Uniaxial compressive properties of human lumbar 1 vertebrae loaded beyond compaction and their relationship to cortical and cancellous microstructure, size and density properties
Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture ha...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 133; p. 105334 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra.
•Lumbar 1 is a common site of osteoporotic vertebral fracture.•We characterized the entire uniaxial compression behavior of human L1 vertebrae.•Compaction and recovery properties are distinct from those at yield and fracture.•Bone density is not a determinant of all structural mechanical properties.•Different microstructures contribute to force, displacement and work variables. |
---|---|
AbstractList | Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra.Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra. Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material determinants have been the subject of numerous studies. However, a comprehensive evaluation of properties beyond maximum load to fracture has not been available for the L1 vertebrae. The objective of this study was to document these properties in association with each other and with the geometric, density and cancellous and cortical structure properties for human L1 vertebrae. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), connectivity density (Conn.Dn), degree of anisotropy (DA), structure model index (SMI) and fractal dimension (FD) of the cancellous microstructure, tissue mineral density (TMD), and thickness of the cortical shell (Sh.Th) and superior and inferior endplates thicknesses (EP.Th.S and EP.Th.I) were measured using microcomputed tomography for 27 cadaveric L1 vertebrae. Volumetric cancellous, shell and integral bone mineral densities (vBMD, shBMD and iBMD) as well as vertebral volume (V), height and width were measured using high resolution CT. Areal whole vertebral body and regional BMDs were measured using dual energy x-ray absorptiometry (DXA) in coronal and lateral views. Specimens were then uniaxially compressed to 15% of their height to obtain vertebral stiffness (K) and strength (Fmax) as well as displacement (D), force (F) and energy (W) properties at characteristic points of the load-displacement curve including yield (y), fracture (f), compaction (c), final displacement (t) and residual after unload (r). Correlation and principal component analyses suggested displacements to failure (Df), collapse (Dc) and recovery (Dr) contain information distinct from strength and stiffness. Bone size (V) was present, independently, in multiple regression models of K, Fy, Wy, Fmax, Df, Wt, Wfc and Dr (p < 0.05 to p < 0.0001), areal BMD in models of Dy, Wy, Fmax, Wf, Fc, Wt, Wyf and Wct (p < 0.04 to p < 0.0001), Sh.Th in models of Df, Fc and εr (p < 0.02 to p < 0.002), EP.Th.S in models of Fc and Wct (p < 0.004 to p < 0.0006), EP.Th.I in the model of Wct (p < 0.02), FD in models of Fy, Dy and Fmax (p < 0.03 to p < 0.004), Tb.Sp in models of K and Dy (p < 0.002 to p < 0.0004), Conn.Dn in the model of Df (p < 0.0009), and SMI in the model of Wt (p < 0.02). R2adj varied from 0.12 (Dr) to 0.80 (Wt) for the multiple regression models for all significant variables. In conclusion, there is distinct information in forces and displacements associated with characteristic events occurring during uniaxial compression and recovery, specifically in displacements associated with compaction and recovery. Though there are common factors such as bone mass for some, distinct cancellous and cortical features likely contribute to these events in L1. The descriptive data reported here are expected to provide reference values for comparative and model building efforts, and the relationships found are expected to provide insight into mechanical functions of an L1 vertebra. •Lumbar 1 is a common site of osteoporotic vertebral fracture.•We characterized the entire uniaxial compression behavior of human L1 vertebrae.•Compaction and recovery properties are distinct from those at yield and fracture.•Bone density is not a determinant of all structural mechanical properties.•Different microstructures contribute to force, displacement and work variables. |
ArticleNumber | 105334 |
Author | Xiao, Angela Oravec, Daniel J. Dix, Michael R. Yeni, Yener N. |
Author_xml | – sequence: 1 givenname: Yener N. surname: Yeni fullname: Yeni, Yener N. email: yeni@bjc.hfh.edu – sequence: 2 givenname: Michael R. surname: Dix fullname: Dix, Michael R. – sequence: 3 givenname: Angela surname: Xiao fullname: Xiao, Angela – sequence: 4 givenname: Daniel J. surname: Oravec fullname: Oravec, Daniel J. |
BookMark | eNqFUT2P1DAQtdAhcXfwC2hcUpA924kdp6BAJz5OOomGqy3HnmhnlcTBdlYsP4tfiLNLgSigGnvmvTcf74ZczWEGQl5ztuOMq7vD7jD1_bQTTIiSkXXdPCPXXLe6Ylyzq_JuJa8UV_wFuUnpwJhiTOtr8vNpRvsd7UhdmJYIKeER6BLDAjEjJBoGul8nO9NxnXobKafHUoE-WqBjsB487eEUZn8WsC5jmKkt37wHjDTCaLdU2uNCcyigIutKuw3i7OxgHMOa6IQuhpTj6vIa4S1N-APOGA9zwnz6Y6SX5PlgxwSvfsdb8vTxw9f7z9Xjl08P9-8fK1fXKleSt051suNtA2romr7xQ625kAI63jHoPGPlKFYwyRvWCNF5gBKbdtBOO1nfkjcX3dL62wopmwnTNq-doYxshNKKSdkqXaDdBbotkSIMxmE-752jxdFwZjafzMGcfTKbT-biU-HWf3GXiJONp_-w3l1YUC5wRIgmOYRyTo8RXDY-4D_5vwBHFbOZ |
CitedBy_id | crossref_primary_10_1186_s12891_024_07297_1 crossref_primary_10_1016_j_ejrad_2025_111925 crossref_primary_10_1016_j_mtcomm_2024_109123 crossref_primary_10_3389_fbioe_2024_1305837 crossref_primary_10_2147_JPR_S393333 |
Cites_doi | 10.1016/j.bone.2007.11.011 10.1016/j.bone.2015.07.033 10.1016/S0021-9290(03)00124-6 10.1007/s001980050138 10.1007/s00774-013-0465-6 10.1016/0021-9290(94)90014-0 10.1002/jbmr.3113 10.1007/s001980050240 10.1359/jbmr.090311 10.1097/01.brs.0000260979.98101.9c 10.1016/j.bone.2008.12.030 10.1097/00007632-198001000-00009 10.1016/j.bone.2010.07.001 10.1007/s00586-003-0613-0 10.1115/1.4026409 10.1359/jbmr.070706 10.1359/jbmr.061113 10.1002/jbmr.2749 10.1007/s00774-011-0307-3 10.1016/S0021-9290(98)00176-6 10.1002/jor.1100180502 10.1016/j.jbiomech.2017.09.026 10.1016/j.jmbbm.2016.03.004 10.1016/8756-3282(94)90286-0 10.1148/radiol.14140636 10.1017/S1431927607074430 10.1359/jbmr.090317 10.1016/j.jmbbm.2012.06.005 10.1016/j.bone.2007.08.019 10.1016/j.bone.2006.10.025 10.1115/1.4001361 10.1359/jbmr.060513 10.22203/eCM.v028a12 10.1016/S0969-8043(97)00139-5 10.1007/s00198-013-2417-3 10.1007/BF00401809 10.1016/j.jmbbm.2011.10.006 10.1097/BRS.0b013e3181b4c75d 10.1359/jbmr.090803 10.1002/jbmr.164 10.1097/BRS.0b013e3182a28fa9 10.1007/BF00298611 10.1118/1.2924210 10.1016/8756-3282(95)00499-8 10.1016/j.jmbbm.2016.08.028 10.1097/00007632-198311000-00007 10.1002/jbm.820100409 10.1359/jbmr.2002.17.4.716 10.1097/00007632-200104150-00012 10.2147/JMDH.S4103 10.1115/1.3148473 10.1097/00007632-199116020-00009 10.1359/jbmr.2002.17.6.1051 10.1007/BF02553758 10.1385/JCD:8:3:314 10.1097/00007632-200109150-00004 10.1002/jor.23232 10.1073/pnas.1520539113 10.1016/j.bone.2006.05.013 10.1016/S8756-3282(99)00216-1 10.1016/j.bone.2007.11.018 10.1006/jhev.2002.0568 10.1007/s00198-013-2316-7 10.1002/jor.22620 10.1002/jbmr.264 10.1111/jmi.12159 10.1002/mp.13750 10.1002/jsp2.1170 10.1016/8756-3282(94)90900-8 10.1016/0268-0033(88)90119-2 10.1007/s00198-014-2846-7 10.1016/j.bone.2007.07.007 10.1016/8756-3282(93)90090-W 10.1016/S8756-3282(03)00210-2 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jmbbm.2022.105334 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
ExternalDocumentID | 10_1016_j_jmbbm_2022_105334 S1751616122002466 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 |
ID | FETCH-LOGICAL-c336t-517c6959174e6f94b4df381252e9190e9d00751a2051404229dee04247f8c8c53 |
IEDL.DBID | .~1 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Fri Jul 11 02:57:29 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 02:19:17 EDT 2025 Fri Feb 23 02:39:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vertebral body Uniaxial compression Cortical shell Cancellous microstructure Post-failure properties Density |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-517c6959174e6f94b4df381252e9190e9d00751a2051404229dee04247f8c8c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2686055768 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2686055768 crossref_citationtrail_10_1016_j_jmbbm_2022_105334 crossref_primary_10_1016_j_jmbbm_2022_105334 elsevier_sciencedirect_doi_10_1016_j_jmbbm_2022_105334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fields, Eswaran, Jekir, Keaveny (bib24) 2009; 24 Yoganandan, Mykiebust, Cusick, Wilson, Sances (bib76) 1988; 3 Hayes, Carter (bib34) 1976; 10 Kefalas, Eftaxiopoulos (bib44) 2012; 6 Torres, Matheny, Keaveny, Taylor, Rimnac, Hernandez (bib65) 2016; 113 Oravec, Quazi, Xiao, Yang, Zauel, Flynn, Yeni (bib56) 2015; 81 Baum, Grabeldinger, Rath, Garcia, Burgkart, Patsch, Rummeny, Link, Bauer (bib2) 2014; 32 Jackman, Hussein, Curtiss, Fein, Camp, De Barros, Morgan (bib42) 2016; 31 Yeni, Zelman, Divine, Kim, Fyhrie (bib74) 2008; 42 Wegrzyn, Roux, Arlot, Boutroy, Vilayphiou, Guyen, Delmas, Chapurlat, Bouxsein (bib70) 2011; 26 Hussein, Jackman, Morgan, Barest, Morgan (bib38) 2013; 24 Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib28) 1994; 27 Muriuki, Havey, Voronov, Carandang, Zindrick, Lorenz, Lomasney, Patwardhan (bib53) 2016; 34 Roux, Wegrzyn, Boutroy, Bouxsein, Hans, Chapurlat (bib62) 2013; 24 Garrison, Slaboch, Niebur (bib26) 2009; 44 Ortoft, Mosekilde, Hasling, Mosekilde (bib57) 1993; 14 Yerramshetty, Kim, Yeni (bib75) 2009; 131 Byrne, Zhou, Zheng, Chowdhury, Aiyangar, Zhang (bib13) 2018; 70 Issever, Link, Kentenich, Rogalla, Schwieger, Huber, Burghardt, Majumdar, Diederichs (bib40) 2009; 24 Crawford, Cann, Keaveny (bib17) 2003; 33 Samelson, Hannan, Zhang, Genant, Felson, Kiel (bib63) 2006; 21 Ding, Odgaard, Hvid (bib19) 1999; 32 Moro, Hecker, Bouxsein, Myers (bib51) 1995; 56 Roux, Wegrzyn, Arlot, Guyen, Delmas, Chapurlat, Bouxsein (bib61) 2010; 25 Guenoun, Le Corroller, Acid, Pithioux, Pauly, Ariey-Bonnet, Chabrand, Champsaur (bib31) 2013; 38 Reimann, Hames, Flynn, Fyhrie (bib59) 1997; 48 Grigoryan, Guermazi, Roemer, Delmas, Genant (bib30) 2003; 12 Kurutz, Donath, Galos, Varga, Fornet (bib47) 2008; 1 Biggemann, Hilweg, Brinckmann (bib3) 1988; 17 Bruno, Burkhart, Allaire, Anderson, Bouxsein (bib7) 2017; 32 Felsenberg, Silman, Lunt, Armbrecht, Ismail, Finn, Cockerill, Banzer, Benevolenskaya, Bhalla, Bruges Armas, Cannata, Cooper, Dequeker, Eastell, Felsch, Gowin, Havelka, Hoszowski, Jajic, Janott, Johnell, Kanis, Kragl, Lopes Vaz, Lorenc, Lyritis, Masaryk, Matthis, Miazgowski, Parisi, Pols, Poor, Raspe, Reid, Reisinger, Schedit-Nave, Stepan, Todd, Weber, Woolf, Yershova, Reeve, O'Neill (bib23) 2002; 17 Ismail, Cooper, Felsenberg, Varlow, Kanis, Silman, O'Neill (bib39) 1999; 9 Jackman, Hussein, Adams, Makhnejia, Morgan (bib41) 2014; 32 Lu, Krause, Bishop, Sellenschloh, Gluer, Puschel, Amling, Morlock, Huber (bib49) 2015; 26 Viguet-Carrin, Roux, Arlot, Merabet, Leeming, Byrjalsen, Delmas, Bouxsein (bib67) 2006; 39 Buckley, Loo, Motherway (bib9) 2007; 40 Badiei, Bottema, Fazzalari (bib1) 2007; 22 Currey (bib18) 2003; 36 Cody, Goldstein, Flynn, Brown (bib16) 1991; 16 Eriksson, Isberg, Lindgren (bib22) 1989; 44 Hair, Anderson, Tatham, Black (bib32) 1998 Hosseini, Pahr, Zysset (bib36) 2012; 15 Wen, Xu, Zong, Feng, Ma, Wang, Yan, Lei (bib71) 2016; 60 Charlebois, Pretterklieber, Zysset (bib15) 2010; 132 Busscher, van Dieen, Kingma, van der Veen, Verkerke, Veldhuizen (bib12) 2009; 34 Kazakia, Burghardt, Cheung, Majumdar (bib43) 2008; 35 Hansson, Roos, Nachemson (bib33) 1980; 5 Pothuaud, Carceller, Hans (bib58) 2008; 42 Robson Brown, Davies, McNally (bib60) 2002; 43 Krause, Soltau, Zimmermann, Hahn, Kornet, Hapfelmeier, Breer, Morlock, Wulff, Puschel, Glueer, Amling, Busse (bib46) 2014; 28 Dougherty, Kunzelmann (bib20) 2007; 13 Gibson, Ashby (bib27) 1997 Kopperdahl, Pearlman, Keaveny (bib45) 2000; 18 Fyhrie, Schaffler (bib25) 1994; 15 Tassani, Korfiatis, Matsopoulos (bib64) 2014; 256 Nekkanty, Yerramshetty, Kim, Zauel, Johnson, Cody, Yeni (bib54) 2010; 47 Wisleder, Smith, Mosher, Zatsiorsky (bib72) 2001; 26 Wasnich (bib68) 1996; 18 Burge, Dawson-Hughes, Solomon, Wong, King, Tosteson (bib11) 2007; 22 Wegrzyn, Roux, Arlot, Boutroy, Vilayphiou, Guyen, Delmas, Chapurlat, Bouxsein (bib69) 2010; 25 Marinozzi, Iacoviello, Marinozzi, Bini, Pepe, Angeloni, Bedini (bib50) 2010 Grant, Oxland, Dvorak (bib29) 2001; 26 Cendre, Mitton, Roux, Arlot, Duboeuf, Burt-Pichat, Rumelhart, Peix, Meunier (bib14) 1999; 10 Buie, Campbell, Klinck, MacNeil, Boyd (bib10) 2007; 41 Hulme, Boyd, Ferguson (bib37) 2007; 41 Morris, Yang, Martin-Fernandez, Pozo, Frangi, Wilkinson (bib52) 2015; 274 Oravec, Flynn, Zauel, Rao, Yeni (bib55) 2019; 46 Zhu, Keller, Moeljanto, Spengler (bib77) 1994; 15 Brinckmann, Frobin, Hierholzer, Horst (bib6) 1983; 8 Buckley, Cheng, Loo, Slyfield, Xu (bib8) 2007; 32 Ebbesen, Thomsen, Beck-Nielsen, Nepper-Rasmussen, Mosekilde (bib21) 1999; 25 Lee, Lee, Youn, Kim, Shin, Goh, Lee (bib48) 2017; 65 Hosseini, Clouthier, Zysset (bib35) 2014; 136 Briggs, Perilli, Parkinson, Kantor, Wrigley, Fazzalari, Wark (bib4) 2012; 30 Briggs, Wark, Kantor, Teh, Greig, Fazzalari, Bennell (bib5) 2005; 8 Wu, Loaiza, Banerji, Blouin, Morgan (bib73) 2021; 4 Van der Klift, De Laet, McCloskey, Hofman, Pols (bib66) 2002; 17 Jackman (10.1016/j.jmbbm.2022.105334_bib41) 2014; 32 Marinozzi (10.1016/j.jmbbm.2022.105334_bib50) 2010 Charlebois (10.1016/j.jmbbm.2022.105334_bib15) 2010; 132 Ding (10.1016/j.jmbbm.2022.105334_bib19) 1999; 32 Hosseini (10.1016/j.jmbbm.2022.105334_bib35) 2014; 136 Yoganandan (10.1016/j.jmbbm.2022.105334_bib76) 1988; 3 Hulme (10.1016/j.jmbbm.2022.105334_bib37) 2007; 41 Hosseini (10.1016/j.jmbbm.2022.105334_bib36) 2012; 15 Badiei (10.1016/j.jmbbm.2022.105334_bib1) 2007; 22 Yerramshetty (10.1016/j.jmbbm.2022.105334_bib75) 2009; 131 Grant (10.1016/j.jmbbm.2022.105334_bib29) 2001; 26 Busscher (10.1016/j.jmbbm.2022.105334_bib12) 2009; 34 Morris (10.1016/j.jmbbm.2022.105334_bib52) 2015; 274 Kazakia (10.1016/j.jmbbm.2022.105334_bib43) 2008; 35 Robson Brown (10.1016/j.jmbbm.2022.105334_bib60) 2002; 43 Garrison (10.1016/j.jmbbm.2022.105334_bib26) 2009; 44 Buie (10.1016/j.jmbbm.2022.105334_bib10) 2007; 41 Issever (10.1016/j.jmbbm.2022.105334_bib40) 2009; 24 Hansson (10.1016/j.jmbbm.2022.105334_bib33) 1980; 5 Nekkanty (10.1016/j.jmbbm.2022.105334_bib54) 2010; 47 Cody (10.1016/j.jmbbm.2022.105334_bib16) 1991; 16 Eriksson (10.1016/j.jmbbm.2022.105334_bib22) 1989; 44 Roux (10.1016/j.jmbbm.2022.105334_bib62) 2013; 24 Dougherty (10.1016/j.jmbbm.2022.105334_bib20) 2007; 13 Kurutz (10.1016/j.jmbbm.2022.105334_bib47) 2008; 1 Wisleder (10.1016/j.jmbbm.2022.105334_bib72) 2001; 26 Hussein (10.1016/j.jmbbm.2022.105334_bib38) 2013; 24 Goulet (10.1016/j.jmbbm.2022.105334_bib28) 1994; 27 Wegrzyn (10.1016/j.jmbbm.2022.105334_bib70) 2011; 26 Guenoun (10.1016/j.jmbbm.2022.105334_bib31) 2013; 38 Biggemann (10.1016/j.jmbbm.2022.105334_bib3) 1988; 17 Samelson (10.1016/j.jmbbm.2022.105334_bib63) 2006; 21 Hair (10.1016/j.jmbbm.2022.105334_bib32) 1998 Zhu (10.1016/j.jmbbm.2022.105334_bib77) 1994; 15 Oravec (10.1016/j.jmbbm.2022.105334_bib56) 2015; 81 Brinckmann (10.1016/j.jmbbm.2022.105334_bib6) 1983; 8 Ebbesen (10.1016/j.jmbbm.2022.105334_bib21) 1999; 25 Jackman (10.1016/j.jmbbm.2022.105334_bib42) 2016; 31 Burge (10.1016/j.jmbbm.2022.105334_bib11) 2007; 22 Byrne (10.1016/j.jmbbm.2022.105334_bib13) 2018; 70 Briggs (10.1016/j.jmbbm.2022.105334_bib4) 2012; 30 Ismail (10.1016/j.jmbbm.2022.105334_bib39) 1999; 9 Buckley (10.1016/j.jmbbm.2022.105334_bib9) 2007; 40 Moro (10.1016/j.jmbbm.2022.105334_bib51) 1995; 56 Fyhrie (10.1016/j.jmbbm.2022.105334_bib25) 1994; 15 Torres (10.1016/j.jmbbm.2022.105334_bib65) 2016; 113 Briggs (10.1016/j.jmbbm.2022.105334_bib5) 2005; 8 Lu (10.1016/j.jmbbm.2022.105334_bib49) 2015; 26 Felsenberg (10.1016/j.jmbbm.2022.105334_bib23) 2002; 17 Muriuki (10.1016/j.jmbbm.2022.105334_bib53) 2016; 34 Lee (10.1016/j.jmbbm.2022.105334_bib48) 2017; 65 Buckley (10.1016/j.jmbbm.2022.105334_bib8) 2007; 32 Viguet-Carrin (10.1016/j.jmbbm.2022.105334_bib67) 2006; 39 Hayes (10.1016/j.jmbbm.2022.105334_bib34) 1976; 10 Oravec (10.1016/j.jmbbm.2022.105334_bib55) 2019; 46 Yeni (10.1016/j.jmbbm.2022.105334_bib74) 2008; 42 Kopperdahl (10.1016/j.jmbbm.2022.105334_bib45) 2000; 18 Cendre (10.1016/j.jmbbm.2022.105334_bib14) 1999; 10 Baum (10.1016/j.jmbbm.2022.105334_bib2) 2014; 32 Gibson (10.1016/j.jmbbm.2022.105334_bib27) 1997 Pothuaud (10.1016/j.jmbbm.2022.105334_bib58) 2008; 42 Bruno (10.1016/j.jmbbm.2022.105334_bib7) 2017; 32 Roux (10.1016/j.jmbbm.2022.105334_bib61) 2010; 25 Van der Klift (10.1016/j.jmbbm.2022.105334_bib66) 2002; 17 Kefalas (10.1016/j.jmbbm.2022.105334_bib44) 2012; 6 Wen (10.1016/j.jmbbm.2022.105334_bib71) 2016; 60 Ortoft (10.1016/j.jmbbm.2022.105334_bib57) 1993; 14 Tassani (10.1016/j.jmbbm.2022.105334_bib64) 2014; 256 Crawford (10.1016/j.jmbbm.2022.105334_bib17) 2003; 33 Fields (10.1016/j.jmbbm.2022.105334_bib24) 2009; 24 Wu (10.1016/j.jmbbm.2022.105334_bib73) 2021; 4 Grigoryan (10.1016/j.jmbbm.2022.105334_bib30) 2003; 12 Krause (10.1016/j.jmbbm.2022.105334_bib46) 2014; 28 Wasnich (10.1016/j.jmbbm.2022.105334_bib68) 1996; 18 Currey (10.1016/j.jmbbm.2022.105334_bib18) 2003; 36 Reimann (10.1016/j.jmbbm.2022.105334_bib59) 1997; 48 Wegrzyn (10.1016/j.jmbbm.2022.105334_bib69) 2010; 25 |
References_xml | – volume: 8 start-page: 314 year: 2005 end-page: 319 ident: bib5 article-title: In vivo intrarater and interrater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual-energy x-ray absorptiometry publication-title: J. Clin. Densitom. – volume: 256 start-page: 75 year: 2014 end-page: 81 ident: bib64 article-title: Influence of segmentation on micro-CT images of trabecular bone publication-title: J. Microsc. – volume: 5 start-page: 46 year: 1980 end-page: 55 ident: bib33 article-title: The bone mineral content and ultimate compressive strength of lumbar vertebrae publication-title: Spine – volume: 25 start-page: 713 year: 1999 end-page: 724 ident: bib21 article-title: Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing publication-title: Bone – volume: 21 start-page: 1207 year: 2006 end-page: 1214 ident: bib63 article-title: Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study publication-title: J. Bone Miner. Res. – volume: 39 start-page: 1073 year: 2006 end-page: 1079 ident: bib67 article-title: Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae publication-title: Bone – volume: 26 start-page: 237 year: 2015 end-page: 244 ident: bib49 article-title: The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women's thoracic vertebral body publication-title: Osteoporos. Int. – volume: 136 year: 2014 ident: bib35 article-title: Experimental validation of finite element analysis of human vertebral collapse under large compressive strains publication-title: J. Biomech. Eng. – volume: 17 start-page: 264 year: 1988 end-page: 269 ident: bib3 article-title: Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography publication-title: Skeletal Radiol. – volume: 1 start-page: 105 year: 2008 end-page: 121 ident: bib47 article-title: Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis publication-title: J. Multidiscip. Healthc. – volume: 47 start-page: 783 year: 2010 end-page: 789 ident: bib54 article-title: Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies publication-title: Bone – volume: 81 start-page: 300 year: 2015 end-page: 305 ident: bib56 article-title: Digital tomosynthesis and high resolution computed tomography as clinical tools for vertebral endplate topography measurements: comparison with microcomputed tomography publication-title: Bone – volume: 36 start-page: 1487 year: 2003 end-page: 1495 ident: bib18 article-title: The many adaptations of bone publication-title: J. Biomech. – volume: 25 start-page: 2324 year: 2010 end-page: 2331 ident: bib69 article-title: Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae publication-title: J. Bone Miner. Res. – volume: 9 start-page: 206 year: 1999 end-page: 213 ident: bib39 article-title: Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group publication-title: Osteoporos. Int. – volume: 26 start-page: 739 year: 2011 end-page: 746 ident: bib70 article-title: Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture publication-title: J. Bone Miner. Res. – volume: 24 start-page: 3021 year: 2013 end-page: 3030 ident: bib38 article-title: The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength publication-title: Osteoporos. Int. – volume: 22 start-page: 1690 year: 2007 end-page: 1699 ident: bib1 article-title: Influence of orthogonal overload on human vertebral trabecular bone mechanical properties publication-title: J. Bone Miner. Res. – volume: 41 start-page: 505 year: 2007 end-page: 515 ident: bib10 article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis publication-title: Bone – volume: 26 start-page: 889 year: 2001 end-page: 896 ident: bib29 article-title: Mapping the structural properties of the lumbosacral vertebral endplates publication-title: Spine – volume: 32 start-page: 880 year: 2014 end-page: 886 ident: bib41 article-title: Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone publication-title: J. Orthop. Res. – volume: 34 start-page: 1389 year: 2016 end-page: 1398 ident: bib53 article-title: Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics publication-title: J. Orthop. Res. – volume: 32 start-page: 323 year: 1999 end-page: 326 ident: bib19 article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning publication-title: J. Biomech. – volume: 44 start-page: 924 year: 2009 end-page: 929 ident: bib26 article-title: Density and architecture have greater effects on the toughness of trabecular bone than damage publication-title: Bone – volume: 31 start-page: 777 year: 2016 end-page: 788 ident: bib42 article-title: Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion publication-title: J. Bone Miner. Res. – volume: 43 start-page: 189 year: 2002 end-page: 205 ident: bib60 article-title: The angular distribution of vertebral trabeculae in modern humans, chimpanzees and the Kebara 2 Neanderthal publication-title: J. Hum. Evol. – volume: 22 start-page: 465 year: 2007 end-page: 475 ident: bib11 article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 publication-title: J. Bone Miner. Res. – volume: 18 start-page: 685 year: 2000 end-page: 690 ident: bib45 article-title: Biomechanical consequences of an isolated overload on the human vertebral body publication-title: J. Orthop. Res. – volume: 38 start-page: E1320 year: 2013 end-page: E1326 ident: bib31 article-title: Radiographical texture analysis improves the prediction of vertebral fracture: an ex vivo biomechanical study publication-title: Spine – volume: 132 year: 2010 ident: bib15 article-title: The role of fabric in the large strain compressive behavior of human trabecular bone publication-title: J. Biomech. Eng. – volume: 13 start-page: 1678 year: 2007 end-page: 1679 ident: bib20 article-title: Computing local thickness of 3D structures with ImageJ publication-title: Microsc. Microanal. – volume: 33 start-page: 744 year: 2003 end-page: 750 ident: bib17 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone – start-page: 111 year: 2010 end-page: 114 ident: bib50 article-title: Thresholding of Micro-CT images for morphological analysis of trabecular bone specimens publication-title: Computational Vision and Medical Image Processing – volume: 12 start-page: S104 year: 2003 end-page: S112 ident: bib30 article-title: Recognizing and reporting osteoporotic vertebral fractures publication-title: Eur. Spine J. – volume: 10 start-page: 537 year: 1976 end-page: 544 ident: bib34 article-title: Postyield behavior of subchondral trabecular bone publication-title: J. Biomed. Mater. Res. – volume: 274 start-page: 532 year: 2015 end-page: 539 ident: bib52 article-title: High-spatial-resolution bone densitometry with dual-energy X-ray absorptiometric region-free analysis publication-title: Radiology – volume: 42 start-page: 775 year: 2008 end-page: 787 ident: bib58 article-title: Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture publication-title: Bone – volume: 16 start-page: 146 year: 1991 end-page: 154 ident: bib16 article-title: Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load publication-title: Spine – volume: 41 start-page: 946 year: 2007 end-page: 957 ident: bib37 article-title: Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength publication-title: Bone – year: 1997 ident: bib27 article-title: Cellular Solids: Structure and Properties – volume: 32 start-page: 1019 year: 2007 end-page: 1027 ident: bib8 article-title: Quantitative computed tomography-based predictions of vertebral strength in anterior bending publication-title: Spine – volume: 15 start-page: 93 year: 2012 end-page: 102 ident: bib36 article-title: Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains publication-title: J. Mech. Behav. Biomed. Mater. – volume: 8 start-page: 851 year: 1983 end-page: 856 ident: bib6 article-title: Deformation of the vertebral end-plate under axial loading of the spine publication-title: Spine – volume: 17 start-page: 1051 year: 2002 end-page: 1056 ident: bib66 article-title: The incidence of vertebral fractures in men and women: the Rotterdam Study publication-title: J. Bone Miner. Res. – volume: 18 start-page: 179S year: 1996 end-page: 183S ident: bib68 article-title: Vertebral fracture epidemiology publication-title: Bone – volume: 32 start-page: 1282 year: 2017 end-page: 1290 ident: bib7 article-title: Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region publication-title: J. Bone Miner. Res. – volume: 3 start-page: 11 year: 1988 end-page: 18 ident: bib76 article-title: Functional biomechanics of the thoracolumbar vertebral cortex publication-title: Clin. Biomech. – volume: 70 start-page: 88 year: 2018 end-page: 95 ident: bib13 article-title: Segmental variations in facet joint translations during in vivo lumbar extension publication-title: J. Biomech. – volume: 17 start-page: 716 year: 2002 end-page: 724 ident: bib23 article-title: Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS) publication-title: J. Bone Miner. Res. – volume: 48 start-page: 1433 year: 1997 end-page: 1436 ident: bib59 article-title: A cone beam computed tomography system for true 3D imaging of specimens publication-title: Appl. Radiat. Isot. – volume: 25 start-page: 356 year: 2010 end-page: 361 ident: bib61 article-title: Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study publication-title: J. Bone Miner. Res. – year: 1998 ident: bib32 article-title: Multivariate Data Analysis – volume: 6 start-page: 41 year: 2012 end-page: 52 ident: bib44 article-title: Experimental study of cancellous bone under large strains and a constitutive probabilistic model publication-title: J. Mech. Behav. Biomed. Mater. – volume: 15 start-page: 251 year: 1994 end-page: 259 ident: bib77 article-title: Multiplanar variations in the structural characteristics of cancellous bone publication-title: Bone – volume: 44 start-page: 243 year: 1989 end-page: 250 ident: bib22 article-title: Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography publication-title: Calcif. Tissue Int. – volume: 32 start-page: 56 year: 2014 end-page: 64 ident: bib2 article-title: Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? publication-title: J. Bone Miner. Metabol. – volume: 65 start-page: 213 year: 2017 end-page: 223 ident: bib48 article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression publication-title: J. Mech. Behav. Biomed. Mater. – volume: 56 start-page: 206 year: 1995 end-page: 209 ident: bib51 article-title: Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA publication-title: Calcif. Tissue Int. – volume: 42 start-page: 591 year: 2008 end-page: 596 ident: bib74 article-title: Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture publication-title: Bone – volume: 4 year: 2021 ident: bib73 article-title: Structure-function relationships of the human vertebral endplate publication-title: JOR Spine – volume: 10 start-page: 353 year: 1999 end-page: 360 ident: bib14 article-title: High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics publication-title: Osteoporos. Int. – volume: 15 start-page: 105 year: 1994 end-page: 109 ident: bib25 article-title: Failure mechanisms in human vertebral cancellous bone publication-title: Bone – volume: 27 start-page: 375 year: 1994 end-page: 389 ident: bib28 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J. Biomech. – volume: 34 start-page: 2858 year: 2009 end-page: 2864 ident: bib12 article-title: Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments publication-title: Spine – volume: 60 start-page: 468 year: 2016 end-page: 475 ident: bib71 article-title: Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis publication-title: J. Mech. Behav. Biomed. Mater. – volume: 113 start-page: 2892 year: 2016 end-page: 2897 ident: bib65 article-title: Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 30 start-page: 222 year: 2012 end-page: 231 ident: bib4 article-title: Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography publication-title: J. Bone Miner. Metabol. – volume: 35 start-page: 3170 year: 2008 end-page: 3179 ident: bib43 article-title: Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements publication-title: Med. Phys. – volume: 14 start-page: 667 year: 1993 end-page: 673 ident: bib57 article-title: Estimation of vertebral body strength by dual photon absorptiometry in elderly individuals: comparison between measurements of total vertebral and vertebral body bone mineral publication-title: Bone – volume: 24 start-page: 1628 year: 2009 end-page: 1637 ident: bib40 article-title: Trabecular bone structure analysis in the osteoporotic spine using a clinical in vivo setup for 64-slice MDCT imaging: comparison to microCT imaging and microFE modeling publication-title: J. Bone Miner. Res. – volume: 131 year: 2009 ident: bib75 article-title: Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae publication-title: J. Biomech. Eng. – volume: 46 start-page: 4553 year: 2019 end-page: 4562 ident: bib55 article-title: Digital tomosynthesis based digital volume correlation: a clinically viable noninvasive method for direct measurement of intravertebral displacements using images of the human spine under physiological load publication-title: Med. Phys. – volume: 24 start-page: 1523 year: 2009 end-page: 1530 ident: bib24 article-title: Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior publication-title: J. Bone Miner. Res. – volume: 26 start-page: E403 year: 2001 end-page: E409 ident: bib72 article-title: Lumbar spine mechanical response to axial compression load in vivo publication-title: Spine – volume: 40 start-page: 767 year: 2007 end-page: 774 ident: bib9 article-title: Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength publication-title: Bone – volume: 24 start-page: 2455 year: 2013 end-page: 2460 ident: bib62 article-title: The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study publication-title: Osteoporos. Int. – volume: 28 start-page: 152 year: 2014 end-page: 163 ident: bib46 article-title: Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae publication-title: Eur. Cell. Mater. – volume: 42 start-page: 591 year: 2008 ident: 10.1016/j.jmbbm.2022.105334_bib74 article-title: Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture publication-title: Bone doi: 10.1016/j.bone.2007.11.011 – volume: 81 start-page: 300 year: 2015 ident: 10.1016/j.jmbbm.2022.105334_bib56 article-title: Digital tomosynthesis and high resolution computed tomography as clinical tools for vertebral endplate topography measurements: comparison with microcomputed tomography publication-title: Bone doi: 10.1016/j.bone.2015.07.033 – volume: 36 start-page: 1487 year: 2003 ident: 10.1016/j.jmbbm.2022.105334_bib18 article-title: The many adaptations of bone publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00124-6 – volume: 9 start-page: 206 year: 1999 ident: 10.1016/j.jmbbm.2022.105334_bib39 article-title: Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group publication-title: Osteoporos. Int. doi: 10.1007/s001980050138 – volume: 32 start-page: 56 year: 2014 ident: 10.1016/j.jmbbm.2022.105334_bib2 article-title: Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? publication-title: J. Bone Miner. Metabol. doi: 10.1007/s00774-013-0465-6 – volume: 27 start-page: 375 year: 1994 ident: 10.1016/j.jmbbm.2022.105334_bib28 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90014-0 – volume: 32 start-page: 1282 year: 2017 ident: 10.1016/j.jmbbm.2022.105334_bib7 article-title: Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3113 – volume: 10 start-page: 353 year: 1999 ident: 10.1016/j.jmbbm.2022.105334_bib14 article-title: High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics publication-title: Osteoporos. Int. doi: 10.1007/s001980050240 – volume: 24 start-page: 1628 year: 2009 ident: 10.1016/j.jmbbm.2022.105334_bib40 article-title: Trabecular bone structure analysis in the osteoporotic spine using a clinical in vivo setup for 64-slice MDCT imaging: comparison to microCT imaging and microFE modeling publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.090311 – volume: 32 start-page: 1019 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib8 article-title: Quantitative computed tomography-based predictions of vertebral strength in anterior bending publication-title: Spine doi: 10.1097/01.brs.0000260979.98101.9c – volume: 44 start-page: 924 year: 2009 ident: 10.1016/j.jmbbm.2022.105334_bib26 article-title: Density and architecture have greater effects on the toughness of trabecular bone than damage publication-title: Bone doi: 10.1016/j.bone.2008.12.030 – volume: 5 start-page: 46 year: 1980 ident: 10.1016/j.jmbbm.2022.105334_bib33 article-title: The bone mineral content and ultimate compressive strength of lumbar vertebrae publication-title: Spine doi: 10.1097/00007632-198001000-00009 – volume: 47 start-page: 783 year: 2010 ident: 10.1016/j.jmbbm.2022.105334_bib54 article-title: Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies publication-title: Bone doi: 10.1016/j.bone.2010.07.001 – volume: 12 start-page: S104 issue: Suppl. 2 year: 2003 ident: 10.1016/j.jmbbm.2022.105334_bib30 article-title: Recognizing and reporting osteoporotic vertebral fractures publication-title: Eur. Spine J. doi: 10.1007/s00586-003-0613-0 – volume: 136 year: 2014 ident: 10.1016/j.jmbbm.2022.105334_bib35 article-title: Experimental validation of finite element analysis of human vertebral collapse under large compressive strains publication-title: J. Biomech. Eng. doi: 10.1115/1.4026409 – volume: 22 start-page: 1690 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib1 article-title: Influence of orthogonal overload on human vertebral trabecular bone mechanical properties publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070706 – volume: 22 start-page: 465 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib11 article-title: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.061113 – volume: 31 start-page: 777 year: 2016 ident: 10.1016/j.jmbbm.2022.105334_bib42 article-title: Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2749 – volume: 30 start-page: 222 year: 2012 ident: 10.1016/j.jmbbm.2022.105334_bib4 article-title: Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography publication-title: J. Bone Miner. Metabol. doi: 10.1007/s00774-011-0307-3 – volume: 32 start-page: 323 year: 1999 ident: 10.1016/j.jmbbm.2022.105334_bib19 article-title: Accuracy of cancellous bone volume fraction measured by micro-CT scanning publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00176-6 – year: 1997 ident: 10.1016/j.jmbbm.2022.105334_bib27 – volume: 18 start-page: 685 year: 2000 ident: 10.1016/j.jmbbm.2022.105334_bib45 article-title: Biomechanical consequences of an isolated overload on the human vertebral body publication-title: J. Orthop. Res. doi: 10.1002/jor.1100180502 – volume: 70 start-page: 88 year: 2018 ident: 10.1016/j.jmbbm.2022.105334_bib13 article-title: Segmental variations in facet joint translations during in vivo lumbar extension publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.09.026 – volume: 60 start-page: 468 year: 2016 ident: 10.1016/j.jmbbm.2022.105334_bib71 article-title: Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.03.004 – volume: 15 start-page: 251 year: 1994 ident: 10.1016/j.jmbbm.2022.105334_bib77 article-title: Multiplanar variations in the structural characteristics of cancellous bone publication-title: Bone doi: 10.1016/8756-3282(94)90286-0 – volume: 274 start-page: 532 year: 2015 ident: 10.1016/j.jmbbm.2022.105334_bib52 article-title: High-spatial-resolution bone densitometry with dual-energy X-ray absorptiometric region-free analysis publication-title: Radiology doi: 10.1148/radiol.14140636 – volume: 13 start-page: 1678 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib20 article-title: Computing local thickness of 3D structures with ImageJ publication-title: Microsc. Microanal. doi: 10.1017/S1431927607074430 – volume: 24 start-page: 1523 year: 2009 ident: 10.1016/j.jmbbm.2022.105334_bib24 article-title: Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.090317 – volume: 15 start-page: 93 year: 2012 ident: 10.1016/j.jmbbm.2022.105334_bib36 article-title: Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.06.005 – volume: 41 start-page: 946 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib37 article-title: Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength publication-title: Bone doi: 10.1016/j.bone.2007.08.019 – volume: 40 start-page: 767 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib9 article-title: Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength publication-title: Bone doi: 10.1016/j.bone.2006.10.025 – volume: 132 year: 2010 ident: 10.1016/j.jmbbm.2022.105334_bib15 article-title: The role of fabric in the large strain compressive behavior of human trabecular bone publication-title: J. Biomech. Eng. doi: 10.1115/1.4001361 – volume: 21 start-page: 1207 year: 2006 ident: 10.1016/j.jmbbm.2022.105334_bib63 article-title: Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.060513 – volume: 28 start-page: 152 year: 2014 ident: 10.1016/j.jmbbm.2022.105334_bib46 article-title: Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae publication-title: Eur. Cell. Mater. doi: 10.22203/eCM.v028a12 – volume: 48 start-page: 1433 year: 1997 ident: 10.1016/j.jmbbm.2022.105334_bib59 article-title: A cone beam computed tomography system for true 3D imaging of specimens publication-title: Appl. Radiat. Isot. doi: 10.1016/S0969-8043(97)00139-5 – volume: 24 start-page: 3021 year: 2013 ident: 10.1016/j.jmbbm.2022.105334_bib38 article-title: The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength publication-title: Osteoporos. Int. doi: 10.1007/s00198-013-2417-3 – volume: 17 start-page: 264 year: 1988 ident: 10.1016/j.jmbbm.2022.105334_bib3 article-title: Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography publication-title: Skeletal Radiol. doi: 10.1007/BF00401809 – volume: 6 start-page: 41 year: 2012 ident: 10.1016/j.jmbbm.2022.105334_bib44 article-title: Experimental study of cancellous bone under large strains and a constitutive probabilistic model publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.10.006 – volume: 34 start-page: 2858 year: 2009 ident: 10.1016/j.jmbbm.2022.105334_bib12 article-title: Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments publication-title: Spine doi: 10.1097/BRS.0b013e3181b4c75d – volume: 25 start-page: 356 year: 2010 ident: 10.1016/j.jmbbm.2022.105334_bib61 article-title: Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.090803 – year: 1998 ident: 10.1016/j.jmbbm.2022.105334_bib32 – volume: 25 start-page: 2324 year: 2010 ident: 10.1016/j.jmbbm.2022.105334_bib69 article-title: Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.164 – volume: 38 start-page: E1320 year: 2013 ident: 10.1016/j.jmbbm.2022.105334_bib31 article-title: Radiographical texture analysis improves the prediction of vertebral fracture: an ex vivo biomechanical study publication-title: Spine doi: 10.1097/BRS.0b013e3182a28fa9 – volume: 56 start-page: 206 year: 1995 ident: 10.1016/j.jmbbm.2022.105334_bib51 article-title: Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA publication-title: Calcif. Tissue Int. doi: 10.1007/BF00298611 – volume: 35 start-page: 3170 year: 2008 ident: 10.1016/j.jmbbm.2022.105334_bib43 article-title: Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements publication-title: Med. Phys. doi: 10.1118/1.2924210 – volume: 18 start-page: 179S year: 1996 ident: 10.1016/j.jmbbm.2022.105334_bib68 article-title: Vertebral fracture epidemiology publication-title: Bone doi: 10.1016/8756-3282(95)00499-8 – volume: 65 start-page: 213 year: 2017 ident: 10.1016/j.jmbbm.2022.105334_bib48 article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.08.028 – volume: 8 start-page: 851 year: 1983 ident: 10.1016/j.jmbbm.2022.105334_bib6 article-title: Deformation of the vertebral end-plate under axial loading of the spine publication-title: Spine doi: 10.1097/00007632-198311000-00007 – volume: 10 start-page: 537 year: 1976 ident: 10.1016/j.jmbbm.2022.105334_bib34 article-title: Postyield behavior of subchondral trabecular bone publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820100409 – volume: 17 start-page: 716 year: 2002 ident: 10.1016/j.jmbbm.2022.105334_bib23 article-title: Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS) publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.4.716 – volume: 26 start-page: 889 year: 2001 ident: 10.1016/j.jmbbm.2022.105334_bib29 article-title: Mapping the structural properties of the lumbosacral vertebral endplates publication-title: Spine doi: 10.1097/00007632-200104150-00012 – volume: 1 start-page: 105 year: 2008 ident: 10.1016/j.jmbbm.2022.105334_bib47 article-title: Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis publication-title: J. Multidiscip. Healthc. doi: 10.2147/JMDH.S4103 – volume: 131 year: 2009 ident: 10.1016/j.jmbbm.2022.105334_bib75 article-title: Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae publication-title: J. Biomech. Eng. doi: 10.1115/1.3148473 – volume: 16 start-page: 146 year: 1991 ident: 10.1016/j.jmbbm.2022.105334_bib16 article-title: Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load publication-title: Spine doi: 10.1097/00007632-199116020-00009 – volume: 17 start-page: 1051 year: 2002 ident: 10.1016/j.jmbbm.2022.105334_bib66 article-title: The incidence of vertebral fractures in men and women: the Rotterdam Study publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.6.1051 – volume: 44 start-page: 243 year: 1989 ident: 10.1016/j.jmbbm.2022.105334_bib22 article-title: Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography publication-title: Calcif. Tissue Int. doi: 10.1007/BF02553758 – volume: 8 start-page: 314 year: 2005 ident: 10.1016/j.jmbbm.2022.105334_bib5 article-title: In vivo intrarater and interrater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual-energy x-ray absorptiometry publication-title: J. Clin. Densitom. doi: 10.1385/JCD:8:3:314 – volume: 26 start-page: E403 year: 2001 ident: 10.1016/j.jmbbm.2022.105334_bib72 article-title: Lumbar spine mechanical response to axial compression load in vivo publication-title: Spine doi: 10.1097/00007632-200109150-00004 – volume: 34 start-page: 1389 year: 2016 ident: 10.1016/j.jmbbm.2022.105334_bib53 article-title: Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics publication-title: J. Orthop. Res. doi: 10.1002/jor.23232 – volume: 113 start-page: 2892 year: 2016 ident: 10.1016/j.jmbbm.2022.105334_bib65 article-title: Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1520539113 – volume: 39 start-page: 1073 year: 2006 ident: 10.1016/j.jmbbm.2022.105334_bib67 article-title: Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae publication-title: Bone doi: 10.1016/j.bone.2006.05.013 – volume: 25 start-page: 713 year: 1999 ident: 10.1016/j.jmbbm.2022.105334_bib21 article-title: Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing publication-title: Bone doi: 10.1016/S8756-3282(99)00216-1 – volume: 42 start-page: 775 year: 2008 ident: 10.1016/j.jmbbm.2022.105334_bib58 article-title: Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture publication-title: Bone doi: 10.1016/j.bone.2007.11.018 – start-page: 111 year: 2010 ident: 10.1016/j.jmbbm.2022.105334_bib50 article-title: Thresholding of Micro-CT images for morphological analysis of trabecular bone specimens – volume: 43 start-page: 189 year: 2002 ident: 10.1016/j.jmbbm.2022.105334_bib60 article-title: The angular distribution of vertebral trabeculae in modern humans, chimpanzees and the Kebara 2 Neanderthal publication-title: J. Hum. Evol. doi: 10.1006/jhev.2002.0568 – volume: 24 start-page: 2455 year: 2013 ident: 10.1016/j.jmbbm.2022.105334_bib62 article-title: The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study publication-title: Osteoporos. Int. doi: 10.1007/s00198-013-2316-7 – volume: 32 start-page: 880 year: 2014 ident: 10.1016/j.jmbbm.2022.105334_bib41 article-title: Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone publication-title: J. Orthop. Res. doi: 10.1002/jor.22620 – volume: 26 start-page: 739 year: 2011 ident: 10.1016/j.jmbbm.2022.105334_bib70 article-title: Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.264 – volume: 256 start-page: 75 year: 2014 ident: 10.1016/j.jmbbm.2022.105334_bib64 article-title: Influence of segmentation on micro-CT images of trabecular bone publication-title: J. Microsc. doi: 10.1111/jmi.12159 – volume: 46 start-page: 4553 year: 2019 ident: 10.1016/j.jmbbm.2022.105334_bib55 article-title: Digital tomosynthesis based digital volume correlation: a clinically viable noninvasive method for direct measurement of intravertebral displacements using images of the human spine under physiological load publication-title: Med. Phys. doi: 10.1002/mp.13750 – volume: 4 year: 2021 ident: 10.1016/j.jmbbm.2022.105334_bib73 article-title: Structure-function relationships of the human vertebral endplate publication-title: JOR Spine doi: 10.1002/jsp2.1170 – volume: 15 start-page: 105 year: 1994 ident: 10.1016/j.jmbbm.2022.105334_bib25 article-title: Failure mechanisms in human vertebral cancellous bone publication-title: Bone doi: 10.1016/8756-3282(94)90900-8 – volume: 3 start-page: 11 year: 1988 ident: 10.1016/j.jmbbm.2022.105334_bib76 article-title: Functional biomechanics of the thoracolumbar vertebral cortex publication-title: Clin. Biomech. doi: 10.1016/0268-0033(88)90119-2 – volume: 26 start-page: 237 year: 2015 ident: 10.1016/j.jmbbm.2022.105334_bib49 article-title: The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women's thoracic vertebral body publication-title: Osteoporos. Int. doi: 10.1007/s00198-014-2846-7 – volume: 41 start-page: 505 year: 2007 ident: 10.1016/j.jmbbm.2022.105334_bib10 article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis publication-title: Bone doi: 10.1016/j.bone.2007.07.007 – volume: 14 start-page: 667 year: 1993 ident: 10.1016/j.jmbbm.2022.105334_bib57 article-title: Estimation of vertebral body strength by dual photon absorptiometry in elderly individuals: comparison between measurements of total vertebral and vertebral body bone mineral publication-title: Bone doi: 10.1016/8756-3282(93)90090-W – volume: 33 start-page: 744 year: 2003 ident: 10.1016/j.jmbbm.2022.105334_bib17 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone doi: 10.1016/S8756-3282(03)00210-2 |
SSID | ssj0060088 |
Score | 2.3431587 |
Snippet | Lumbar 1 vertebrae are among those most commonly fracture due to osteoporosis. The strength of human vertebrae and its structural, microstructural and material... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105334 |
SubjectTerms | Cancellous microstructure Cortical shell Density Post-failure properties Uniaxial compression Vertebral body |
Title | Uniaxial compressive properties of human lumbar 1 vertebrae loaded beyond compaction and their relationship to cortical and cancellous microstructure, size and density properties |
URI | https://dx.doi.org/10.1016/j.jmbbm.2022.105334 https://www.proquest.com/docview/2686055768 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuETxa17Zptjkui8uq6EUFbyGv4sq6LbWKevBH-QudSVtRQQ8eU6YlZKYzk-SbbwjZz5KMhUYngWWCBSxEEICJ46DHGU-dYsIeYe3w-QUfXbPTm-RmhgzaWhiEVTa-v_bp3ls3T7rNanaL8bh7CYEP0hWI0IgzYBxptxnroZUfvn3CPCCe-96TKBygdMs85DFed_daYzl6FGG_2zhmv0WnH37aB5_hEllsskbarye2TGbcdIUsfOESXCXvkD2qZ7Amiihxj259crTAs_YSSVNpnlHfkI-CO9KqpCHFVsx4b-zoJFfWWap9OYv_QF3vQBUM_V0CLVvU3O24oFUOQqU_BvciBm1nMskfH-g9IvxqVtrH0h3Qh_Gr8zIWofLVy5cprZHr4fHVYBQ0DRkCUB-vgiTsGS4S2OExxzPBNLMZRPwoiZyAxMKBYiEDCVWEpOpILiasc3i32stSk5okXiez03zqNgjNRML4UZzaTMEGUTmhtDKpZSYVKtZhvEmiVhHSNGzl2DRjIltY2p302pOoPVlrb5McfL5U1GQdf4vzVsPym81JCCd_v7jX2oOEvxEXWE0drLGMeMqR1YynW__9-DaZx1GNY9shs6AwtwuJT6U73rI7ZK5_cja6-AAyWgXl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeEKUgXqWu1CPRksT2xkeEQEuBvRQkbpZfEYuWzSosFe3P6i_sjJNUgASHHpOMI8szmRnH33wD8K0UJU-dFYnniic8JRCAy_NkILksguHKH1Lt8OVIDq_59xtxswDHXS0MwSpb39_49Oit2zv9djX7s_G4_wMDH6YrGKEJZ8ClXIQlYqcSPVg6OjsfjjqHjCE9tp8k-YQGdORDEeZ1d28tVaRnGbW8zXP-VoB65apj_Dldg9U2cWRHzdw-wkKYrsOHZ3SCn-APJpDmCQ2KEVA8Alx_Bjaj3-018aayqmSxJx9Dj2RNzVJG3Zjp6DiwSWV88MzGipb4gqbkgRm8jMcJrO6Ac7fjGZtXKFTHP-FRxJH5TCbV4wO7J5BfQ0z7WIcD9jD-HaKMJ7T8_NezKW3A9enJ1fEwaXsyJKhBOU9EOnBSCdzk8SBLxS33JQb9TGRBYW4RULeYhKQmI1514hdTPgQ6Xh2UhSucyDehN62mYQtYqQSXh3nhS4N7RBOUscYVnrtCmdym-TZknSK0awnLqW_GRHfItDsdtadJe7rR3jYc_Bs0a_g63heXnYb1C7PTGFHeH_i1sweNHyQtsJkGXGOdyUISsZksdv735V9geXh1eaEvzkbnu7BCTxpY2x70UHnhM-ZBc7vf2vlfGoIIlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniaxial+compressive+properties+of+human+lumbar+1+vertebrae+loaded+beyond+compaction+and+their+relationship+to+cortical+and+cancellous+microstructure%2C+size+and+density+properties&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Yeni%2C+Yener+N.&rft.au=Dix%2C+Michael+R.&rft.au=Xiao%2C+Angela&rft.au=Oravec%2C+Daniel+J.&rft.date=2022-09-01&rft.issn=1751-6161&rft.volume=133&rft.spage=105334&rft_id=info:doi/10.1016%2Fj.jmbbm.2022.105334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2022_105334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |