Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems

[Display omitted] •FM increased microbial C metabolism while very small effects on P metabolism.•Increased microbial C metabolism ascribe to increased soil moisture content.•N fertilization increased the microbial demand for P (microbial P limitation).•Changes in nutrient stoichiometry and N availab...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 197; p. 104463
Main Authors Cui, Yongxing, Zhang, Yanle, Duan, Chengjiao, Wang, Xia, Zhang, Xingchang, Ju, Wenliang, Chen, Hansong, Yue, Shanchao, Wang, Yunqiang, Li, Shiqing, Fang, Linchuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •FM increased microbial C metabolism while very small effects on P metabolism.•Increased microbial C metabolism ascribe to increased soil moisture content.•N fertilization increased the microbial demand for P (microbial P limitation).•Changes in nutrient stoichiometry and N availability led to P limitation increase.•Microbial P limitation strongly inhibited nitrification and denitrification potential. Variations in soil microbial metabolism currently represent one of the greatest areas of uncertainty with regard to soil nutrient cycles and the control of terrestrial carbon (C) and nitrogen (N) loss and are poorly understood in agricultural ecosystems with intensive farming practices. In this study, extracellular enzymatic stoichiometry models and quantitative PCR techniques were used to examine microbial metabolic limitation and its relationship with N-cycling gene expression in semi-arid agricultural ecosystems considering four N fertilization levels (N 0, N 100, N 250, and N 400 kg N ha−1) and two agronomic strategies (film mulching and no mulching). Film mulching increased microbial C limitation (reflecting microbial C metabolism size; 0.189 of the total effects), while very small effects on microbial phosphorus (P) limitation were observed (-0.007 of the total effects). N fertilization increased the microbial demand for P (microbial P limitation; 0.504 of the total effects). Increased microbial C metabolism was mainly attributed to increased soil moisture content after film mulching, which enhanced microbial decomposition of organic C (high C-acquiring enzyme activities). Changes in nutrient stoichiometry and the increase in N availability due to N fertilization were largely responsible for increased microbial P limitation. Furthermore, microbial P limitation negatively affected the abundance of AOA amoA, AOB amoA (involved in nitrification), nirK, nirS, nosZ (involved in denitrification) genes, strongly inhibiting nitrification and denitrification potential (-0.743 and -0.761 of the total effects, respectively). The present results suggest that agricultural ecosystems with film mulching are conducive to organic residue decomposition, while appropriate P limitation under N fertilization could reduce the loss of N due to nitrification and denitrification in soil. This study highlights the importance of elemental stoichiometry-driven microbial metabolic variation in understanding soil nutrient cycles and optimizing agricultural practices.
AbstractList [Display omitted] •FM increased microbial C metabolism while very small effects on P metabolism.•Increased microbial C metabolism ascribe to increased soil moisture content.•N fertilization increased the microbial demand for P (microbial P limitation).•Changes in nutrient stoichiometry and N availability led to P limitation increase.•Microbial P limitation strongly inhibited nitrification and denitrification potential. Variations in soil microbial metabolism currently represent one of the greatest areas of uncertainty with regard to soil nutrient cycles and the control of terrestrial carbon (C) and nitrogen (N) loss and are poorly understood in agricultural ecosystems with intensive farming practices. In this study, extracellular enzymatic stoichiometry models and quantitative PCR techniques were used to examine microbial metabolic limitation and its relationship with N-cycling gene expression in semi-arid agricultural ecosystems considering four N fertilization levels (N 0, N 100, N 250, and N 400 kg N ha−1) and two agronomic strategies (film mulching and no mulching). Film mulching increased microbial C limitation (reflecting microbial C metabolism size; 0.189 of the total effects), while very small effects on microbial phosphorus (P) limitation were observed (-0.007 of the total effects). N fertilization increased the microbial demand for P (microbial P limitation; 0.504 of the total effects). Increased microbial C metabolism was mainly attributed to increased soil moisture content after film mulching, which enhanced microbial decomposition of organic C (high C-acquiring enzyme activities). Changes in nutrient stoichiometry and the increase in N availability due to N fertilization were largely responsible for increased microbial P limitation. Furthermore, microbial P limitation negatively affected the abundance of AOA amoA, AOB amoA (involved in nitrification), nirK, nirS, nosZ (involved in denitrification) genes, strongly inhibiting nitrification and denitrification potential (-0.743 and -0.761 of the total effects, respectively). The present results suggest that agricultural ecosystems with film mulching are conducive to organic residue decomposition, while appropriate P limitation under N fertilization could reduce the loss of N due to nitrification and denitrification in soil. This study highlights the importance of elemental stoichiometry-driven microbial metabolic variation in understanding soil nutrient cycles and optimizing agricultural practices.
Variations in soil microbial metabolism currently represent one of the greatest areas of uncertainty with regard to soil nutrient cycles and the control of terrestrial carbon (C) and nitrogen (N) loss and are poorly understood in agricultural ecosystems with intensive farming practices. In this study, extracellular enzymatic stoichiometry models and quantitative PCR techniques were used to examine microbial metabolic limitation and its relationship with N-cycling gene expression in semi-arid agricultural ecosystems considering four N fertilization levels (N 0, N 100, N 250, and N 400 kg N ha⁻¹) and two agronomic strategies (film mulching and no mulching). Film mulching increased microbial C limitation (reflecting microbial C metabolism size; 0.189 of the total effects), while very small effects on microbial phosphorus (P) limitation were observed (-0.007 of the total effects). N fertilization increased the microbial demand for P (microbial P limitation; 0.504 of the total effects). Increased microbial C metabolism was mainly attributed to increased soil moisture content after film mulching, which enhanced microbial decomposition of organic C (high C-acquiring enzyme activities). Changes in nutrient stoichiometry and the increase in N availability due to N fertilization were largely responsible for increased microbial P limitation. Furthermore, microbial P limitation negatively affected the abundance of AOA amoA, AOB amoA (involved in nitrification), nirK, nirS, nosZ (involved in denitrification) genes, strongly inhibiting nitrification and denitrification potential (-0.743 and -0.761 of the total effects, respectively). The present results suggest that agricultural ecosystems with film mulching are conducive to organic residue decomposition, while appropriate P limitation under N fertilization could reduce the loss of N due to nitrification and denitrification in soil. This study highlights the importance of elemental stoichiometry-driven microbial metabolic variation in understanding soil nutrient cycles and optimizing agricultural practices.
ArticleNumber 104463
Author Yue, Shanchao
Li, Shiqing
Duan, Chengjiao
Fang, Linchuan
Zhang, Xingchang
Wang, Xia
Chen, Hansong
Ju, Wenliang
Wang, Yunqiang
Zhang, Yanle
Cui, Yongxing
Author_xml – sequence: 1
  givenname: Yongxing
  surname: Cui
  fullname: Cui, Yongxing
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 2
  givenname: Yanle
  surname: Zhang
  fullname: Zhang, Yanle
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 3
  givenname: Chengjiao
  surname: Duan
  fullname: Duan, Chengjiao
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 4
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 5
  givenname: Xingchang
  surname: Zhang
  fullname: Zhang, Xingchang
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 6
  givenname: Wenliang
  surname: Ju
  fullname: Ju, Wenliang
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 7
  givenname: Hansong
  surname: Chen
  fullname: Chen, Hansong
  organization: University of Chinese Academy of Sciences, Beijing, 100049, China
– sequence: 8
  givenname: Shanchao
  surname: Yue
  fullname: Yue, Shanchao
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 9
  givenname: Yunqiang
  surname: Wang
  fullname: Wang, Yunqiang
  organization: CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
– sequence: 10
  givenname: Shiqing
  surname: Li
  fullname: Li, Shiqing
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 11
  givenname: Linchuan
  surname: Fang
  fullname: Fang, Linchuan
  email: flinc629@hotmail.com
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
BookMark eNqFkc9uEzEQxi1UJNLCE3DxkcsGr-394wMHVJWCVKkXOFuOd5JM5LWDx6m0vAlvi0N64lAOMyONvt-M9H3X7CqmCIy9b8W6FW3_8bCmgiGspWhN3Wjdq1ds1Y6DaZTW-oqtqmpoWjMOb9g10UEIoZUcV-z3nU8Qfy2zK-g5lYR-j2mGkhee4QlcID6jz2mDLvDjPlGtfCIecMZSoRT5BD6DIyBe9sAjlpx2ELlffMC448dUIJYznracEtaLGDnBjI3LOHG3y-hPoZxylYBPtFCBmd6y19v6Hd49zxv248vd99uvzcPj_bfbzw-NV6ovTSdHLUEp34FsOzNORmq1cX5jutHLDYhhaEGbSUrd6XHrDEwdeKGM7L1Rk1A37MPl7jGnnyegYmckDyG4COlEVqpxHHpVe5Wai7T6QZRha_2zByU7DLYV9hyHPdi_cdhzHPYSR2XVP-wx4-zy8h_q04WC6sATQrbkEaKHCTP4YqeEL_J_AM9mrME
CitedBy_id crossref_primary_10_1016_j_apsoil_2025_105884
crossref_primary_10_3389_fmicb_2024_1492149
crossref_primary_10_3390_f13050692
crossref_primary_10_1016_j_apsoil_2023_104833
crossref_primary_10_1016_j_soilbio_2021_108539
crossref_primary_10_3389_fpls_2024_1445230
crossref_primary_10_1016_j_still_2024_106089
crossref_primary_10_1016_j_jenvman_2021_112379
crossref_primary_10_3390_soilsystems6010021
crossref_primary_10_1007_s11104_023_05878_y
crossref_primary_10_1016_j_apsoil_2024_105370
crossref_primary_10_1016_j_scitotenv_2023_164071
crossref_primary_10_1002_ldr_4141
crossref_primary_10_1038_s43247_023_00718_4
crossref_primary_10_1007_s11104_023_06251_9
crossref_primary_10_1016_j_agee_2024_109465
crossref_primary_10_1007_s11368_022_03142_x
crossref_primary_10_1016_j_catena_2024_108050
crossref_primary_10_3390_su16219156
crossref_primary_10_1016_j_apsoil_2023_104821
crossref_primary_10_3390_agronomy14030581
crossref_primary_10_3390_su15119037
crossref_primary_10_1016_j_geoderma_2022_116124
crossref_primary_10_1016_j_geoderma_2023_116580
crossref_primary_10_1016_j_scitotenv_2023_161865
crossref_primary_10_3389_fbioe_2023_1191240
crossref_primary_10_1016_j_soilbio_2024_109614
crossref_primary_10_1007_s11356_021_18406_1
crossref_primary_10_1007_s42832_021_0112_4
crossref_primary_10_1016_j_catena_2023_106939
crossref_primary_10_1038_s41396_023_01438_5
crossref_primary_10_3390_agriculture13122224
crossref_primary_10_1016_j_apsoil_2022_104579
crossref_primary_10_1016_j_apsoil_2025_105946
crossref_primary_10_1016_j_still_2025_106465
crossref_primary_10_1002_ldr_4122
crossref_primary_10_1016_j_ejsobi_2024_103601
crossref_primary_10_1016_j_geoderma_2022_115846
crossref_primary_10_1007_s11368_024_03892_w
crossref_primary_10_1016_j_pedsph_2023_06_002
crossref_primary_10_3390_microorganisms12081716
crossref_primary_10_1007_s11368_021_03094_8
crossref_primary_10_1111_geb_13378
crossref_primary_10_1016_j_scitotenv_2022_154917
crossref_primary_10_1002_jsfa_11304
crossref_primary_10_1016_j_scitotenv_2024_171039
crossref_primary_10_1007_s11368_023_03561_4
crossref_primary_10_1111_rec_13909
crossref_primary_10_1007_s11104_023_06235_9
crossref_primary_10_1016_j_catena_2022_106528
crossref_primary_10_1016_j_scitotenv_2024_172089
crossref_primary_10_1016_j_scitotenv_2023_169731
crossref_primary_10_1016_j_envres_2024_120201
crossref_primary_10_1016_j_scitotenv_2023_163238
crossref_primary_10_1007_s11368_023_03694_6
crossref_primary_10_1016_j_scitotenv_2020_143541
crossref_primary_10_1111_pce_14784
crossref_primary_10_1016_j_apsoil_2021_104210
crossref_primary_10_1111_ejss_12963
crossref_primary_10_1111_ejss_13257
crossref_primary_10_3390_f11040428
crossref_primary_10_3390_microorganisms13040729
crossref_primary_10_1016_j_apsoil_2023_105166
crossref_primary_10_1002_saj2_20743
crossref_primary_10_1016_j_apsoil_2022_104594
crossref_primary_10_1016_j_apsoil_2024_105324
crossref_primary_10_1016_j_scitotenv_2021_148986
crossref_primary_10_1007_s11368_024_03887_7
crossref_primary_10_1016_j_apsoil_2024_105449
crossref_primary_10_3389_fmicb_2024_1513890
crossref_primary_10_5194_soil_8_59_2022
crossref_primary_10_1016_j_jclepro_2024_141052
crossref_primary_10_1007_s00374_022_01653_w
crossref_primary_10_1016_j_scitotenv_2022_158790
crossref_primary_10_1016_j_geoderma_2022_115868
crossref_primary_10_1007_s00374_022_01627_y
crossref_primary_10_1016_j_ecoleng_2024_107347
crossref_primary_10_1016_j_scitotenv_2022_156532
crossref_primary_10_1111_gcb_16861
crossref_primary_10_1016_j_scitotenv_2022_152956
crossref_primary_10_3390_f15101827
crossref_primary_10_1016_j_apsoil_2024_105453
crossref_primary_10_3390_f15061040
crossref_primary_10_1016_j_agee_2025_109565
crossref_primary_10_1016_j_apsoil_2023_105035
crossref_primary_10_1016_j_scitotenv_2021_150032
crossref_primary_10_3390_f16010004
crossref_primary_10_1016_j_apsoil_2023_104863
crossref_primary_10_1016_j_soilbio_2020_107996
crossref_primary_10_3390_agronomy13030710
crossref_primary_10_1016_j_still_2024_106298
crossref_primary_10_1016_j_catena_2024_107961
crossref_primary_10_1016_j_fcr_2025_109836
crossref_primary_10_1016_j_catena_2023_107740
crossref_primary_10_1111_sum_13020
crossref_primary_10_1016_j_eja_2025_127564
crossref_primary_10_1007_s42832_023_0205_3
crossref_primary_10_1016_j_chemosphere_2023_139378
crossref_primary_10_1021_acs_est_2c07599
crossref_primary_10_1016_j_jenvman_2023_119759
crossref_primary_10_1016_j_geoderma_2021_114928
crossref_primary_10_3390_agronomy15030731
crossref_primary_10_1016_j_apsoil_2022_104771
crossref_primary_10_1007_s11104_023_06014_6
crossref_primary_10_1016_j_agee_2022_108006
crossref_primary_10_1016_j_ibiod_2023_105728
crossref_primary_10_1016_j_scitotenv_2021_145930
crossref_primary_10_1016_j_scitotenv_2023_162504
crossref_primary_10_1016_j_scitotenv_2021_148925
crossref_primary_10_3390_f15122233
crossref_primary_10_1016_j_ejsobi_2024_103646
crossref_primary_10_1002_ldr_4840
crossref_primary_10_1007_s11368_021_03096_6
crossref_primary_10_1016_j_apsoil_2024_105391
crossref_primary_10_1016_j_catena_2023_107676
crossref_primary_10_3390_biology13020085
crossref_primary_10_1016_j_agee_2022_108235
crossref_primary_10_1016_j_jenvman_2022_117061
crossref_primary_10_3389_fevo_2023_1137172
crossref_primary_10_3390_agronomy13102593
crossref_primary_10_3390_su13073768
crossref_primary_10_1080_00275514_2022_2156746
crossref_primary_10_1016_j_agee_2023_108647
crossref_primary_10_3390_f15101815
crossref_primary_10_3389_fpls_2022_860590
crossref_primary_10_1007_s11104_022_05614_y
crossref_primary_10_1016_j_jenvman_2021_112306
Cites_doi 10.1016/j.soilbio.2011.03.017
10.1111/j.1365-2486.2005.001058.x
10.1038/s41561-018-0258-6
10.1016/j.scitotenv.2018.12.289
10.1007/s10533-007-9132-0
10.1111/j.1747-0765.2010.00501.x
10.1016/j.geoderma.2018.11.047
10.1016/j.soilbio.2017.09.025
10.1111/j.1462-2920.2008.01578.x
10.1111/oik.02385
10.1111/j.1365-2745.2011.01833.x
10.1038/srep05615
10.1016/S2095-3119(16)61353-9
10.1007/s00374-019-01344-z
10.1890/14-0777.1
10.1016/j.fcr.2005.01.030
10.1126/science.1245279
10.1007/s00248-011-9909-5
10.1016/j.baae.2016.05.003
10.1264/jsme2.ME11293
10.1007/s00374-017-1221-1
10.1111/j.1469-8137.2011.03967.x
10.1016/j.agee.2014.02.010
10.1146/annurev-ecolsys-071112-124414
10.1016/j.soilbio.2018.03.020
10.1046/j.1461-0248.2003.00518.x
10.1007/BF00262137
10.1029/2008GB003250
10.1038/nrmicro.2018.9
10.1016/S0038-0717(02)00074-3
10.2134/agronj2017.09.0547
10.1111/j.1469-8137.2012.04234.x
10.3389/fmicb.2013.00223
10.5194/bg-10-7095-2013
10.1007/BF00750253
10.1016/j.fcr.2016.02.024
10.1016/j.soilbio.2015.10.019
10.1038/nature08632
10.1016/j.scitotenv.2015.10.089
10.1016/j.apsoil.2015.06.010
10.1016/j.still.2010.11.006
10.1016/j.agwat.2011.11.016
10.1016/j.ejsobi.2015.01.004
10.1111/gcb.13941
10.1111/j.1462-2920.2007.01358.x
10.1007/s10533-018-0511-5
10.1007/s00248-011-9897-5
10.1111/j.1469-8137.2012.04225.x
10.1016/j.soilbio.2014.12.015
10.1016/j.soilbio.2017.10.023
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2019.104463
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2019_104463
S0167198719309031
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c336t-52842e33c5e21598d9243bacb958c2be0771e49d224548fa9ed5ec03926c93d03
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Fri Jul 11 09:56:17 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 00:57:01 EDT 2025
Fri Feb 23 02:48:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microbial metabolic limitation
Functional genes
Extracellular enzyme activity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-52842e33c5e21598d9243bacb958c2be0771e49d224548fa9ed5ec03926c93d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388763388
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388763388
crossref_citationtrail_10_1016_j_still_2019_104463
crossref_primary_10_1016_j_still_2019_104463
elsevier_sciencedirect_doi_10_1016_j_still_2019_104463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ullah, Shaaban, Hu, Zhao, Lin (bib0225) 2016; 15
Olsen, Sommers (bib0155) 1982
Eldoma, Li, Zhang, Li (bib0045) 2016; 191
Moorhead, Sinsabaugh, Hill, Weintraub (bib0140) 2016; 93
Moorhead, Rinkes, Sinsabaugh, Weintraub (bib0135) 2013; 4
Shen, Zhang, Zhu, Zhang, He (bib0175) 2008; 10
German, Weintraub, Grandy, Lauber, Rinkes, Allison (bib0070) 2011; 43
Weier (bib0235) 1994; 39
Zhang, Song, Zhuang, Wang, Xie, Liu (bib0260) 2019; 55
Ford, Roberts, Jones (bib0065) 2016; 542
Bernhardt (bib0005) 2013; 342
Ru, Zhou, Hui, Zheng, Wan (bib0165) 2018; 24
Zhang, Li, Yang, Wang, Chen (bib0255) 2011; 112
Tarafdar, Claassen (bib0220) 1988; 5
Fan, Yang, Li, Wei, Cui, Liang (bib0060) 2011; 62
Exbrayat, Pitman, Zhang, Abramowitz, Wang (bib0055) 2013; 10
Heuck, Smolka, Whalen, Frey, Gundersen, Moldan, Fernandez, Spohn (bib0085) 2018; 141
Smith (bib0200) 2011; 99
Chen, Liu, Wu, Xie, Wu, Wei (bib0020) 2012; 63
Li, Chapman, Nicol, Yao (bib0100) 2017; 116
Stark, Richards (bib0210) 2008; 2
Ishii, Ikeda, Minamisawa, Senoo (bib0090) 2011; 26
Sun, Guo, Wang, Chu (bib0215) 2015; 95
Borken, Savage, Davidson, Trumbore (bib0015) 2006; 12
Jones, Kielland, Sinclair, Dahlgren, Newsham, Farrar, Murphy (bib0095) 2009; 23
Cleveland, Liptzin (bib0040) 2007; 85
Spohn (bib0205) 2016; 17
Marklein, Houlton (bib0125) 2012; 193
Li, Liu, Wang, Zhang, Zhan, Li (bib0105) 2018; 110
Zechmeister-Boltenstern, KeiblingerK, Mooshammer, Penuelas, Richter, Sardans, Wanek (bib0250) 2015; 85
Wei, Hu, Peng, Zhu, Atere, O’Donnell, Wu, Ge (bib0230) 2017; 53
Manzoni, Taylor, Richter, Porporato, Ågren (bib0120) 2012; 196
Sinsabaugh, Shah (bib0195) 2012; 43
Luo, Zhu, Liu, Bu, Yue, Shen, Li (bib0115) 2015; 67
Wrage-Mönnig, Horn, Well, Müller, Velthof, Oenema (bib0245) 2018; 123
Cui, Bing, Fang, Wu, Yu, Shen, Jiang, Wang, Zhang (bib0035) 2019; 338
Cui, Fang, Deng, Guo, Han, Ju, Wang, Chen, Tan, Zhang (bib0030) 2019; 658
He, Shen, Zhang, Zhu, Zheng, Xu, Di (bib0075) 2007; 9
Liu, Zhu, Luo, Bu, Chen, Yue, Li (bib0110) 2014; 188
Bremner, Mulvaney (bib0010) 1982
Mmm, Marchant, Kartal (bib0130) 2018; 16
Sistla, Schimel (bib0180) 2012; 196
Cui, Fang, Guo, Wang, Zhang, Li, Zhang (bib0025) 2018; 116
Mori, Ohta, Ishizuka, Konda, Wicaksono, Heriyanto, Hardjono (bib0145) 2010; 56
Zhao, Xiong, Li, Wang, Qiang, Yao, Mo (bib0265) 2012; 104
Wang, Li, Wang, Zhang, Zou, Neher, Li (bib0240) 2014; 4
Sinsabaugh, Hill, Shah (bib0190) 2009; 462
Ramakrishna, Tam, Wani, Long (bib0160) 2006; 95
Noah, Bradford (bib0150) 2019; 12
Saiya-Cork, Sinsabaugh, Zak (bib0170) 2002; 34
Elser, Acharya, Kyle, Cotner, Makino, Markow, Watts, Hobbie, Fagan, Schade, Hood, Sterner (bib0050) 2003; 6
He, Dijkstra (bib0080) 2015; 82
Sistla, Appling, Lewandowska, Taylor, Wolf (bib0185) 2015; 124
Zhao (10.1016/j.still.2019.104463_bib0265) 2012; 104
Ru (10.1016/j.still.2019.104463_bib0165) 2018; 24
Weier (10.1016/j.still.2019.104463_bib0235) 1994; 39
Mori (10.1016/j.still.2019.104463_bib0145) 2010; 56
Eldoma (10.1016/j.still.2019.104463_bib0045) 2016; 191
Bernhardt (10.1016/j.still.2019.104463_bib0005) 2013; 342
Fan (10.1016/j.still.2019.104463_bib0060) 2011; 62
He (10.1016/j.still.2019.104463_bib0080) 2015; 82
Liu (10.1016/j.still.2019.104463_bib0110) 2014; 188
Shen (10.1016/j.still.2019.104463_bib0175) 2008; 10
Sistla (10.1016/j.still.2019.104463_bib0180) 2012; 196
Wrage-Mönnig (10.1016/j.still.2019.104463_bib0245) 2018; 123
Borken (10.1016/j.still.2019.104463_bib0015) 2006; 12
Ullah (10.1016/j.still.2019.104463_bib0225) 2016; 15
Sun (10.1016/j.still.2019.104463_bib0215) 2015; 95
Zhang (10.1016/j.still.2019.104463_bib0255) 2011; 112
German (10.1016/j.still.2019.104463_bib0070) 2011; 43
Stark (10.1016/j.still.2019.104463_bib0210) 2008; 2
Wei (10.1016/j.still.2019.104463_bib0230) 2017; 53
Sistla (10.1016/j.still.2019.104463_bib0185) 2015; 124
Elser (10.1016/j.still.2019.104463_bib0050) 2003; 6
Exbrayat (10.1016/j.still.2019.104463_bib0055) 2013; 10
Smith (10.1016/j.still.2019.104463_bib0200) 2011; 99
Li (10.1016/j.still.2019.104463_bib0100) 2017; 116
Noah (10.1016/j.still.2019.104463_bib0150) 2019; 12
Cui (10.1016/j.still.2019.104463_bib0030) 2019; 658
Sinsabaugh (10.1016/j.still.2019.104463_bib0195) 2012; 43
Heuck (10.1016/j.still.2019.104463_bib0085) 2018; 141
Ramakrishna (10.1016/j.still.2019.104463_bib0160) 2006; 95
Ford (10.1016/j.still.2019.104463_bib0065) 2016; 542
Marklein (10.1016/j.still.2019.104463_bib0125) 2012; 193
Zechmeister-Boltenstern (10.1016/j.still.2019.104463_bib0250) 2015; 85
Wang (10.1016/j.still.2019.104463_bib0240) 2014; 4
Li (10.1016/j.still.2019.104463_bib0105) 2018; 110
Chen (10.1016/j.still.2019.104463_bib0020) 2012; 63
He (10.1016/j.still.2019.104463_bib0075) 2007; 9
Moorhead (10.1016/j.still.2019.104463_bib0140) 2016; 93
Cui (10.1016/j.still.2019.104463_bib0035) 2019; 338
Bremner (10.1016/j.still.2019.104463_bib0010) 1982
Manzoni (10.1016/j.still.2019.104463_bib0120) 2012; 196
Spohn (10.1016/j.still.2019.104463_bib0205) 2016; 17
Olsen (10.1016/j.still.2019.104463_bib0155) 1982
Tarafdar (10.1016/j.still.2019.104463_bib0220) 1988; 5
Jones (10.1016/j.still.2019.104463_bib0095) 2009; 23
Moorhead (10.1016/j.still.2019.104463_bib0135) 2013; 4
Luo (10.1016/j.still.2019.104463_bib0115) 2015; 67
Ishii (10.1016/j.still.2019.104463_bib0090) 2011; 26
Cui (10.1016/j.still.2019.104463_bib0025) 2018; 116
Mmm (10.1016/j.still.2019.104463_bib0130) 2018; 16
Sinsabaugh (10.1016/j.still.2019.104463_bib0190) 2009; 462
Cleveland (10.1016/j.still.2019.104463_bib0040) 2007; 85
Saiya-Cork (10.1016/j.still.2019.104463_bib0170) 2002; 34
Zhang (10.1016/j.still.2019.104463_bib0260) 2019; 55
References_xml – volume: 6
  start-page: 936
  year: 2003
  end-page: 943
  ident: bib0050
  article-title: Growth rate-stoichiometry couplings in diverse biota
  publication-title: Ecol. Lett.
– volume: 116
  start-page: 11
  year: 2018
  end-page: 21
  ident: bib0025
  article-title: Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau
  publication-title: China. Soil Biol. Biochem.
– volume: 93
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0140
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biol. Biochem.
– volume: 85
  start-page: 133
  year: 2015
  end-page: 155
  ident: bib0250
  article-title: The application of ecological stoichiometry to plant-microbial-soil organic matter transformations
  publication-title: Ecol. Monogr.
– volume: 15
  start-page: 2865
  year: 2016
  end-page: 2872
  ident: bib0225
  article-title: Assessing soil nitrous oxide emission as affected by phosphorus and nitrogen addition under two moisture levels
  publication-title: J. Integr. Agr.
– volume: 542
  start-page: 203
  year: 2016
  end-page: 209
  ident: bib0065
  article-title: Nitrogen and phosphorus colimitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland
  publication-title: Sci. Total Environ.
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: bib0190
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 141
  start-page: 167
  year: 2018
  end-page: 181
  ident: bib0085
  article-title: Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests
  publication-title: Biogeochemistry
– volume: 16
  start-page: 263
  year: 2018
  end-page: 267
  ident: bib0130
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  ident: bib0170
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil
  publication-title: Soil Biol. Biochem.
– volume: 67
  start-page: 35
  year: 2015
  end-page: 42
  ident: bib0115
  article-title: Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland
  publication-title: Eur. J. Soil Biol.
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  ident: bib0040
  article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 191
  start-page: 131
  year: 2016
  end-page: 138
  ident: bib0045
  article-title: Alternate or equal ridge–furrow pattern: which is better for maize production in the rain-fed semi-arid Loess Plateau of China?
  publication-title: Field Crop. Res.
– volume: 23
  start-page: 1
  year: 2009
  end-page: 5
  ident: bib0095
  article-title: Soil organic nitrogen mineralization across a global latitudinal gradient
  publication-title: Global Biogeochem. Cy.
– volume: 4
  start-page: 5615
  year: 2014
  ident: bib0240
  article-title: Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China
  publication-title: Sci. Rep.
– volume: 104
  start-page: 68
  year: 2012
  end-page: 78
  ident: bib0265
  article-title: Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem
  publication-title: Agric. Water Manage
– volume: 82
  start-page: 99
  year: 2015
  end-page: 106
  ident: bib0080
  article-title: Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil
  publication-title: Soil Biol. Biochem.
– volume: 338
  start-page: 118
  year: 2019
  end-page: 127
  ident: bib0035
  article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau
  publication-title: Geoderma
– volume: 123
  start-page: A3
  year: 2018
  end-page: A16
  ident: bib0245
  article-title: The role of nitrifier denitrification in the production of nitrous oxide revisited
  publication-title: Soil Biol. Biochem.
– volume: 39
  start-page: 245
  year: 1994
  end-page: 257
  ident: bib0235
  article-title: Nitrogen use and losses in agriculture in subtropical Australia
  publication-title: Fertil. Res.
– volume: 53
  start-page: 767
  year: 2017
  end-page: 776
  ident: bib0230
  article-title: Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil
  publication-title: Biol. Fertil. Soils
– volume: 188
  start-page: 20
  year: 2014
  end-page: 28
  ident: bib0110
  article-title: Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland
  publication-title: Agric., Ecosyst. Environ.
– volume: 12
  start-page: 46
  year: 2019
  end-page: 53
  ident: bib0150
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nat. Geosci.
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  ident: bib0120
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytol.
– volume: 5
  start-page: 308
  year: 1988
  end-page: 312
  ident: bib0220
  article-title: Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms
  publication-title: Biol. Fertil. Soils
– volume: 17
  start-page: 471
  year: 2016
  end-page: 478
  ident: bib0205
  article-title: Element cycling as driven by stoichiometric homeostasis of soil microorganisms
  publication-title: Basic Appl. Ecol.
– volume: 116
  start-page: 290
  year: 2017
  end-page: 301
  ident: bib0100
  article-title: Nitrification and nitrifiers in acidic soils
  publication-title: Soil Biol. Biochem.
– volume: 56
  start-page: 782
  year: 2010
  end-page: 788
  ident: bib0145
  article-title: Effects of phosphorus addition on N
  publication-title: Soil Sci. Plant Nutr.
– volume: 95
  start-page: 115
  year: 2006
  end-page: 125
  ident: bib0160
  article-title: Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam
  publication-title: Field Crop. Res.
– volume: 24
  start-page: 1001
  year: 2018
  end-page: 1011
  ident: bib0165
  article-title: Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland
  publication-title: Glob. Change Biol.
– volume: 43
  start-page: 1387
  year: 2011
  end-page: 1397
  ident: bib0070
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biol. Biochem.
– volume: 12
  start-page: 177
  year: 2006
  end-page: 193
  ident: bib0015
  article-title: Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil
  publication-title: Glob. Change Biol.
– volume: 26
  start-page: 282
  year: 2011
  end-page: 292
  ident: bib0090
  article-title: Nitrogen cycling in rice paddy environments: past achievements and future challenges
  publication-title: Microbes Environ.
– volume: 342
  start-page: 205
  year: 2013
  end-page: 206
  ident: bib0005
  article-title: Cleaner lakes are dirtier lakes
  publication-title: Science
– start-page: 403
  year: 1982
  end-page: 430
  ident: bib0155
  article-title: Phosphorous
  publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties
– volume: 124
  start-page: 949
  year: 2015
  end-page: 959
  ident: bib0185
  article-title: Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness
  publication-title: Oikos
– volume: 55
  start-page: 229
  year: 2019
  end-page: 242
  ident: bib0260
  article-title: Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland
  publication-title: Biol. Fertil. Soils
– volume: 196
  start-page: 68
  year: 2012
  end-page: 78
  ident: bib0180
  article-title: Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change
  publication-title: New Phytol.
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  ident: bib0195
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 658
  start-page: 1440
  year: 2019
  end-page: 1451
  ident: bib0030
  article-title: Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region
  publication-title: Sci. Total Environ.
– volume: 193
  start-page: 696
  year: 2012
  end-page: 704
  ident: bib0125
  article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems
  publication-title: New Phytol.
– volume: 95
  start-page: 171
  year: 2015
  end-page: 178
  ident: bib0215
  article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle
  publication-title: Appl. Soil Ecol.
– volume: 112
  start-page: 92
  year: 2011
  end-page: 97
  ident: bib0255
  article-title: Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize
  publication-title: Soil Tillage Res.
– volume: 2
  start-page: 41
  year: 2008
  end-page: 55
  ident: bib0210
  article-title: The continuing challenge of nitrogen loss to the environment-environmental consequences and mitigation strategies
  publication-title: Dyn. Soil Dyn. Plant
– volume: 10
  start-page: 7095
  year: 2013
  end-page: 7108
  ident: bib0055
  article-title: Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation
  publication-title: Biogeosciences
– volume: 4
  start-page: 223
  year: 2013
  ident: bib0135
  article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models
  publication-title: Front. Microbiol.
– volume: 63
  start-page: 446
  year: 2012
  end-page: 459
  ident: bib0020
  article-title: Differentiated response of denitrifying communities to fertilization regime in paddy soil
  publication-title: Microb. Ecol.
– volume: 99
  start-page: 651
  year: 2011
  end-page: 655
  ident: bib0200
  article-title: The ecological role of climate extremes: current understanding and future prospects
  publication-title: J. Ecol.
– volume: 62
  start-page: 982
  year: 2011
  end-page: 990
  ident: bib0060
  article-title: Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community
  publication-title: Microb. Ecol.
– start-page: 595
  year: 1982
  end-page: 624
  ident: bib0010
  article-title: Nitrogen-total
  publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties
– volume: 9
  start-page: 2364
  year: 2007
  end-page: 2374
  ident: bib0075
  article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices
  publication-title: Environ. Microbiol.
– volume: 110
  start-page: 996
  year: 2018
  end-page: 1007
  ident: bib0105
  article-title: Maize yield response to nitrogen rate and plant density under film mulching
  publication-title: Agron. J.
– volume: 10
  start-page: 1601
  year: 2008
  end-page: 1611
  ident: bib0175
  article-title: Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam
  publication-title: Environ. Microbiol.
– volume: 43
  start-page: 1387
  year: 2011
  ident: 10.1016/j.still.2019.104463_bib0070
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.03.017
– volume: 12
  start-page: 177
  issue: 2
  year: 2006
  ident: 10.1016/j.still.2019.104463_bib0015
  article-title: Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.001058.x
– volume: 12
  start-page: 46
  year: 2019
  ident: 10.1016/j.still.2019.104463_bib0150
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0258-6
– volume: 658
  start-page: 1440
  year: 2019
  ident: 10.1016/j.still.2019.104463_bib0030
  article-title: Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.289
– volume: 85
  start-page: 235
  year: 2007
  ident: 10.1016/j.still.2019.104463_bib0040
  article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9132-0
– volume: 56
  start-page: 782
  year: 2010
  ident: 10.1016/j.still.2019.104463_bib0145
  article-title: Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2010.00501.x
– volume: 338
  start-page: 118
  year: 2019
  ident: 10.1016/j.still.2019.104463_bib0035
  article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.047
– volume: 116
  start-page: 11
  year: 2018
  ident: 10.1016/j.still.2019.104463_bib0025
  article-title: Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau
  publication-title: China. Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.09.025
– volume: 10
  start-page: 1601
  year: 2008
  ident: 10.1016/j.still.2019.104463_bib0175
  article-title: Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2008.01578.x
– volume: 124
  start-page: 949
  year: 2015
  ident: 10.1016/j.still.2019.104463_bib0185
  article-title: Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness
  publication-title: Oikos
  doi: 10.1111/oik.02385
– volume: 99
  start-page: 651
  year: 2011
  ident: 10.1016/j.still.2019.104463_bib0200
  article-title: The ecological role of climate extremes: current understanding and future prospects
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2011.01833.x
– volume: 4
  start-page: 5615
  year: 2014
  ident: 10.1016/j.still.2019.104463_bib0240
  article-title: Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China
  publication-title: Sci. Rep.
  doi: 10.1038/srep05615
– volume: 15
  start-page: 2865
  year: 2016
  ident: 10.1016/j.still.2019.104463_bib0225
  article-title: Assessing soil nitrous oxide emission as affected by phosphorus and nitrogen addition under two moisture levels
  publication-title: J. Integr. Agr.
  doi: 10.1016/S2095-3119(16)61353-9
– volume: 55
  start-page: 229
  year: 2019
  ident: 10.1016/j.still.2019.104463_bib0260
  article-title: Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-019-01344-z
– volume: 85
  start-page: 133
  year: 2015
  ident: 10.1016/j.still.2019.104463_bib0250
  article-title: The application of ecological stoichiometry to plant-microbial-soil organic matter transformations
  publication-title: Ecol. Monogr.
  doi: 10.1890/14-0777.1
– volume: 95
  start-page: 115
  year: 2006
  ident: 10.1016/j.still.2019.104463_bib0160
  article-title: Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2005.01.030
– volume: 342
  start-page: 205
  year: 2013
  ident: 10.1016/j.still.2019.104463_bib0005
  article-title: Cleaner lakes are dirtier lakes
  publication-title: Science
  doi: 10.1126/science.1245279
– volume: 63
  start-page: 446
  year: 2012
  ident: 10.1016/j.still.2019.104463_bib0020
  article-title: Differentiated response of denitrifying communities to fertilization regime in paddy soil
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-011-9909-5
– volume: 17
  start-page: 471
  year: 2016
  ident: 10.1016/j.still.2019.104463_bib0205
  article-title: Element cycling as driven by stoichiometric homeostasis of soil microorganisms
  publication-title: Basic Appl. Ecol.
  doi: 10.1016/j.baae.2016.05.003
– volume: 26
  start-page: 282
  year: 2011
  ident: 10.1016/j.still.2019.104463_bib0090
  article-title: Nitrogen cycling in rice paddy environments: past achievements and future challenges
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME11293
– volume: 53
  start-page: 767
  year: 2017
  ident: 10.1016/j.still.2019.104463_bib0230
  article-title: Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-017-1221-1
– volume: 193
  start-page: 696
  year: 2012
  ident: 10.1016/j.still.2019.104463_bib0125
  article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03967.x
– volume: 188
  start-page: 20
  year: 2014
  ident: 10.1016/j.still.2019.104463_bib0110
  article-title: Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.02.010
– volume: 43
  start-page: 313
  year: 2012
  ident: 10.1016/j.still.2019.104463_bib0195
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 2
  start-page: 41
  year: 2008
  ident: 10.1016/j.still.2019.104463_bib0210
  article-title: The continuing challenge of nitrogen loss to the environment-environmental consequences and mitigation strategies
  publication-title: Dyn. Soil Dyn. Plant
– volume: 123
  start-page: A3
  year: 2018
  ident: 10.1016/j.still.2019.104463_bib0245
  article-title: The role of nitrifier denitrification in the production of nitrous oxide revisited
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.03.020
– volume: 6
  start-page: 936
  year: 2003
  ident: 10.1016/j.still.2019.104463_bib0050
  article-title: Growth rate-stoichiometry couplings in diverse biota
  publication-title: Ecol. Lett.
  doi: 10.1046/j.1461-0248.2003.00518.x
– volume: 5
  start-page: 308
  year: 1988
  ident: 10.1016/j.still.2019.104463_bib0220
  article-title: Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00262137
– volume: 23
  start-page: 1
  year: 2009
  ident: 10.1016/j.still.2019.104463_bib0095
  article-title: Soil organic nitrogen mineralization across a global latitudinal gradient
  publication-title: Global Biogeochem. Cy.
  doi: 10.1029/2008GB003250
– volume: 16
  start-page: 263
  year: 2018
  ident: 10.1016/j.still.2019.104463_bib0130
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2018.9
– start-page: 403
  year: 1982
  ident: 10.1016/j.still.2019.104463_bib0155
  article-title: Phosphorous
– volume: 34
  start-page: 1309
  year: 2002
  ident: 10.1016/j.still.2019.104463_bib0170
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00074-3
– volume: 110
  start-page: 996
  year: 2018
  ident: 10.1016/j.still.2019.104463_bib0105
  article-title: Maize yield response to nitrogen rate and plant density under film mulching
  publication-title: Agron. J.
  doi: 10.2134/agronj2017.09.0547
– volume: 196
  start-page: 68
  year: 2012
  ident: 10.1016/j.still.2019.104463_bib0180
  article-title: Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04234.x
– volume: 4
  start-page: 223
  year: 2013
  ident: 10.1016/j.still.2019.104463_bib0135
  article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00223
– volume: 10
  start-page: 7095
  year: 2013
  ident: 10.1016/j.still.2019.104463_bib0055
  article-title: Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-7095-2013
– volume: 39
  start-page: 245
  year: 1994
  ident: 10.1016/j.still.2019.104463_bib0235
  article-title: Nitrogen use and losses in agriculture in subtropical Australia
  publication-title: Fertil. Res.
  doi: 10.1007/BF00750253
– volume: 191
  start-page: 131
  year: 2016
  ident: 10.1016/j.still.2019.104463_bib0045
  article-title: Alternate or equal ridge–furrow pattern: which is better for maize production in the rain-fed semi-arid Loess Plateau of China?
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2016.02.024
– volume: 93
  start-page: 1
  year: 2016
  ident: 10.1016/j.still.2019.104463_bib0140
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.10.019
– volume: 462
  start-page: 795
  year: 2009
  ident: 10.1016/j.still.2019.104463_bib0190
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 542
  start-page: 203
  year: 2016
  ident: 10.1016/j.still.2019.104463_bib0065
  article-title: Nitrogen and phosphorus colimitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.10.089
– volume: 95
  start-page: 171
  year: 2015
  ident: 10.1016/j.still.2019.104463_bib0215
  article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.06.010
– volume: 112
  start-page: 92
  year: 2011
  ident: 10.1016/j.still.2019.104463_bib0255
  article-title: Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2010.11.006
– volume: 104
  start-page: 68
  year: 2012
  ident: 10.1016/j.still.2019.104463_bib0265
  article-title: Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem
  publication-title: Agric. Water Manage
  doi: 10.1016/j.agwat.2011.11.016
– volume: 67
  start-page: 35
  year: 2015
  ident: 10.1016/j.still.2019.104463_bib0115
  article-title: Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2015.01.004
– volume: 24
  start-page: 1001
  year: 2018
  ident: 10.1016/j.still.2019.104463_bib0165
  article-title: Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13941
– volume: 9
  start-page: 2364
  year: 2007
  ident: 10.1016/j.still.2019.104463_bib0075
  article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2007.01358.x
– volume: 141
  start-page: 167
  year: 2018
  ident: 10.1016/j.still.2019.104463_bib0085
  article-title: Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0511-5
– volume: 62
  start-page: 982
  year: 2011
  ident: 10.1016/j.still.2019.104463_bib0060
  article-title: Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-011-9897-5
– volume: 196
  start-page: 79
  year: 2012
  ident: 10.1016/j.still.2019.104463_bib0120
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 82
  start-page: 99
  year: 2015
  ident: 10.1016/j.still.2019.104463_bib0080
  article-title: Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.12.015
– start-page: 595
  year: 1982
  ident: 10.1016/j.still.2019.104463_bib0010
  article-title: Nitrogen-total
– volume: 116
  start-page: 290
  year: 2017
  ident: 10.1016/j.still.2019.104463_bib0100
  article-title: Nitrification and nitrifiers in acidic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.10.023
SSID ssj0004328
Score 2.6226814
Snippet [Display omitted] •FM increased microbial C metabolism while very small effects on P metabolism.•Increased microbial C metabolism ascribe to increased soil...
Variations in soil microbial metabolism currently represent one of the greatest areas of uncertainty with regard to soil nutrient cycles and the control of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104463
SubjectTerms agroecosystems
biodegradation
carbon
carbon metabolism
denitrification
enzyme activity
Extracellular enzyme activity
fertilizer rates
Functional genes
gene expression
genes
intensive farming
Microbial metabolic limitation
mulching
nitrification
nitrogen
nitrogen cycle
nitrogen fertilizers
phosphorus
quantitative polymerase chain reaction
soil nutrients
soil water content
stoichiometry
uncertainty
Title Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems
URI https://dx.doi.org/10.1016/j.still.2019.104463
https://www.proquest.com/docview/2388763388
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcoFDxUcRLVAZiWPDZmPHiY-r1VYLiF5opd4sf2UbtJuskuxhOfA_-LfMOEkrkOihh-SQ2FaSGdvvxTPPhHyUTktRMBEVqcsiLnkR5abIIxEbUcCdVGtMTv52KZbX_MtNenNA5mMuDIZVDmN_P6aH0Xq4Mhm-5mRblpPvGECPlBkgCP5sCBnsPEMv__TrPsyDs7C_atD3xtKj8lCI8YJetMb1h6nEtU4u2P9mp3_G6TD5XDwnRwNqpLP-wV6QA1-9JM9mq2ZQzvCvyO-FrX31cx8kWClAutLeYmp91-wpyjSBm9FNGWSXoKXtbd3C0exausYUp2Af6gKGbH1LARZS6OxNDf5F7R7zJ1d0W3cYWwTV64K2dQktlhVt_aaMgHE7qu-eB4oAre1Vottjcn2xuJovo2HfhcgyJjrgpjlPPGM29QAIZO6AozGjrZFpbhPj4yybei4dzP7AdwotvUu9jQFpCSuZi9lrcljVlX9DKC5aagOoRuuMGwZoKDZZoj3QpgKYpTshyfi9lR1eFvfGWKsx-uyHCkZSaCTVG-mEnN9V2vaaHA8XF6Mh1V-upWDWeLjih9HsCjodrqToyte7VgHOQSU_OJ8-tvG35GmC1D2Es70jh12z8-8B33TmLDjwGXky-_x1efkHFID_Tw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqco5WEkuBE2GztOfOBQQastfVxopd6MYztt0DZZxVmh5cD_4HfwB5lxkiKQ6AGph-SQxFbiGc98E898JuSVtFqKkomoTG0WccnLKC_KPBJxIUq4k2qNxcmHR2J2wj-epqdr5OdYC4NplYPt7216sNbDlckwmpNFVU0-YQI9hswAQfBnw3TIrNx3q68Qt_l3ex9AyK-TZHfn-P0sGrYWiAxjooPwK-eJY8ykDnyezC2EIazQppBpbpLCxVk2dVxacHAA6UstnU2diQFMCCOZjRn0e4Pc5GAucNuEt99_55VwFjZ0DYTi-Hoj1VFIKoNpO8cFj6nExVUu2L_c4V-OIXi73btkY4CpdLsfiXtkzdX3yZ3ts3ag6nAPyI8d07j62ypwvlLAkJU5x1r-rl1R5IUCvaYXVeB5gp4W542Ho116OseaqqAQ1AbQ6p2ngEMpWJe2AYWmZoUFm2d00XSYzATNm5L6poIeq5p6d1FFEOJbqi_fBx6BOLqnpfYPycm1SOMRWa-b2j0mFFdJdQEwSuuMFwzgV1xkiXYQp5UQytpNkozjrczwsbgZx1yN6W5fVBCSQiGpXkib5M1lo0VPAnL142IUpPpDlxW4qasbvhzFrmCW49KNrl2z9AqAFVIHwvnJ_3b-gtyaHR8eqIO9o_0tcjvB_wYhl-4pWe_apXsG4KorngdlpuTzdc-eX2kyObw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecoenzymatic+stoichiometry+reveals+microbial+phosphorus+limitation+decreases+the+nitrogen+cycling+potential+of+soils+in+semi-arid+agricultural+ecosystems&rft.jtitle=Soil+%26+tillage+research&rft.au=Cui%2C+Yongxing&rft.au=Zhang%2C+Yanle&rft.au=Duan%2C+Chengjiao&rft.au=Wang%2C+Xia&rft.date=2020-03-01&rft.issn=0167-1987&rft.volume=197&rft.spage=104463&rft_id=info:doi/10.1016%2Fj.still.2019.104463&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2019_104463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon