Uniaxial compressive properties of human lumbar 1 vertebrae loaded beyond compaction and their relationship to cortical and cancellous microstructure, size and density properties

Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture ha...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 133; p. 105334
Main Authors Yeni, Yener N., Dix, Michael R., Xiao, Angela, Oravec, Daniel J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra. •Lumbar 1 is a common site of osteoporotic vertebral fracture.•We characterized the entire uniaxial compression behavior of human L1 vertebrae.•Compaction and recovery properties are distinct from those at yield and fracture.•Bone density is not a determinant of all structural mechanical properties.•Different microstructures contribute to force, displacement and work variables.
AbstractList Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra.Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra.
Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra. •Lumbar 1 is a common site of osteoporotic vertebral fracture.•We characterized the entire uniaxial compression behavior of human L1 vertebrae.•Compaction and recovery properties are distinct from those at yield and fracture.•Bone density is not a determinant of all structural mechanical properties.•Different microstructures contribute to force, displacement and work variables.
ArticleNumber 105334
Author Xiao, Angela
Oravec, Daniel J.
Dix, Michael R.
Yeni, Yener N.
Author_xml – sequence: 1
  givenname: Yener N.
  surname: Yeni
  fullname: Yeni, Yener N.
  email: yeni@bjc.hfh.edu
– sequence: 2
  givenname: Michael R.
  surname: Dix
  fullname: Dix, Michael R.
– sequence: 3
  givenname: Angela
  surname: Xiao
  fullname: Xiao, Angela
– sequence: 4
  givenname: Daniel J.
  surname: Oravec
  fullname: Oravec, Daniel J.
BookMark eNqFUT2P1DAQtdAhcXfwC2hcUpA924kdp6BAJz5OOomGqy3HnmhnlcTBdlYsP4tfiLNLgSigGnvmvTcf74ZczWEGQl5ztuOMq7vD7jD1_bQTTIiSkXXdPCPXXLe6Ylyzq_JuJa8UV_wFuUnpwJhiTOtr8vNpRvsd7UhdmJYIKeER6BLDAjEjJBoGul8nO9NxnXobKafHUoE-WqBjsB487eEUZn8WsC5jmKkt37wHjDTCaLdU2uNCcyigIutKuw3i7OxgHMOa6IQuhpTj6vIa4S1N-APOGA9zwnz6Y6SX5PlgxwSvfsdb8vTxw9f7z9Xjl08P9-8fK1fXKleSt051suNtA2romr7xQ625kAI63jHoPGPlKFYwyRvWCNF5gBKbdtBOO1nfkjcX3dL62wopmwnTNq-doYxshNKKSdkqXaDdBbotkSIMxmE-752jxdFwZjafzMGcfTKbT-biU-HWf3GXiJONp_-w3l1YUC5wRIgmOYRyTo8RXDY-4D_5vwBHFbOZ
CitedBy_id crossref_primary_10_1186_s12891_024_07297_1
crossref_primary_10_1016_j_ejrad_2025_111925
crossref_primary_10_1016_j_mtcomm_2024_109123
crossref_primary_10_3389_fbioe_2024_1305837
crossref_primary_10_2147_JPR_S393333
Cites_doi 10.1016/j.bone.2007.11.011
10.1016/j.bone.2015.07.033
10.1016/S0021-9290(03)00124-6
10.1007/s001980050138
10.1007/s00774-013-0465-6
10.1016/0021-9290(94)90014-0
10.1002/jbmr.3113
10.1007/s001980050240
10.1359/jbmr.090311
10.1097/01.brs.0000260979.98101.9c
10.1016/j.bone.2008.12.030
10.1097/00007632-198001000-00009
10.1016/j.bone.2010.07.001
10.1007/s00586-003-0613-0
10.1115/1.4026409
10.1359/jbmr.070706
10.1359/jbmr.061113
10.1002/jbmr.2749
10.1007/s00774-011-0307-3
10.1016/S0021-9290(98)00176-6
10.1002/jor.1100180502
10.1016/j.jbiomech.2017.09.026
10.1016/j.jmbbm.2016.03.004
10.1016/8756-3282(94)90286-0
10.1148/radiol.14140636
10.1017/S1431927607074430
10.1359/jbmr.090317
10.1016/j.jmbbm.2012.06.005
10.1016/j.bone.2007.08.019
10.1016/j.bone.2006.10.025
10.1115/1.4001361
10.1359/jbmr.060513
10.22203/eCM.v028a12
10.1016/S0969-8043(97)00139-5
10.1007/s00198-013-2417-3
10.1007/BF00401809
10.1016/j.jmbbm.2011.10.006
10.1097/BRS.0b013e3181b4c75d
10.1359/jbmr.090803
10.1002/jbmr.164
10.1097/BRS.0b013e3182a28fa9
10.1007/BF00298611
10.1118/1.2924210
10.1016/8756-3282(95)00499-8
10.1016/j.jmbbm.2016.08.028
10.1097/00007632-198311000-00007
10.1002/jbm.820100409
10.1359/jbmr.2002.17.4.716
10.1097/00007632-200104150-00012
10.2147/JMDH.S4103
10.1115/1.3148473
10.1097/00007632-199116020-00009
10.1359/jbmr.2002.17.6.1051
10.1007/BF02553758
10.1385/JCD:8:3:314
10.1097/00007632-200109150-00004
10.1002/jor.23232
10.1073/pnas.1520539113
10.1016/j.bone.2006.05.013
10.1016/S8756-3282(99)00216-1
10.1016/j.bone.2007.11.018
10.1006/jhev.2002.0568
10.1007/s00198-013-2316-7
10.1002/jor.22620
10.1002/jbmr.264
10.1111/jmi.12159
10.1002/mp.13750
10.1002/jsp2.1170
10.1016/8756-3282(94)90900-8
10.1016/0268-0033(88)90119-2
10.1007/s00198-014-2846-7
10.1016/j.bone.2007.07.007
10.1016/8756-3282(93)90090-W
10.1016/S8756-3282(03)00210-2
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jmbbm.2022.105334
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
ExternalDocumentID 10_1016_j_jmbbm_2022_105334
S1751616122002466
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
ID FETCH-LOGICAL-c336t-517c6959174e6f94b4df381252e9190e9d00751a2051404229dee04247f8c8c53
IEDL.DBID .~1
ISSN 1751-6161
1878-0180
IngestDate Fri Jul 11 02:57:29 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Tue Jul 01 02:19:17 EDT 2025
Fri Feb 23 02:39:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vertebral body
Uniaxial compression
Cortical shell
Cancellous microstructure
Post-failure properties
Density
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-517c6959174e6f94b4df381252e9190e9d00751a2051404229dee04247f8c8c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2686055768
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2686055768
crossref_citationtrail_10_1016_j_jmbbm_2022_105334
crossref_primary_10_1016_j_jmbbm_2022_105334
elsevier_sciencedirect_doi_10_1016_j_jmbbm_2022_105334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fields, Eswaran, Jekir, Keaveny (bib24) 2009; 24
Yoganandan, Mykiebust, Cusick, Wilson, Sances (bib76) 1988; 3
Hayes, Carter (bib34) 1976; 10
Kefalas, Eftaxiopoulos (bib44) 2012; 6
Torres, Matheny, Keaveny, Taylor, Rimnac, Hernandez (bib65) 2016; 113
Oravec, Quazi, Xiao, Yang, Zauel, Flynn, Yeni (bib56) 2015; 81
Baum, Grabeldinger, Rath, Garcia, Burgkart, Patsch, Rummeny, Link, Bauer (bib2) 2014; 32
Jackman, Hussein, Curtiss, Fein, Camp, De Barros, Morgan (bib42) 2016; 31
Yeni, Zelman, Divine, Kim, Fyhrie (bib74) 2008; 42
Wegrzyn, Roux, Arlot, Boutroy, Vilayphiou, Guyen, Delmas, Chapurlat, Bouxsein (bib70) 2011; 26
Hussein, Jackman, Morgan, Barest, Morgan (bib38) 2013; 24
Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib28) 1994; 27
Muriuki, Havey, Voronov, Carandang, Zindrick, Lorenz, Lomasney, Patwardhan (bib53) 2016; 34
Roux, Wegrzyn, Boutroy, Bouxsein, Hans, Chapurlat (bib62) 2013; 24
Garrison, Slaboch, Niebur (bib26) 2009; 44
Ortoft, Mosekilde, Hasling, Mosekilde (bib57) 1993; 14
Yerramshetty, Kim, Yeni (bib75) 2009; 131
Byrne, Zhou, Zheng, Chowdhury, Aiyangar, Zhang (bib13) 2018; 70
Issever, Link, Kentenich, Rogalla, Schwieger, Huber, Burghardt, Majumdar, Diederichs (bib40) 2009; 24
Crawford, Cann, Keaveny (bib17) 2003; 33
Samelson, Hannan, Zhang, Genant, Felson, Kiel (bib63) 2006; 21
Ding, Odgaard, Hvid (bib19) 1999; 32
Moro, Hecker, Bouxsein, Myers (bib51) 1995; 56
Roux, Wegrzyn, Arlot, Guyen, Delmas, Chapurlat, Bouxsein (bib61) 2010; 25
Guenoun, Le Corroller, Acid, Pithioux, Pauly, Ariey-Bonnet, Chabrand, Champsaur (bib31) 2013; 38
Reimann, Hames, Flynn, Fyhrie (bib59) 1997; 48
Grigoryan, Guermazi, Roemer, Delmas, Genant (bib30) 2003; 12
Kurutz, Donath, Galos, Varga, Fornet (bib47) 2008; 1
Biggemann, Hilweg, Brinckmann (bib3) 1988; 17
Bruno, Burkhart, Allaire, Anderson, Bouxsein (bib7) 2017; 32
Felsenberg, Silman, Lunt, Armbrecht, Ismail, Finn, Cockerill, Banzer, Benevolenskaya, Bhalla, Bruges Armas, Cannata, Cooper, Dequeker, Eastell, Felsch, Gowin, Havelka, Hoszowski, Jajic, Janott, Johnell, Kanis, Kragl, Lopes Vaz, Lorenc, Lyritis, Masaryk, Matthis, Miazgowski, Parisi, Pols, Poor, Raspe, Reid, Reisinger, Schedit-Nave, Stepan, Todd, Weber, Woolf, Yershova, Reeve, O'Neill (bib23) 2002; 17
Ismail, Cooper, Felsenberg, Varlow, Kanis, Silman, O'Neill (bib39) 1999; 9
Jackman, Hussein, Adams, Makhnejia, Morgan (bib41) 2014; 32
Lu, Krause, Bishop, Sellenschloh, Gluer, Puschel, Amling, Morlock, Huber (bib49) 2015; 26
Viguet-Carrin, Roux, Arlot, Merabet, Leeming, Byrjalsen, Delmas, Bouxsein (bib67) 2006; 39
Buckley, Loo, Motherway (bib9) 2007; 40
Badiei, Bottema, Fazzalari (bib1) 2007; 22
Currey (bib18) 2003; 36
Cody, Goldstein, Flynn, Brown (bib16) 1991; 16
Eriksson, Isberg, Lindgren (bib22) 1989; 44
Hair, Anderson, Tatham, Black (bib32) 1998
Hosseini, Pahr, Zysset (bib36) 2012; 15
Wen, Xu, Zong, Feng, Ma, Wang, Yan, Lei (bib71) 2016; 60
Charlebois, Pretterklieber, Zysset (bib15) 2010; 132
Busscher, van Dieen, Kingma, van der Veen, Verkerke, Veldhuizen (bib12) 2009; 34
Kazakia, Burghardt, Cheung, Majumdar (bib43) 2008; 35
Hansson, Roos, Nachemson (bib33) 1980; 5
Pothuaud, Carceller, Hans (bib58) 2008; 42
Robson Brown, Davies, McNally (bib60) 2002; 43
Krause, Soltau, Zimmermann, Hahn, Kornet, Hapfelmeier, Breer, Morlock, Wulff, Puschel, Glueer, Amling, Busse (bib46) 2014; 28
Dougherty, Kunzelmann (bib20) 2007; 13
Gibson, Ashby (bib27) 1997
Kopperdahl, Pearlman, Keaveny (bib45) 2000; 18
Fyhrie, Schaffler (bib25) 1994; 15
Tassani, Korfiatis, Matsopoulos (bib64) 2014; 256
Nekkanty, Yerramshetty, Kim, Zauel, Johnson, Cody, Yeni (bib54) 2010; 47
Wisleder, Smith, Mosher, Zatsiorsky (bib72) 2001; 26
Wasnich (bib68) 1996; 18
Burge, Dawson-Hughes, Solomon, Wong, King, Tosteson (bib11) 2007; 22
Wegrzyn, Roux, Arlot, Boutroy, Vilayphiou, Guyen, Delmas, Chapurlat, Bouxsein (bib69) 2010; 25
Marinozzi, Iacoviello, Marinozzi, Bini, Pepe, Angeloni, Bedini (bib50) 2010
Grant, Oxland, Dvorak (bib29) 2001; 26
Cendre, Mitton, Roux, Arlot, Duboeuf, Burt-Pichat, Rumelhart, Peix, Meunier (bib14) 1999; 10
Buie, Campbell, Klinck, MacNeil, Boyd (bib10) 2007; 41
Hulme, Boyd, Ferguson (bib37) 2007; 41
Morris, Yang, Martin-Fernandez, Pozo, Frangi, Wilkinson (bib52) 2015; 274
Oravec, Flynn, Zauel, Rao, Yeni (bib55) 2019; 46
Zhu, Keller, Moeljanto, Spengler (bib77) 1994; 15
Brinckmann, Frobin, Hierholzer, Horst (bib6) 1983; 8
Buckley, Cheng, Loo, Slyfield, Xu (bib8) 2007; 32
Ebbesen, Thomsen, Beck-Nielsen, Nepper-Rasmussen, Mosekilde (bib21) 1999; 25
Lee, Lee, Youn, Kim, Shin, Goh, Lee (bib48) 2017; 65
Hosseini, Clouthier, Zysset (bib35) 2014; 136
Briggs, Perilli, Parkinson, Kantor, Wrigley, Fazzalari, Wark (bib4) 2012; 30
Briggs, Wark, Kantor, Teh, Greig, Fazzalari, Bennell (bib5) 2005; 8
Wu, Loaiza, Banerji, Blouin, Morgan (bib73) 2021; 4
Van der Klift, De Laet, McCloskey, Hofman, Pols (bib66) 2002; 17
Jackman (10.1016/j.jmbbm.2022.105334_bib41) 2014; 32
Marinozzi (10.1016/j.jmbbm.2022.105334_bib50) 2010
Charlebois (10.1016/j.jmbbm.2022.105334_bib15) 2010; 132
Ding (10.1016/j.jmbbm.2022.105334_bib19) 1999; 32
Hosseini (10.1016/j.jmbbm.2022.105334_bib35) 2014; 136
Yoganandan (10.1016/j.jmbbm.2022.105334_bib76) 1988; 3
Hulme (10.1016/j.jmbbm.2022.105334_bib37) 2007; 41
Hosseini (10.1016/j.jmbbm.2022.105334_bib36) 2012; 15
Badiei (10.1016/j.jmbbm.2022.105334_bib1) 2007; 22
Yerramshetty (10.1016/j.jmbbm.2022.105334_bib75) 2009; 131
Grant (10.1016/j.jmbbm.2022.105334_bib29) 2001; 26
Busscher (10.1016/j.jmbbm.2022.105334_bib12) 2009; 34
Morris (10.1016/j.jmbbm.2022.105334_bib52) 2015; 274
Kazakia (10.1016/j.jmbbm.2022.105334_bib43) 2008; 35
Robson Brown (10.1016/j.jmbbm.2022.105334_bib60) 2002; 43
Garrison (10.1016/j.jmbbm.2022.105334_bib26) 2009; 44
Buie (10.1016/j.jmbbm.2022.105334_bib10) 2007; 41
Issever (10.1016/j.jmbbm.2022.105334_bib40) 2009; 24
Hansson (10.1016/j.jmbbm.2022.105334_bib33) 1980; 5
Nekkanty (10.1016/j.jmbbm.2022.105334_bib54) 2010; 47
Cody (10.1016/j.jmbbm.2022.105334_bib16) 1991; 16
Eriksson (10.1016/j.jmbbm.2022.105334_bib22) 1989; 44
Roux (10.1016/j.jmbbm.2022.105334_bib62) 2013; 24
Dougherty (10.1016/j.jmbbm.2022.105334_bib20) 2007; 13
Kurutz (10.1016/j.jmbbm.2022.105334_bib47) 2008; 1
Wisleder (10.1016/j.jmbbm.2022.105334_bib72) 2001; 26
Hussein (10.1016/j.jmbbm.2022.105334_bib38) 2013; 24
Goulet (10.1016/j.jmbbm.2022.105334_bib28) 1994; 27
Wegrzyn (10.1016/j.jmbbm.2022.105334_bib70) 2011; 26
Guenoun (10.1016/j.jmbbm.2022.105334_bib31) 2013; 38
Biggemann (10.1016/j.jmbbm.2022.105334_bib3) 1988; 17
Samelson (10.1016/j.jmbbm.2022.105334_bib63) 2006; 21
Hair (10.1016/j.jmbbm.2022.105334_bib32) 1998
Zhu (10.1016/j.jmbbm.2022.105334_bib77) 1994; 15
Oravec (10.1016/j.jmbbm.2022.105334_bib56) 2015; 81
Brinckmann (10.1016/j.jmbbm.2022.105334_bib6) 1983; 8
Ebbesen (10.1016/j.jmbbm.2022.105334_bib21) 1999; 25
Jackman (10.1016/j.jmbbm.2022.105334_bib42) 2016; 31
Burge (10.1016/j.jmbbm.2022.105334_bib11) 2007; 22
Byrne (10.1016/j.jmbbm.2022.105334_bib13) 2018; 70
Briggs (10.1016/j.jmbbm.2022.105334_bib4) 2012; 30
Ismail (10.1016/j.jmbbm.2022.105334_bib39) 1999; 9
Buckley (10.1016/j.jmbbm.2022.105334_bib9) 2007; 40
Moro (10.1016/j.jmbbm.2022.105334_bib51) 1995; 56
Fyhrie (10.1016/j.jmbbm.2022.105334_bib25) 1994; 15
Torres (10.1016/j.jmbbm.2022.105334_bib65) 2016; 113
Briggs (10.1016/j.jmbbm.2022.105334_bib5) 2005; 8
Lu (10.1016/j.jmbbm.2022.105334_bib49) 2015; 26
Felsenberg (10.1016/j.jmbbm.2022.105334_bib23) 2002; 17
Muriuki (10.1016/j.jmbbm.2022.105334_bib53) 2016; 34
Lee (10.1016/j.jmbbm.2022.105334_bib48) 2017; 65
Buckley (10.1016/j.jmbbm.2022.105334_bib8) 2007; 32
Viguet-Carrin (10.1016/j.jmbbm.2022.105334_bib67) 2006; 39
Hayes (10.1016/j.jmbbm.2022.105334_bib34) 1976; 10
Oravec (10.1016/j.jmbbm.2022.105334_bib55) 2019; 46
Yeni (10.1016/j.jmbbm.2022.105334_bib74) 2008; 42
Kopperdahl (10.1016/j.jmbbm.2022.105334_bib45) 2000; 18
Cendre (10.1016/j.jmbbm.2022.105334_bib14) 1999; 10
Baum (10.1016/j.jmbbm.2022.105334_bib2) 2014; 32
Gibson (10.1016/j.jmbbm.2022.105334_bib27) 1997
Pothuaud (10.1016/j.jmbbm.2022.105334_bib58) 2008; 42
Bruno (10.1016/j.jmbbm.2022.105334_bib7) 2017; 32
Roux (10.1016/j.jmbbm.2022.105334_bib61) 2010; 25
Van der Klift (10.1016/j.jmbbm.2022.105334_bib66) 2002; 17
Kefalas (10.1016/j.jmbbm.2022.105334_bib44) 2012; 6
Wen (10.1016/j.jmbbm.2022.105334_bib71) 2016; 60
Ortoft (10.1016/j.jmbbm.2022.105334_bib57) 1993; 14
Tassani (10.1016/j.jmbbm.2022.105334_bib64) 2014; 256
Crawford (10.1016/j.jmbbm.2022.105334_bib17) 2003; 33
Fields (10.1016/j.jmbbm.2022.105334_bib24) 2009; 24
Wu (10.1016/j.jmbbm.2022.105334_bib73) 2021; 4
Grigoryan (10.1016/j.jmbbm.2022.105334_bib30) 2003; 12
Krause (10.1016/j.jmbbm.2022.105334_bib46) 2014; 28
Wasnich (10.1016/j.jmbbm.2022.105334_bib68) 1996; 18
Currey (10.1016/j.jmbbm.2022.105334_bib18) 2003; 36
Reimann (10.1016/j.jmbbm.2022.105334_bib59) 1997; 48
Wegrzyn (10.1016/j.jmbbm.2022.105334_bib69) 2010; 25
References_xml – volume: 8
  start-page: 314
  year: 2005
  end-page: 319
  ident: bib5
  article-title: In vivo intrarater and interrater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual-energy x-ray absorptiometry
  publication-title: J. Clin. Densitom.
– volume: 256
  start-page: 75
  year: 2014
  end-page: 81
  ident: bib64
  article-title: Influence of segmentation on micro-CT images of trabecular bone
  publication-title: J. Microsc.
– volume: 5
  start-page: 46
  year: 1980
  end-page: 55
  ident: bib33
  article-title: The bone mineral content and ultimate compressive strength of lumbar vertebrae
  publication-title: Spine
– volume: 25
  start-page: 713
  year: 1999
  end-page: 724
  ident: bib21
  article-title: Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing
  publication-title: Bone
– volume: 21
  start-page: 1207
  year: 2006
  end-page: 1214
  ident: bib63
  article-title: Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study
  publication-title: J. Bone Miner. Res.
– volume: 39
  start-page: 1073
  year: 2006
  end-page: 1079
  ident: bib67
  article-title: Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae
  publication-title: Bone
– volume: 26
  start-page: 237
  year: 2015
  end-page: 244
  ident: bib49
  article-title: The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women's thoracic vertebral body
  publication-title: Osteoporos. Int.
– volume: 136
  year: 2014
  ident: bib35
  article-title: Experimental validation of finite element analysis of human vertebral collapse under large compressive strains
  publication-title: J. Biomech. Eng.
– volume: 17
  start-page: 264
  year: 1988
  end-page: 269
  ident: bib3
  article-title: Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography
  publication-title: Skeletal Radiol.
– volume: 1
  start-page: 105
  year: 2008
  end-page: 121
  ident: bib47
  article-title: Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis
  publication-title: J. Multidiscip. Healthc.
– volume: 47
  start-page: 783
  year: 2010
  end-page: 789
  ident: bib54
  article-title: Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies
  publication-title: Bone
– volume: 81
  start-page: 300
  year: 2015
  end-page: 305
  ident: bib56
  article-title: Digital tomosynthesis and high resolution computed tomography as clinical tools for vertebral endplate topography measurements: comparison with microcomputed tomography
  publication-title: Bone
– volume: 36
  start-page: 1487
  year: 2003
  end-page: 1495
  ident: bib18
  article-title: The many adaptations of bone
  publication-title: J. Biomech.
– volume: 25
  start-page: 2324
  year: 2010
  end-page: 2331
  ident: bib69
  article-title: Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae
  publication-title: J. Bone Miner. Res.
– volume: 9
  start-page: 206
  year: 1999
  end-page: 213
  ident: bib39
  article-title: Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group
  publication-title: Osteoporos. Int.
– volume: 26
  start-page: 739
  year: 2011
  end-page: 746
  ident: bib70
  article-title: Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture
  publication-title: J. Bone Miner. Res.
– volume: 24
  start-page: 3021
  year: 2013
  end-page: 3030
  ident: bib38
  article-title: The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength
  publication-title: Osteoporos. Int.
– volume: 22
  start-page: 1690
  year: 2007
  end-page: 1699
  ident: bib1
  article-title: Influence of orthogonal overload on human vertebral trabecular bone mechanical properties
  publication-title: J. Bone Miner. Res.
– volume: 41
  start-page: 505
  year: 2007
  end-page: 515
  ident: bib10
  article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis
  publication-title: Bone
– volume: 26
  start-page: 889
  year: 2001
  end-page: 896
  ident: bib29
  article-title: Mapping the structural properties of the lumbosacral vertebral endplates
  publication-title: Spine
– volume: 32
  start-page: 880
  year: 2014
  end-page: 886
  ident: bib41
  article-title: Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone
  publication-title: J. Orthop. Res.
– volume: 34
  start-page: 1389
  year: 2016
  end-page: 1398
  ident: bib53
  article-title: Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics
  publication-title: J. Orthop. Res.
– volume: 32
  start-page: 323
  year: 1999
  end-page: 326
  ident: bib19
  article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning
  publication-title: J. Biomech.
– volume: 44
  start-page: 924
  year: 2009
  end-page: 929
  ident: bib26
  article-title: Density and architecture have greater effects on the toughness of trabecular bone than damage
  publication-title: Bone
– volume: 31
  start-page: 777
  year: 2016
  end-page: 788
  ident: bib42
  article-title: Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion
  publication-title: J. Bone Miner. Res.
– volume: 43
  start-page: 189
  year: 2002
  end-page: 205
  ident: bib60
  article-title: The angular distribution of vertebral trabeculae in modern humans, chimpanzees and the Kebara 2 Neanderthal
  publication-title: J. Hum. Evol.
– volume: 22
  start-page: 465
  year: 2007
  end-page: 475
  ident: bib11
  article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025
  publication-title: J. Bone Miner. Res.
– volume: 18
  start-page: 685
  year: 2000
  end-page: 690
  ident: bib45
  article-title: Biomechanical consequences of an isolated overload on the human vertebral body
  publication-title: J. Orthop. Res.
– volume: 38
  start-page: E1320
  year: 2013
  end-page: E1326
  ident: bib31
  article-title: Radiographical texture analysis improves the prediction of vertebral fracture: an ex vivo biomechanical study
  publication-title: Spine
– volume: 132
  year: 2010
  ident: bib15
  article-title: The role of fabric in the large strain compressive behavior of human trabecular bone
  publication-title: J. Biomech. Eng.
– volume: 13
  start-page: 1678
  year: 2007
  end-page: 1679
  ident: bib20
  article-title: Computing local thickness of 3D structures with ImageJ
  publication-title: Microsc. Microanal.
– volume: 33
  start-page: 744
  year: 2003
  end-page: 750
  ident: bib17
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
– start-page: 111
  year: 2010
  end-page: 114
  ident: bib50
  article-title: Thresholding of Micro-CT images for morphological analysis of trabecular bone specimens
  publication-title: Computational Vision and Medical Image Processing
– volume: 12
  start-page: S104
  year: 2003
  end-page: S112
  ident: bib30
  article-title: Recognizing and reporting osteoporotic vertebral fractures
  publication-title: Eur. Spine J.
– volume: 10
  start-page: 537
  year: 1976
  end-page: 544
  ident: bib34
  article-title: Postyield behavior of subchondral trabecular bone
  publication-title: J. Biomed. Mater. Res.
– volume: 274
  start-page: 532
  year: 2015
  end-page: 539
  ident: bib52
  article-title: High-spatial-resolution bone densitometry with dual-energy X-ray absorptiometric region-free analysis
  publication-title: Radiology
– volume: 42
  start-page: 775
  year: 2008
  end-page: 787
  ident: bib58
  article-title: Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture
  publication-title: Bone
– volume: 16
  start-page: 146
  year: 1991
  end-page: 154
  ident: bib16
  article-title: Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load
  publication-title: Spine
– volume: 41
  start-page: 946
  year: 2007
  end-page: 957
  ident: bib37
  article-title: Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength
  publication-title: Bone
– year: 1997
  ident: bib27
  article-title: Cellular Solids: Structure and Properties
– volume: 32
  start-page: 1019
  year: 2007
  end-page: 1027
  ident: bib8
  article-title: Quantitative computed tomography-based predictions of vertebral strength in anterior bending
  publication-title: Spine
– volume: 15
  start-page: 93
  year: 2012
  end-page: 102
  ident: bib36
  article-title: Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 8
  start-page: 851
  year: 1983
  end-page: 856
  ident: bib6
  article-title: Deformation of the vertebral end-plate under axial loading of the spine
  publication-title: Spine
– volume: 17
  start-page: 1051
  year: 2002
  end-page: 1056
  ident: bib66
  article-title: The incidence of vertebral fractures in men and women: the Rotterdam Study
  publication-title: J. Bone Miner. Res.
– volume: 18
  start-page: 179S
  year: 1996
  end-page: 183S
  ident: bib68
  article-title: Vertebral fracture epidemiology
  publication-title: Bone
– volume: 32
  start-page: 1282
  year: 2017
  end-page: 1290
  ident: bib7
  article-title: Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region
  publication-title: J. Bone Miner. Res.
– volume: 3
  start-page: 11
  year: 1988
  end-page: 18
  ident: bib76
  article-title: Functional biomechanics of the thoracolumbar vertebral cortex
  publication-title: Clin. Biomech.
– volume: 70
  start-page: 88
  year: 2018
  end-page: 95
  ident: bib13
  article-title: Segmental variations in facet joint translations during in vivo lumbar extension
  publication-title: J. Biomech.
– volume: 17
  start-page: 716
  year: 2002
  end-page: 724
  ident: bib23
  article-title: Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS)
  publication-title: J. Bone Miner. Res.
– volume: 48
  start-page: 1433
  year: 1997
  end-page: 1436
  ident: bib59
  article-title: A cone beam computed tomography system for true 3D imaging of specimens
  publication-title: Appl. Radiat. Isot.
– volume: 25
  start-page: 356
  year: 2010
  end-page: 361
  ident: bib61
  article-title: Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study
  publication-title: J. Bone Miner. Res.
– year: 1998
  ident: bib32
  article-title: Multivariate Data Analysis
– volume: 6
  start-page: 41
  year: 2012
  end-page: 52
  ident: bib44
  article-title: Experimental study of cancellous bone under large strains and a constitutive probabilistic model
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 15
  start-page: 251
  year: 1994
  end-page: 259
  ident: bib77
  article-title: Multiplanar variations in the structural characteristics of cancellous bone
  publication-title: Bone
– volume: 44
  start-page: 243
  year: 1989
  end-page: 250
  ident: bib22
  article-title: Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography
  publication-title: Calcif. Tissue Int.
– volume: 32
  start-page: 56
  year: 2014
  end-page: 64
  ident: bib2
  article-title: Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength?
  publication-title: J. Bone Miner. Metabol.
– volume: 65
  start-page: 213
  year: 2017
  end-page: 223
  ident: bib48
  article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 56
  start-page: 206
  year: 1995
  end-page: 209
  ident: bib51
  article-title: Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA
  publication-title: Calcif. Tissue Int.
– volume: 42
  start-page: 591
  year: 2008
  end-page: 596
  ident: bib74
  article-title: Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture
  publication-title: Bone
– volume: 4
  year: 2021
  ident: bib73
  article-title: Structure-function relationships of the human vertebral endplate
  publication-title: JOR Spine
– volume: 10
  start-page: 353
  year: 1999
  end-page: 360
  ident: bib14
  article-title: High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics
  publication-title: Osteoporos. Int.
– volume: 15
  start-page: 105
  year: 1994
  end-page: 109
  ident: bib25
  article-title: Failure mechanisms in human vertebral cancellous bone
  publication-title: Bone
– volume: 27
  start-page: 375
  year: 1994
  end-page: 389
  ident: bib28
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J. Biomech.
– volume: 34
  start-page: 2858
  year: 2009
  end-page: 2864
  ident: bib12
  article-title: Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments
  publication-title: Spine
– volume: 60
  start-page: 468
  year: 2016
  end-page: 475
  ident: bib71
  article-title: Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 113
  start-page: 2892
  year: 2016
  end-page: 2897
  ident: bib65
  article-title: Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  start-page: 222
  year: 2012
  end-page: 231
  ident: bib4
  article-title: Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography
  publication-title: J. Bone Miner. Metabol.
– volume: 35
  start-page: 3170
  year: 2008
  end-page: 3179
  ident: bib43
  article-title: Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements
  publication-title: Med. Phys.
– volume: 14
  start-page: 667
  year: 1993
  end-page: 673
  ident: bib57
  article-title: Estimation of vertebral body strength by dual photon absorptiometry in elderly individuals: comparison between measurements of total vertebral and vertebral body bone mineral
  publication-title: Bone
– volume: 24
  start-page: 1628
  year: 2009
  end-page: 1637
  ident: bib40
  article-title: Trabecular bone structure analysis in the osteoporotic spine using a clinical in vivo setup for 64-slice MDCT imaging: comparison to microCT imaging and microFE modeling
  publication-title: J. Bone Miner. Res.
– volume: 131
  year: 2009
  ident: bib75
  article-title: Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae
  publication-title: J. Biomech. Eng.
– volume: 46
  start-page: 4553
  year: 2019
  end-page: 4562
  ident: bib55
  article-title: Digital tomosynthesis based digital volume correlation: a clinically viable noninvasive method for direct measurement of intravertebral displacements using images of the human spine under physiological load
  publication-title: Med. Phys.
– volume: 24
  start-page: 1523
  year: 2009
  end-page: 1530
  ident: bib24
  article-title: Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior
  publication-title: J. Bone Miner. Res.
– volume: 26
  start-page: E403
  year: 2001
  end-page: E409
  ident: bib72
  article-title: Lumbar spine mechanical response to axial compression load in vivo
  publication-title: Spine
– volume: 40
  start-page: 767
  year: 2007
  end-page: 774
  ident: bib9
  article-title: Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength
  publication-title: Bone
– volume: 24
  start-page: 2455
  year: 2013
  end-page: 2460
  ident: bib62
  article-title: The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study
  publication-title: Osteoporos. Int.
– volume: 28
  start-page: 152
  year: 2014
  end-page: 163
  ident: bib46
  article-title: Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae
  publication-title: Eur. Cell. Mater.
– volume: 42
  start-page: 591
  year: 2008
  ident: 10.1016/j.jmbbm.2022.105334_bib74
  article-title: Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture
  publication-title: Bone
  doi: 10.1016/j.bone.2007.11.011
– volume: 81
  start-page: 300
  year: 2015
  ident: 10.1016/j.jmbbm.2022.105334_bib56
  article-title: Digital tomosynthesis and high resolution computed tomography as clinical tools for vertebral endplate topography measurements: comparison with microcomputed tomography
  publication-title: Bone
  doi: 10.1016/j.bone.2015.07.033
– volume: 36
  start-page: 1487
  year: 2003
  ident: 10.1016/j.jmbbm.2022.105334_bib18
  article-title: The many adaptations of bone
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00124-6
– volume: 9
  start-page: 206
  year: 1999
  ident: 10.1016/j.jmbbm.2022.105334_bib39
  article-title: Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050138
– volume: 32
  start-page: 56
  year: 2014
  ident: 10.1016/j.jmbbm.2022.105334_bib2
  article-title: Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength?
  publication-title: J. Bone Miner. Metabol.
  doi: 10.1007/s00774-013-0465-6
– volume: 27
  start-page: 375
  year: 1994
  ident: 10.1016/j.jmbbm.2022.105334_bib28
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90014-0
– volume: 32
  start-page: 1282
  year: 2017
  ident: 10.1016/j.jmbbm.2022.105334_bib7
  article-title: Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.3113
– volume: 10
  start-page: 353
  year: 1999
  ident: 10.1016/j.jmbbm.2022.105334_bib14
  article-title: High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050240
– volume: 24
  start-page: 1628
  year: 2009
  ident: 10.1016/j.jmbbm.2022.105334_bib40
  article-title: Trabecular bone structure analysis in the osteoporotic spine using a clinical in vivo setup for 64-slice MDCT imaging: comparison to microCT imaging and microFE modeling
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.090311
– volume: 32
  start-page: 1019
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib8
  article-title: Quantitative computed tomography-based predictions of vertebral strength in anterior bending
  publication-title: Spine
  doi: 10.1097/01.brs.0000260979.98101.9c
– volume: 44
  start-page: 924
  year: 2009
  ident: 10.1016/j.jmbbm.2022.105334_bib26
  article-title: Density and architecture have greater effects on the toughness of trabecular bone than damage
  publication-title: Bone
  doi: 10.1016/j.bone.2008.12.030
– volume: 5
  start-page: 46
  year: 1980
  ident: 10.1016/j.jmbbm.2022.105334_bib33
  article-title: The bone mineral content and ultimate compressive strength of lumbar vertebrae
  publication-title: Spine
  doi: 10.1097/00007632-198001000-00009
– volume: 47
  start-page: 783
  year: 2010
  ident: 10.1016/j.jmbbm.2022.105334_bib54
  article-title: Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies
  publication-title: Bone
  doi: 10.1016/j.bone.2010.07.001
– volume: 12
  start-page: S104
  issue: Suppl. 2
  year: 2003
  ident: 10.1016/j.jmbbm.2022.105334_bib30
  article-title: Recognizing and reporting osteoporotic vertebral fractures
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-003-0613-0
– volume: 136
  year: 2014
  ident: 10.1016/j.jmbbm.2022.105334_bib35
  article-title: Experimental validation of finite element analysis of human vertebral collapse under large compressive strains
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4026409
– volume: 22
  start-page: 1690
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib1
  article-title: Influence of orthogonal overload on human vertebral trabecular bone mechanical properties
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.070706
– volume: 22
  start-page: 465
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib11
  article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.061113
– volume: 31
  start-page: 777
  year: 2016
  ident: 10.1016/j.jmbbm.2022.105334_bib42
  article-title: Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2749
– volume: 30
  start-page: 222
  year: 2012
  ident: 10.1016/j.jmbbm.2022.105334_bib4
  article-title: Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography
  publication-title: J. Bone Miner. Metabol.
  doi: 10.1007/s00774-011-0307-3
– volume: 32
  start-page: 323
  year: 1999
  ident: 10.1016/j.jmbbm.2022.105334_bib19
  article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00176-6
– year: 1997
  ident: 10.1016/j.jmbbm.2022.105334_bib27
– volume: 18
  start-page: 685
  year: 2000
  ident: 10.1016/j.jmbbm.2022.105334_bib45
  article-title: Biomechanical consequences of an isolated overload on the human vertebral body
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100180502
– volume: 70
  start-page: 88
  year: 2018
  ident: 10.1016/j.jmbbm.2022.105334_bib13
  article-title: Segmental variations in facet joint translations during in vivo lumbar extension
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.09.026
– volume: 60
  start-page: 468
  year: 2016
  ident: 10.1016/j.jmbbm.2022.105334_bib71
  article-title: Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.03.004
– volume: 15
  start-page: 251
  year: 1994
  ident: 10.1016/j.jmbbm.2022.105334_bib77
  article-title: Multiplanar variations in the structural characteristics of cancellous bone
  publication-title: Bone
  doi: 10.1016/8756-3282(94)90286-0
– volume: 274
  start-page: 532
  year: 2015
  ident: 10.1016/j.jmbbm.2022.105334_bib52
  article-title: High-spatial-resolution bone densitometry with dual-energy X-ray absorptiometric region-free analysis
  publication-title: Radiology
  doi: 10.1148/radiol.14140636
– volume: 13
  start-page: 1678
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib20
  article-title: Computing local thickness of 3D structures with ImageJ
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927607074430
– volume: 24
  start-page: 1523
  year: 2009
  ident: 10.1016/j.jmbbm.2022.105334_bib24
  article-title: Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.090317
– volume: 15
  start-page: 93
  year: 2012
  ident: 10.1016/j.jmbbm.2022.105334_bib36
  article-title: Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.06.005
– volume: 41
  start-page: 946
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib37
  article-title: Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength
  publication-title: Bone
  doi: 10.1016/j.bone.2007.08.019
– volume: 40
  start-page: 767
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib9
  article-title: Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength
  publication-title: Bone
  doi: 10.1016/j.bone.2006.10.025
– volume: 132
  year: 2010
  ident: 10.1016/j.jmbbm.2022.105334_bib15
  article-title: The role of fabric in the large strain compressive behavior of human trabecular bone
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4001361
– volume: 21
  start-page: 1207
  year: 2006
  ident: 10.1016/j.jmbbm.2022.105334_bib63
  article-title: Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.060513
– volume: 28
  start-page: 152
  year: 2014
  ident: 10.1016/j.jmbbm.2022.105334_bib46
  article-title: Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae
  publication-title: Eur. Cell. Mater.
  doi: 10.22203/eCM.v028a12
– volume: 48
  start-page: 1433
  year: 1997
  ident: 10.1016/j.jmbbm.2022.105334_bib59
  article-title: A cone beam computed tomography system for true 3D imaging of specimens
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/S0969-8043(97)00139-5
– volume: 24
  start-page: 3021
  year: 2013
  ident: 10.1016/j.jmbbm.2022.105334_bib38
  article-title: The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-013-2417-3
– volume: 17
  start-page: 264
  year: 1988
  ident: 10.1016/j.jmbbm.2022.105334_bib3
  article-title: Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography
  publication-title: Skeletal Radiol.
  doi: 10.1007/BF00401809
– volume: 6
  start-page: 41
  year: 2012
  ident: 10.1016/j.jmbbm.2022.105334_bib44
  article-title: Experimental study of cancellous bone under large strains and a constitutive probabilistic model
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.10.006
– volume: 34
  start-page: 2858
  year: 2009
  ident: 10.1016/j.jmbbm.2022.105334_bib12
  article-title: Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181b4c75d
– volume: 25
  start-page: 356
  year: 2010
  ident: 10.1016/j.jmbbm.2022.105334_bib61
  article-title: Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.090803
– year: 1998
  ident: 10.1016/j.jmbbm.2022.105334_bib32
– volume: 25
  start-page: 2324
  year: 2010
  ident: 10.1016/j.jmbbm.2022.105334_bib69
  article-title: Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.164
– volume: 38
  start-page: E1320
  year: 2013
  ident: 10.1016/j.jmbbm.2022.105334_bib31
  article-title: Radiographical texture analysis improves the prediction of vertebral fracture: an ex vivo biomechanical study
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3182a28fa9
– volume: 56
  start-page: 206
  year: 1995
  ident: 10.1016/j.jmbbm.2022.105334_bib51
  article-title: Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF00298611
– volume: 35
  start-page: 3170
  year: 2008
  ident: 10.1016/j.jmbbm.2022.105334_bib43
  article-title: Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements
  publication-title: Med. Phys.
  doi: 10.1118/1.2924210
– volume: 18
  start-page: 179S
  year: 1996
  ident: 10.1016/j.jmbbm.2022.105334_bib68
  article-title: Vertebral fracture epidemiology
  publication-title: Bone
  doi: 10.1016/8756-3282(95)00499-8
– volume: 65
  start-page: 213
  year: 2017
  ident: 10.1016/j.jmbbm.2022.105334_bib48
  article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.08.028
– volume: 8
  start-page: 851
  year: 1983
  ident: 10.1016/j.jmbbm.2022.105334_bib6
  article-title: Deformation of the vertebral end-plate under axial loading of the spine
  publication-title: Spine
  doi: 10.1097/00007632-198311000-00007
– volume: 10
  start-page: 537
  year: 1976
  ident: 10.1016/j.jmbbm.2022.105334_bib34
  article-title: Postyield behavior of subchondral trabecular bone
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820100409
– volume: 17
  start-page: 716
  year: 2002
  ident: 10.1016/j.jmbbm.2022.105334_bib23
  article-title: Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS)
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.4.716
– volume: 26
  start-page: 889
  year: 2001
  ident: 10.1016/j.jmbbm.2022.105334_bib29
  article-title: Mapping the structural properties of the lumbosacral vertebral endplates
  publication-title: Spine
  doi: 10.1097/00007632-200104150-00012
– volume: 1
  start-page: 105
  year: 2008
  ident: 10.1016/j.jmbbm.2022.105334_bib47
  article-title: Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis
  publication-title: J. Multidiscip. Healthc.
  doi: 10.2147/JMDH.S4103
– volume: 131
  year: 2009
  ident: 10.1016/j.jmbbm.2022.105334_bib75
  article-title: Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3148473
– volume: 16
  start-page: 146
  year: 1991
  ident: 10.1016/j.jmbbm.2022.105334_bib16
  article-title: Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load
  publication-title: Spine
  doi: 10.1097/00007632-199116020-00009
– volume: 17
  start-page: 1051
  year: 2002
  ident: 10.1016/j.jmbbm.2022.105334_bib66
  article-title: The incidence of vertebral fractures in men and women: the Rotterdam Study
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.6.1051
– volume: 44
  start-page: 243
  year: 1989
  ident: 10.1016/j.jmbbm.2022.105334_bib22
  article-title: Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF02553758
– volume: 8
  start-page: 314
  year: 2005
  ident: 10.1016/j.jmbbm.2022.105334_bib5
  article-title: In vivo intrarater and interrater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual-energy x-ray absorptiometry
  publication-title: J. Clin. Densitom.
  doi: 10.1385/JCD:8:3:314
– volume: 26
  start-page: E403
  year: 2001
  ident: 10.1016/j.jmbbm.2022.105334_bib72
  article-title: Lumbar spine mechanical response to axial compression load in vivo
  publication-title: Spine
  doi: 10.1097/00007632-200109150-00004
– volume: 34
  start-page: 1389
  year: 2016
  ident: 10.1016/j.jmbbm.2022.105334_bib53
  article-title: Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23232
– volume: 113
  start-page: 2892
  year: 2016
  ident: 10.1016/j.jmbbm.2022.105334_bib65
  article-title: Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1520539113
– volume: 39
  start-page: 1073
  year: 2006
  ident: 10.1016/j.jmbbm.2022.105334_bib67
  article-title: Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae
  publication-title: Bone
  doi: 10.1016/j.bone.2006.05.013
– volume: 25
  start-page: 713
  year: 1999
  ident: 10.1016/j.jmbbm.2022.105334_bib21
  article-title: Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing
  publication-title: Bone
  doi: 10.1016/S8756-3282(99)00216-1
– volume: 42
  start-page: 775
  year: 2008
  ident: 10.1016/j.jmbbm.2022.105334_bib58
  article-title: Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture
  publication-title: Bone
  doi: 10.1016/j.bone.2007.11.018
– start-page: 111
  year: 2010
  ident: 10.1016/j.jmbbm.2022.105334_bib50
  article-title: Thresholding of Micro-CT images for morphological analysis of trabecular bone specimens
– volume: 43
  start-page: 189
  year: 2002
  ident: 10.1016/j.jmbbm.2022.105334_bib60
  article-title: The angular distribution of vertebral trabeculae in modern humans, chimpanzees and the Kebara 2 Neanderthal
  publication-title: J. Hum. Evol.
  doi: 10.1006/jhev.2002.0568
– volume: 24
  start-page: 2455
  year: 2013
  ident: 10.1016/j.jmbbm.2022.105334_bib62
  article-title: The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-013-2316-7
– volume: 32
  start-page: 880
  year: 2014
  ident: 10.1016/j.jmbbm.2022.105334_bib41
  article-title: Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22620
– volume: 26
  start-page: 739
  year: 2011
  ident: 10.1016/j.jmbbm.2022.105334_bib70
  article-title: Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.264
– volume: 256
  start-page: 75
  year: 2014
  ident: 10.1016/j.jmbbm.2022.105334_bib64
  article-title: Influence of segmentation on micro-CT images of trabecular bone
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12159
– volume: 46
  start-page: 4553
  year: 2019
  ident: 10.1016/j.jmbbm.2022.105334_bib55
  article-title: Digital tomosynthesis based digital volume correlation: a clinically viable noninvasive method for direct measurement of intravertebral displacements using images of the human spine under physiological load
  publication-title: Med. Phys.
  doi: 10.1002/mp.13750
– volume: 4
  year: 2021
  ident: 10.1016/j.jmbbm.2022.105334_bib73
  article-title: Structure-function relationships of the human vertebral endplate
  publication-title: JOR Spine
  doi: 10.1002/jsp2.1170
– volume: 15
  start-page: 105
  year: 1994
  ident: 10.1016/j.jmbbm.2022.105334_bib25
  article-title: Failure mechanisms in human vertebral cancellous bone
  publication-title: Bone
  doi: 10.1016/8756-3282(94)90900-8
– volume: 3
  start-page: 11
  year: 1988
  ident: 10.1016/j.jmbbm.2022.105334_bib76
  article-title: Functional biomechanics of the thoracolumbar vertebral cortex
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(88)90119-2
– volume: 26
  start-page: 237
  year: 2015
  ident: 10.1016/j.jmbbm.2022.105334_bib49
  article-title: The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women's thoracic vertebral body
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-014-2846-7
– volume: 41
  start-page: 505
  year: 2007
  ident: 10.1016/j.jmbbm.2022.105334_bib10
  article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis
  publication-title: Bone
  doi: 10.1016/j.bone.2007.07.007
– volume: 14
  start-page: 667
  year: 1993
  ident: 10.1016/j.jmbbm.2022.105334_bib57
  article-title: Estimation of vertebral body strength by dual photon absorptiometry in elderly individuals: comparison between measurements of total vertebral and vertebral body bone mineral
  publication-title: Bone
  doi: 10.1016/8756-3282(93)90090-W
– volume: 33
  start-page: 744
  year: 2003
  ident: 10.1016/j.jmbbm.2022.105334_bib17
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00210-2
SSID ssj0060088
Score 2.3431587
Snippet Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105334
SubjectTerms Cancellous microstructure
Cortical shell
Density
Post-failure properties
Uniaxial compression
Vertebral body
Title Uniaxial compressive properties of human lumbar 1 vertebrae loaded beyond compaction and their relationship to cortical and cancellous microstructure, size and density properties
URI https://dx.doi.org/10.1016/j.jmbbm.2022.105334
https://www.proquest.com/docview/2686055768
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuETxa17Zptjkui8uq6EUFbyGv4sq6LbWKevBH-QudSVtRQQ8eU6YlZKYzk-SbbwjZz5KMhUYngWWCBSxEEICJ46DHGU-dYsIeYe3w-QUfXbPTm-RmhgzaWhiEVTa-v_bp3ls3T7rNanaL8bh7CYEP0hWI0IgzYBxptxnroZUfvn3CPCCe-96TKBygdMs85DFed_daYzl6FGG_2zhmv0WnH37aB5_hEllsskbarye2TGbcdIUsfOESXCXvkD2qZ7Amiihxj259crTAs_YSSVNpnlHfkI-CO9KqpCHFVsx4b-zoJFfWWap9OYv_QF3vQBUM_V0CLVvU3O24oFUOQqU_BvciBm1nMskfH-g9IvxqVtrH0h3Qh_Gr8zIWofLVy5cprZHr4fHVYBQ0DRkCUB-vgiTsGS4S2OExxzPBNLMZRPwoiZyAxMKBYiEDCVWEpOpILiasc3i32stSk5okXiez03zqNgjNRML4UZzaTMEGUTmhtDKpZSYVKtZhvEmiVhHSNGzl2DRjIltY2p302pOoPVlrb5McfL5U1GQdf4vzVsPym81JCCd_v7jX2oOEvxEXWE0drLGMeMqR1YynW__9-DaZx1GNY9shs6AwtwuJT6U73rI7ZK5_cja6-AAyWgXl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeEKUgXqWu1CPRksT2xkeEQEuBvRQkbpZfEYuWzSosFe3P6i_sjJNUgASHHpOMI8szmRnH33wD8K0UJU-dFYnniic8JRCAy_NkILksguHKH1Lt8OVIDq_59xtxswDHXS0MwSpb39_49Oit2zv9djX7s_G4_wMDH6YrGKEJZ8ClXIQlYqcSPVg6OjsfjjqHjCE9tp8k-YQGdORDEeZ1d28tVaRnGbW8zXP-VoB65apj_Dldg9U2cWRHzdw-wkKYrsOHZ3SCn-APJpDmCQ2KEVA8Alx_Bjaj3-018aayqmSxJx9Dj2RNzVJG3Zjp6DiwSWV88MzGipb4gqbkgRm8jMcJrO6Ac7fjGZtXKFTHP-FRxJH5TCbV4wO7J5BfQ0z7WIcD9jD-HaKMJ7T8_NezKW3A9enJ1fEwaXsyJKhBOU9EOnBSCdzk8SBLxS33JQb9TGRBYW4RULeYhKQmI1514hdTPgQ6Xh2UhSucyDehN62mYQtYqQSXh3nhS4N7RBOUscYVnrtCmdym-TZknSK0awnLqW_GRHfItDsdtadJe7rR3jYc_Bs0a_g63heXnYb1C7PTGFHeH_i1sweNHyQtsJkGXGOdyUISsZksdv735V9geXh1eaEvzkbnu7BCTxpY2x70UHnhM-ZBc7vf2vlfGoIIlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniaxial+compressive+properties+of+human+lumbar+1+vertebrae+loaded+beyond+compaction+and+their+relationship+to+cortical+and+cancellous+microstructure%2C+size+and+density+properties&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Yeni%2C+Yener+N.&rft.au=Dix%2C+Michael+R.&rft.au=Xiao%2C+Angela&rft.au=Oravec%2C+Daniel+J.&rft.date=2022-09-01&rft.issn=1751-6161&rft.volume=133&rft.spage=105334&rft_id=info:doi/10.1016%2Fj.jmbbm.2022.105334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2022_105334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon