSThdZGlJXjS0SmX5Nizsm65pRGG-nSMNr8uGkmN83kZuQfJj6eT_-g3_fAa8A
CitedBy_id crossref_primary_10_1063_1_5052171
crossref_primary_10_1088_1674_1056_ab8ac3
crossref_primary_10_1103_PhysRevFluids_5_033701
crossref_primary_10_3390_magnetochemistry4010016
crossref_primary_10_1007_s10404_018_2103_z
crossref_primary_10_1039_D0SM00454E
crossref_primary_10_1103_PhysRevFluids_7_063601
crossref_primary_10_1103_PhysRevFluids_5_123603
crossref_primary_10_1103_RevModPhys_96_021001
crossref_primary_10_1063_1_5123596
crossref_primary_10_3390_mi11010037
crossref_primary_10_1038_s41467_019_12665_w
Cites_doi 10.1017/S0305004100049902
10.1017/jfm.2011.462
10.1017/S0022112095001327
10.1039/C4LC01422G
10.1017/S0022112006002631
10.1063/1.857856
10.1103/PhysRevLett.119.198002
10.1039/b912547g
10.1098/rspa.1922.0078
10.1103/PhysRevE.71.057301
10.1017/jfm.2016.479
10.1103/RevModPhys.77.977
10.1017/S002211206200124X
10.1017/S0022112005006117
10.1017/jfm.2012.101
10.1017/S002211209500303X
10.1002/bip.1975.360141115
10.1063/1.2803837
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2018
DBID AAYXX
CITATION
DOI 10.1093/imamat/hxy019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 782
ExternalDocumentID 10_1093_imamat_hxy019
10.1093/imamat/hxy019
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 653284
  funderid: 10.13039/100010663
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
ABDBF
ABDTM
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
EJD
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
I-F
IOX
J21
JAVBF
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
M49
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
TN5
TUS
UPT
WH7
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c336t-549beeee6b8f67177a8bf7715bf6a6cc105d42e22310d99ad460cb162bbc458f3
ISSN 0272-4960
IngestDate Thu Sep 12 20:01:35 EDT 2024
Wed Sep 11 04:51:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords boundary element method
fluid mechanics
microfluidics
Stokes flow
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-549beeee6b8f67177a8bf7715bf6a6cc105d42e22310d99ad460cb162bbc458f3
PageCount 16
ParticipantIDs crossref_primary_10_1093_imamat_hxy019
oup_primary_10_1093_imamat_hxy019
PublicationCentury 2000
PublicationDate 2018-07-25
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-25
  day: 25
PublicationDecade 2010
PublicationTitle IMA journal of applied mathematics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Spagnolie ( key 20180723122923_C18) 2012; 700
Kim ( key 20180723122923_C9) 2017
Almog ( key 20180723122923_C1) 1995; 289
Blake ( key 20180723122923_C2) 1971; 70
Bretherton ( key 20180723122923_C3) 1962; 14
Jeffery ( key 20180723122923_C8) 1922; 102
Hejazian ( key 20180723122923_C5) 2015; 15
Mathijssen ( key 20180723122923_C12) 2016; 806
Di Carlo ( key 20180723122923_C4) 2009; 9
Pozrikidis ( key 20180723122923_C15) 1995; 297
Smart ( key 20180723122923_C17) 1991; 3
Hu ( key 20180723122923_C6) 2012; 705
Matsunaga ( key 20180723122923_C13) 2017; 119
Pozrikidis ( key 20180723122923_C16) 2005; 541
Squires ( key 20180723122923_C19) 2005; 77
Swan ( key 20180723122923_C20) 2007; 19
Mortensen ( key 20180723122923_C14) 2005; 71
Ishikawa ( key 20180723122923_C7) 2006; 568
Kim ( key 20180723122923_C10) 1991
Koenig ( key 20180723122923_C11) 1975; 14
References_xml – volume: 70
  start-page: 303
  year: 1971
  ident: key 20180723122923_C2
  article-title: A note on the image system for a stokeslet in a no-slip boundary
  publication-title: Math. Proc. Cambridge
  doi: 10.1017/S0305004100049902
  contributor:
    fullname: Blake
– volume: 705
  start-page: 176
  year: 2012
  ident: key 20180723122923_C6
  article-title: Flow of a spherical capsule in a pore with circular or square cross-section
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.462
  contributor:
    fullname: Hu
– volume: 289
  start-page: 243
  year: 1995
  ident: key 20180723122923_C1
  article-title: The motion of axisymmetric dipolar particles in homogeneous shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095001327
  contributor:
    fullname: Almog
– volume: 15
  start-page: 959
  year: 2015
  ident: key 20180723122923_C5
  article-title: Lab on a chip for continuous-flow magnetic cell separation
  publication-title: Lab Chip
  doi: 10.1039/C4LC01422G
  contributor:
    fullname: Hejazian
– volume: 568
  start-page: 119
  year: 2006
  ident: key 20180723122923_C7
  article-title: Hydrodynamic interaction of two swimming model micro-organisms
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006002631
  contributor:
    fullname: Ishikawa
– volume: 3
  start-page: 21
  year: 1991
  ident: key 20180723122923_C17
  article-title: Measurement of the drift of a droplet due to the presence of a plane
  publication-title: Phys. Fluids
  doi: 10.1063/1.857856
  contributor:
    fullname: Smart
– volume: 119
  year: 2017
  ident: key 20180723122923_C13
  article-title: Focusing and sorting of ellipsoidal magnetic particles in microchannels
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.198002
  contributor:
    fullname: Matsunaga
– volume: 9
  start-page: 3038
  year: 2009
  ident: key 20180723122923_C4
  article-title: Inertial microfluidics
  publication-title: Lab Chip
  doi: 10.1039/b912547g
  contributor:
    fullname: Di Carlo
– volume-title: Microhydrodynamics: Principles and Selected Applications
  year: 1991
  ident: key 20180723122923_C10
  contributor:
    fullname: Kim
– volume: 102
  start-page: 161
  year: 1922
  ident: key 20180723122923_C8
  article-title: The motion of ellipsoidal particles immersed in a viscous fluid
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci.
  doi: 10.1098/rspa.1922.0078
  contributor:
    fullname: Jeffery
– volume: 71
  year: 2005
  ident: key 20180723122923_C14
  article-title: Reexamination of hagen-poiseuille flow: shape dependence of the hydraulic resistance in microchannels
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.057301
  contributor:
    fullname: Mortensen
– volume: 806
  start-page: 35
  year: 2016
  ident: key 20180723122923_C12
  article-title: Hydrodynamics of micro-swimmers in films
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.479
  contributor:
    fullname: Mathijssen
– volume: 77
  start-page: 977
  year: 2005
  ident: key 20180723122923_C19
  article-title: Microfluidics: fluid physics at the nanoliter scale
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.977
  contributor:
    fullname: Squires
– volume: 14
  start-page: 284
  year: 1962
  ident: key 20180723122923_C3
  article-title: The motion of rigid particles in a shear flow at low reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211206200124X
  contributor:
    fullname: Bretherton
– start-page: 914
  volume-title: Nat. Nanotechnol.
  year: 2017
  ident: key 20180723122923_C9
  article-title: Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography
  contributor:
    fullname: Kim
– volume: 541
  start-page: 105
  year: 2005
  ident: key 20180723122923_C16
  article-title: Orbiting motion of a freely suspended spheroid near a plane wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005006117
  contributor:
    fullname: Pozrikidis
– volume: 700
  start-page: 105
  year: 2012
  ident: key 20180723122923_C18
  article-title: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.101
  contributor:
    fullname: Spagnolie
– volume: 297
  start-page: 123
  year: 1995
  ident: key 20180723122923_C15
  article-title: Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209500303X
  contributor:
    fullname: Pozrikidis
– volume: 14
  start-page: 2421
  year: 1975
  ident: key 20180723122923_C11
  article-title: Brownian motion of an ellipsoid. A correction to perrin’s results
  publication-title: Biopolymers
  doi: 10.1002/bip.1975.360141115
  contributor:
    fullname: Koenig
– volume: 19
  year: 2007
  ident: key 20180723122923_C20
  article-title: Simulation of hydrodynamically interacting particles near a no-slip boundary
  publication-title: Phys. Fluids
  doi: 10.1063/1.2803837
  contributor:
    fullname: Swan
SSID ssj0001570
Score 2.2370887
Snippet Abstract We report a method to control the positions of ellipsoidal magnets in flowing channels of rectangular or circular cross section at low Reynolds...
SourceID crossref
oup
SourceType Aggregation Database
Publisher
StartPage 767
Title Far-field theory for trajectories of magnetic ellipsoids in rectangular and circular channels
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHiqcoLy0S4oLcxvZ6d31MKFFBCqdW6gVFs-s1GBIHpY4E_Bh-K7OejeNChQo-WJZlj2TPp9mZ2ZlvGHsBFqMEk7oIbCwikRc6QtxAJKXVIPNEm7ZDbvZenpyJd-fZ-WDws1e1tGnMof1xZV_J_2gV76FefZfsP2i2E4o38Br1i2fUMJ6vpeMprKO2BI36Ean2slnD5zYVXxGf7BI-1r5T8ZVr0_6rikpgvaXzuUpfhdr2tlVrKkn1rcA1kSx3buvb2bjPMQHBdV12nK-dZz6D5mJTA6Vrj6H6UnWpab8nP5FNs-gKKWH3miObM4V6sQqLacvav3Defa3CbhUsA1F4yFPE2idAqac5mLNEJQgGmh5w6MjcCimiVIZ0ZrDHNNgm4E70jKuiwR1hnVY0tOiPJYDosaol4Ofjxadv30fBKF8i2_5tEexKE2lTPp2TgDm9foPtJWjI9JDtjSfHk2m31seZoixe-LbA4ooCjkjAEQm45PX4TsqeE3N6m-2H6IOPCUp32MDVd9mt2U6N99iHDlScQMURVLwPKr4q-RZUfAcqXtW8ByqOoOJbUPEtqO6zs-mb09cnUZjBEdk0lU2Uidw4PKTRpcTQX4E2pVJxZkoJ0lp0zwuRuMSHCUWeQyHkyJpYJsZYkekyfcCG9ap2DxlPS4zGE2tNjk54rpUu8hLDFTBamSyB0QF7uf1H869EtTK_UhsH7Dn-wb8_8-i6wh6zmzu0PmHDZr1xT9HPbMyzoOxfRUqG0w
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Far-field+theory+for+trajectories+of+magnetic+ellipsoids+in+rectangular+and+circular+channels&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Matsunaga%2C+Daiki&rft.au=Z%C3%B6ttl%2C+Andreas&rft.au=Meng%2C+Fanlong&rft.au=Golestanian%2C+Ramin&rft.date=2018-07-25&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=83&rft.issue=4&rft.spage=767&rft.epage=782&rft_id=info:doi/10.1093%2Fimamat%2Fhxy019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxy019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon