Singular Value Decomposition Projection for solving the small sample size problem in face recognition
•The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained projection samples do not correlate with each other.•SVDP keeps the simplicity and effectiveness of an unsupervised dimensionality reduction algorith...
Saved in:
Published in | Journal of visual communication and image representation Vol. 26; pp. 265 - 274 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1047-3203 1095-9076 |
DOI | 10.1016/j.jvcir.2014.09.013 |
Cover
Loading…
Abstract | •The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained projection samples do not correlate with each other.•SVDP keeps the simplicity and effectiveness of an unsupervised dimensionality reduction algorithm.
Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic structure of images and to enhance the computational efficiency. However, the FR methods based on the existing dimensionality reduction often suffer from small sample size (SSS) problems, where the sample dimensionality is larger than the number of training samples per subject. In recent years, Sparse Representation based Classification (SRC) has been demonstrated to be a powerful framework for robust FR. In this paper, a novel unsupervised dimensionality reduction algorithm, called Singular Value Decomposition Projection (SVDP), is proposed to better fit SRC for handling the SSS problems in FR. In SVDP, a weighted linear transformation matrix is derived from the original data matrix via Singular Value Decomposition. The projection obtained in this way is row-orthonormal and it has some good properties. It makes the solution be robust to small perturbations contained in the data and has better ability to represent various signals. Thus, SVDP could better preserve the discriminant information of the data. Based on SVDP, a novel face recognition method SVDP-SRC is designed to enable SRC to achieve better performance via low-dimensional representation of faces. The experiments carried out with some simulated data show that SVDP achieves higher recovery accuracy than several other dimensionality reduction methods. Moreover, the results obtained on three standard face databases demonstrate that SVDP-SRC is quite effective to handle the SSS problems in terms of recognition accuracy. |
---|---|
AbstractList | •The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained projection samples do not correlate with each other.•SVDP keeps the simplicity and effectiveness of an unsupervised dimensionality reduction algorithm.
Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic structure of images and to enhance the computational efficiency. However, the FR methods based on the existing dimensionality reduction often suffer from small sample size (SSS) problems, where the sample dimensionality is larger than the number of training samples per subject. In recent years, Sparse Representation based Classification (SRC) has been demonstrated to be a powerful framework for robust FR. In this paper, a novel unsupervised dimensionality reduction algorithm, called Singular Value Decomposition Projection (SVDP), is proposed to better fit SRC for handling the SSS problems in FR. In SVDP, a weighted linear transformation matrix is derived from the original data matrix via Singular Value Decomposition. The projection obtained in this way is row-orthonormal and it has some good properties. It makes the solution be robust to small perturbations contained in the data and has better ability to represent various signals. Thus, SVDP could better preserve the discriminant information of the data. Based on SVDP, a novel face recognition method SVDP-SRC is designed to enable SRC to achieve better performance via low-dimensional representation of faces. The experiments carried out with some simulated data show that SVDP achieves higher recovery accuracy than several other dimensionality reduction methods. Moreover, the results obtained on three standard face databases demonstrate that SVDP-SRC is quite effective to handle the SSS problems in terms of recognition accuracy. Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic structure of images and to enhance the computational efficiency. However, the FR methods based on the existing dimensionality reduction often suffer from small sample size (SSS) problems, where the sample dimensionality is larger than the number of training samples per subject. In recent years, Sparse Representation based Classification (SRC) has been demonstrated to be a powerful framework for robust FR. In this paper, a novel unsupervised dimensionality reduction algorithm, called Singular Value Decomposition Projection (SVDP), is proposed to better fit SRC for handling the SSS problems in FR. In SVDP, a weighted linear transformation matrix is derived from the original data matrix via Singular Value Decomposition. The projection obtained in this way is row-orthonormal and it has some good properties. It makes the solution be robust to small perturbations contained in the data and has better ability to represent various signals. Thus, SVDP could better preserve the discriminant information of the data. Based on SVDP, a novel face recognition method SVDP-SRC is designed to enable SRC to achieve better performance via low-dimensional representation of faces. The experiments carried out with some simulated data show that SVDP achieves higher recovery accuracy than several other dimensionality reduction methods. Moreover, the results obtained on three standard face databases demonstrate that SVDP-SRC is quite effective to handle the SSS problems in terms of recognition accuracy. |
Author | Chang, Guodong Ke, Qiao Zhang, Jiangshe Wang, Changpeng |
Author_xml | – sequence: 1 givenname: Changpeng surname: Wang fullname: Wang, Changpeng – sequence: 2 givenname: Jiangshe surname: Zhang fullname: Zhang, Jiangshe email: jszhang@mail.xjtu.edu.cn – sequence: 3 givenname: Guodong surname: Chang fullname: Chang, Guodong – sequence: 4 givenname: Qiao surname: Ke fullname: Ke, Qiao |
BookMark | eNqFkLtOxDAQRS0EEs8voHFJkzCO4yQuKBBvCQkkHq3ldSbgyIkXO7sSfD3eXSoKqDyW7rmaOftke_QjEnLMIGfAqtM-75fGhrwAVuYgc2B8i-wxkCKTUFfbq7msM14A3yX7MfYAwCUv9wg-2fFt4XSgr9otkF6i8cPcRztZP9LH4Hs067HzgUbvlilOp3ekcdDO0aiHuUsf-4V0HvzM4UBtCmuDNKSqt3FddEh2Ou0iHv28B-Tl-ur54ja7f7i5uzi_zwzn1ZQJVsi20V2LsjZlW5a6mIHsGtFKUQO2goM0spKdaQthZl05k00lCtkAF1BAzQ_IyaY37fKxwDipwUaDzukR_SIqVlWyEYIJSFG-iZrgYwzYqXmwgw6fioFaSVW9WktVK6kKpEpSEyV_UcZOenXiFLR1_7BnGxaTgaXFoKKxOBpsbVI1qdbbP_lvwf2XfA |
CitedBy_id | crossref_primary_10_1016_j_neucom_2016_12_059 crossref_primary_10_1016_j_jvcir_2017_02_009 crossref_primary_10_1016_j_jvcir_2016_05_019 crossref_primary_10_1007_s10462_017_9578_y crossref_primary_10_1016_j_compeleceng_2017_11_025 crossref_primary_10_1142_S0219691317500497 |
Cites_doi | 10.1137/S003614450037906X 10.1002/cpa.20132 10.1109/TIP.2013.2262292 10.1109/JSTSP.2007.910281 10.1016/j.imavis.2009.08.002 10.1109/TPAMI.2005.55 10.1109/TPAMI.2012.191 10.1109/TIP.2006.881945 10.1016/S0031-3203(02)00052-3 10.1109/34.879790 10.1016/0031-3203(92)90007-6 10.1016/j.neucom.2012.04.034 10.1006/cviu.1999.0830 10.1109/TPAMI.2008.79 10.1090/psapm/048/1314843 10.1137/060657704 10.1145/954339.954342 10.1109/JSTSP.2007.910971 10.1016/0024-3795(93)00066-9 10.1109/TPAMI.2012.30 10.1016/j.jvcir.2012.05.003 10.1109/ICICIC.2008.234 10.1109/TPAMI.2007.1131 10.1162/jocn.1991.3.1.71 10.1109/TPAMI.2011.182 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. |
Copyright_xml | – notice: 2014 Elsevier Inc. |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jvcir.2014.09.013 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Journalism & Communications Engineering |
EISSN | 1095-9076 |
EndPage | 274 |
ExternalDocumentID | 10_1016_j_jvcir_2014_09_013 S104732031400159X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMHC ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LX9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WH7 WUQ XPP YQT ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c336t-5129d8afde97c4d44a2b09f85d9570ed5309c969fcd25cbf4b986529803502073 |
IEDL.DBID | .~1 |
ISSN | 1047-3203 |
IngestDate | Thu Jul 10 23:09:01 EDT 2025 Tue Jul 01 03:09:44 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Fri Feb 23 02:24:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dimensionality reduction Singular Value Decomposition Recognition accuracy Small sample size problem Face recognition Row-orthonormal Sparse Representation based Classification Transformation matrix |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-5129d8afde97c4d44a2b09f85d9570ed5309c969fcd25cbf4b986529803502073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669855150 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1669855150 crossref_primary_10_1016_j_jvcir_2014_09_013 crossref_citationtrail_10_1016_j_jvcir_2014_09_013 elsevier_sciencedirect_doi_10_1016_j_jvcir_2014_09_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | Journal of visual communication and image representation |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Donoho (b0030) 2006; 59 Yang, Zhou, Ganesh, Sastry, Ma (b0140) 2013; 22 A. Martinez, R. Benavente, The AR face database. CVC Technical Report. 24 1998. Brukstein, Donoho, Elad (b0040) 2009; 51 Y. Xu, Z. Jin, Down-sampling face images and low-resolution face recognition, in: The Third International Conference on Innovative Computing, Information and Control, 2008, pp. 392–395. Cai, He, Han, Zhang (b0075) 2006; 15 Turk, Pentland (b0055) 1991; 3 Kokiopoulou, Saad (b0050) 2007; 29 Gross, Matthews, Cohn, Kanade, Baker (b0150) 2010; 28 Leonardis, Bischof (b0045) 2000; 78 Wipf (b0160) 2011 Zhao, Chellappa, Phillips, Rosenfeld (b0015) 2003; 35 Horn, Johnson (b0135) 1987 Fasel, Luettin (b0010) 2003; 36 Figueiredo, Nowak, Wright (b0090) 2007; 1 Deng, Hu, Guo (b0105) 2012; 34 Li, Lu (b0110) 2013; 116 Phillips, Moon, Rizvi, Rauss (b0155) 2000; 22 Samal, Iyengar (b0005) 1992; 25 Wright, Yang, Ganesh, Sastry, Ma (b0025) 2009; 31 Eckart, Young (b0115) 1936 Higham (b0120) 1995; 214 . D. Cai, X. He, K. Zhou, J. Han, H. Bao, Locality sensitive discriminant analysis, in: International Joint Conferences on Artificial Intelligence, 2007, pp. 708–713. Hua, Yang, Learned-Miller, Ma, Turk, Kriegman, Huang (b0020) 2011; 33 Kim, Koh, Lustig, Boyd, Gorinevsky (b0130) 2007; 1 N.J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in: Mathematics of Computation 1943-1993: A Half Century of Computational Mathematics, 1994, pp. 49–77. Goal, Bebis, Nefian (b0060) 2005; 5779 magic: recovery of sparse signals via convex programming, 2005. Liao, Jain, Li (b0100) 2013; 35 Chen, Donoho, Saunders (b0035) 2001; 43 He, Yan, Niyogi, Zhang (b0070) 2005; 27 Lu, Min, Gui, Zhu, Lei (b0095) 2013; 24 E. Candes, J. Romberg 10.1016/j.jvcir.2014.09.013_b0125 Samal (10.1016/j.jvcir.2014.09.013_b0005) 1992; 25 Brukstein (10.1016/j.jvcir.2014.09.013_b0040) 2009; 51 10.1016/j.jvcir.2014.09.013_b0145 Goal (10.1016/j.jvcir.2014.09.013_b0060) 2005; 5779 Donoho (10.1016/j.jvcir.2014.09.013_b0030) 2006; 59 Figueiredo (10.1016/j.jvcir.2014.09.013_b0090) 2007; 1 Hua (10.1016/j.jvcir.2014.09.013_b0020) 2011; 33 Zhao (10.1016/j.jvcir.2014.09.013_b0015) 2003; 35 Higham (10.1016/j.jvcir.2014.09.013_b0120) 1995; 214 Liao (10.1016/j.jvcir.2014.09.013_b0100) 2013; 35 Gross (10.1016/j.jvcir.2014.09.013_b0150) 2010; 28 10.1016/j.jvcir.2014.09.013_b0080 Deng (10.1016/j.jvcir.2014.09.013_b0105) 2012; 34 Eckart (10.1016/j.jvcir.2014.09.013_b0115) 1936 Phillips (10.1016/j.jvcir.2014.09.013_b0155) 2000; 22 Kokiopoulou (10.1016/j.jvcir.2014.09.013_b0050) 2007; 29 Li (10.1016/j.jvcir.2014.09.013_b0110) 2013; 116 10.1016/j.jvcir.2014.09.013_b0065 10.1016/j.jvcir.2014.09.013_b0085 Leonardis (10.1016/j.jvcir.2014.09.013_b0045) 2000; 78 Cai (10.1016/j.jvcir.2014.09.013_b0075) 2006; 15 He (10.1016/j.jvcir.2014.09.013_b0070) 2005; 27 Lu (10.1016/j.jvcir.2014.09.013_b0095) 2013; 24 Yang (10.1016/j.jvcir.2014.09.013_b0140) 2013; 22 Chen (10.1016/j.jvcir.2014.09.013_b0035) 2001; 43 Wright (10.1016/j.jvcir.2014.09.013_b0025) 2009; 31 Fasel (10.1016/j.jvcir.2014.09.013_b0010) 2003; 36 Horn (10.1016/j.jvcir.2014.09.013_b0135) 1987 Kim (10.1016/j.jvcir.2014.09.013_b0130) 2007; 1 Turk (10.1016/j.jvcir.2014.09.013_b0055) 1991; 3 Wipf (10.1016/j.jvcir.2014.09.013_b0160) 2011 |
References_xml | – volume: 59 start-page: 797 year: 2006 end-page: 829 ident: b0030 article-title: For most large underdetermined systems of linear equations the minimal publication-title: Commun. Pure Appl. Math. – volume: 34 start-page: 1864 year: 2012 end-page: 1870 ident: b0105 article-title: Extended SRC: undersampled face recognition via intraclass variant dictionary publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 start-page: 65 year: 1992 end-page: 77 ident: b0005 article-title: Automatic recognition and analysis of human faces and facial expressions: a survey publication-title: Pattern Recognit. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: b0025 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 78 start-page: 99 year: 2000 end-page: 118 ident: b0045 article-title: Robust recognition using Eigenimages publication-title: Comput. Vis. Image Understand. – start-page: 2016 year: 2011 end-page: 2024 ident: b0160 article-title: Sparse estimation with structured dictionaries publication-title: Adv. Neural Inf. Process. Syst. – year: 1987 ident: b0135 article-title: Matrix Analysis – volume: 15 start-page: 3608 year: 2006 end-page: 3614 ident: b0075 article-title: Orthogonal laplacianfaces for face recognition publication-title: IEEE Trans. Image Process. – volume: 24 start-page: 111 year: 2013 end-page: 116 ident: b0095 article-title: Face recognition via weighed sparse representation publication-title: J. Visual Commun. Image Represent. – volume: 1 start-page: 586 year: 2007 end-page: 597 ident: b0090 article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems publication-title: IEEE J. Sel. Top. Signal Process. – start-page: 211 year: 1936 end-page: 218 ident: b0115 article-title: The approximation of one matrix by another of lower rank publication-title: Psychutnetiku – volume: 22 start-page: 1090 year: 2000 end-page: 1104 ident: b0155 article-title: The FERET evalution methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 328 year: 2005 end-page: 340 ident: b0070 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 43 start-page: 129 year: 2001 end-page: 159 ident: b0035 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. – volume: 3 start-page: 71 year: 1991 end-page: 86 ident: b0055 article-title: Eigenfaces for recognition publication-title: J. Cognit. Neurosci. – reference: E. Candes, J. Romberg, – reference: N.J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in: Mathematics of Computation 1943-1993: A Half Century of Computational Mathematics, 1994, pp. 49–77. – volume: 29 start-page: 2143 year: 2007 end-page: 2156 ident: b0050 article-title: Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 116 start-page: 265 year: 2013 end-page: 271 ident: b0110 article-title: A new decision rule for sparse representation based classification for face recognition publication-title: Neurocomputing – volume: 51 start-page: 34 year: 2009 end-page: 81 ident: b0040 article-title: From sparse solutions of systems of equations to sparse modeling of signals and images publication-title: SIAM Rev. – reference: magic: recovery of sparse signals via convex programming, 2005. < – volume: 1 start-page: 606 year: 2007 end-page: 617 ident: b0130 article-title: An interiorpoint method for large-scale publication-title: IEEE J. Sel. Top. Signal Process. – volume: 33 start-page: 1921 year: 2011 end-page: 1924 ident: b0020 article-title: Introduction to the special section on the real-world face publication-title: IEEE Trans. Pattern Anal. Mach. Int. – reference: A. Martinez, R. Benavente, The AR face database. CVC Technical Report. 24 1998. – volume: 35 start-page: 399 year: 2003 end-page: 458 ident: b0015 article-title: Face recognition: a literature survey publication-title: ACM Comput. Surv. – reference: >. – volume: 22 start-page: 3234 year: 2013 end-page: 3246 ident: b0140 article-title: Fast L1-minimization algorithms for robust face recognition publication-title: IEEE Trans. Image Process. – reference: Y. Xu, Z. Jin, Down-sampling face images and low-resolution face recognition, in: The Third International Conference on Innovative Computing, Information and Control, 2008, pp. 392–395. – volume: 214 start-page: 193 year: 1995 end-page: 213 ident: b0120 article-title: Condition numbers and their condition numbers publication-title: Linear Algebra Appl. – volume: 35 start-page: 1193 year: 2013 end-page: 1205 ident: b0100 article-title: Partial face recognition: an alignment free approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: D. Cai, X. He, K. Zhou, J. Han, H. Bao, Locality sensitive discriminant analysis, in: International Joint Conferences on Artificial Intelligence, 2007, pp. 708–713. – volume: 28 start-page: 807 year: 2010 end-page: 813 ident: b0150 article-title: Multi-PIE publication-title: Image Vis. Comput. – volume: 5779 start-page: 426 year: 2005 end-page: 437 ident: b0060 article-title: Face recognition experiments with random projection publication-title: Int. Soc. Optics Photonics – volume: 36 start-page: 259 year: 2003 end-page: 275 ident: b0010 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognit. – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 10.1016/j.jvcir.2014.09.013_b0035 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – volume: 59 start-page: 797 issue: 6 year: 2006 ident: 10.1016/j.jvcir.2014.09.013_b0030 article-title: For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20132 – volume: 22 start-page: 3234 issue: 8 year: 2013 ident: 10.1016/j.jvcir.2014.09.013_b0140 article-title: Fast L1-minimization algorithms for robust face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2262292 – volume: 1 start-page: 586 issue: 4 year: 2007 ident: 10.1016/j.jvcir.2014.09.013_b0090 article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910281 – start-page: 211 year: 1936 ident: 10.1016/j.jvcir.2014.09.013_b0115 article-title: The approximation of one matrix by another of lower rank publication-title: Psychutnetiku – ident: 10.1016/j.jvcir.2014.09.013_b0085 – volume: 28 start-page: 807 year: 2010 ident: 10.1016/j.jvcir.2014.09.013_b0150 article-title: Multi-PIE publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2009.08.002 – year: 1987 ident: 10.1016/j.jvcir.2014.09.013_b0135 – volume: 27 start-page: 328 issue: 3 year: 2005 ident: 10.1016/j.jvcir.2014.09.013_b0070 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.55 – volume: 35 start-page: 1193 issue: 5 year: 2013 ident: 10.1016/j.jvcir.2014.09.013_b0100 article-title: Partial face recognition: an alignment free approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.191 – volume: 5779 start-page: 426 year: 2005 ident: 10.1016/j.jvcir.2014.09.013_b0060 article-title: Face recognition experiments with random projection publication-title: Int. Soc. Optics Photonics – volume: 15 start-page: 3608 issue: 11 year: 2006 ident: 10.1016/j.jvcir.2014.09.013_b0075 article-title: Orthogonal laplacianfaces for face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881945 – volume: 36 start-page: 259 issue: 1 year: 2003 ident: 10.1016/j.jvcir.2014.09.013_b0010 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00052-3 – ident: 10.1016/j.jvcir.2014.09.013_b0145 – volume: 22 start-page: 1090 issue: 10 year: 2000 ident: 10.1016/j.jvcir.2014.09.013_b0155 article-title: The FERET evalution methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.879790 – volume: 25 start-page: 65 year: 1992 ident: 10.1016/j.jvcir.2014.09.013_b0005 article-title: Automatic recognition and analysis of human faces and facial expressions: a survey publication-title: Pattern Recognit. doi: 10.1016/0031-3203(92)90007-6 – volume: 116 start-page: 265 year: 2013 ident: 10.1016/j.jvcir.2014.09.013_b0110 article-title: A new decision rule for sparse representation based classification for face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.034 – volume: 78 start-page: 99 issue: 1 year: 2000 ident: 10.1016/j.jvcir.2014.09.013_b0045 article-title: Robust recognition using Eigenimages publication-title: Comput. Vis. Image Understand. doi: 10.1006/cviu.1999.0830 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.jvcir.2014.09.013_b0025 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – ident: 10.1016/j.jvcir.2014.09.013_b0125 doi: 10.1090/psapm/048/1314843 – volume: 51 start-page: 34 issue: 1 year: 2009 ident: 10.1016/j.jvcir.2014.09.013_b0040 article-title: From sparse solutions of systems of equations to sparse modeling of signals and images publication-title: SIAM Rev. doi: 10.1137/060657704 – volume: 35 start-page: 399 issue: 4 year: 2003 ident: 10.1016/j.jvcir.2014.09.013_b0015 article-title: Face recognition: a literature survey publication-title: ACM Comput. Surv. doi: 10.1145/954339.954342 – volume: 1 start-page: 606 issue: 4 year: 2007 ident: 10.1016/j.jvcir.2014.09.013_b0130 article-title: An interiorpoint method for large-scale ℓ1-regularized least squares publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910971 – ident: 10.1016/j.jvcir.2014.09.013_b0080 – volume: 214 start-page: 193 year: 1995 ident: 10.1016/j.jvcir.2014.09.013_b0120 article-title: Condition numbers and their condition numbers publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(93)00066-9 – volume: 34 start-page: 1864 issue: 9 year: 2012 ident: 10.1016/j.jvcir.2014.09.013_b0105 article-title: Extended SRC: undersampled face recognition via intraclass variant dictionary publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.30 – start-page: 2016 year: 2011 ident: 10.1016/j.jvcir.2014.09.013_b0160 article-title: Sparse estimation with structured dictionaries publication-title: Adv. Neural Inf. Process. Syst. – volume: 24 start-page: 111 issue: 2 year: 2013 ident: 10.1016/j.jvcir.2014.09.013_b0095 article-title: Face recognition via weighed sparse representation publication-title: J. Visual Commun. Image Represent. doi: 10.1016/j.jvcir.2012.05.003 – ident: 10.1016/j.jvcir.2014.09.013_b0065 doi: 10.1109/ICICIC.2008.234 – volume: 29 start-page: 2143 issue: 12 year: 2007 ident: 10.1016/j.jvcir.2014.09.013_b0050 article-title: Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1131 – volume: 3 start-page: 71 issue: 1 year: 1991 ident: 10.1016/j.jvcir.2014.09.013_b0055 article-title: Eigenfaces for recognition publication-title: J. Cognit. Neurosci. doi: 10.1162/jocn.1991.3.1.71 – volume: 33 start-page: 1921 issue: 10 year: 2011 ident: 10.1016/j.jvcir.2014.09.013_b0020 article-title: Introduction to the special section on the real-world face publication-title: IEEE Trans. Pattern Anal. Mach. Int. doi: 10.1109/TPAMI.2011.182 |
SSID | ssj0003934 |
Score | 2.091517 |
Snippet | •The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained... Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 265 |
SubjectTerms | Accuracy Algorithms Computer simulation Decomposition Dimensionality reduction Face recognition Preserves Projection Recognition accuracy Reduction Representations Row-orthonormal Singular Value Decomposition Small sample size problem Sparse Representation based Classification Transformation matrix |
Title | Singular Value Decomposition Projection for solving the small sample size problem in face recognition |
URI | https://dx.doi.org/10.1016/j.jvcir.2014.09.013 https://www.proquest.com/docview/1669855150 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuQwELUQXJjDaFhGMCwyEuJE6DheEh9RA2pWITb1zXJsRwpq0oh0c-DAt-NKHJaRhsOcsqgSRa5K1ZP96hmh7YJo6asAi3ItTMSEkJE2PIksLUyjHmIJNDifX4jBLTsZ8uEM6ne9MECrDLm_zelNtg53emE0e49l2bsGkQGagPw6FH45hA52loJ-_t7rB82DynZlGRQJwLpTHmo4XvfPpgRRUNKKnRL6r-r0V55uis_RL_QzoEa8337YAppx1SL68UlLcBGtBaOyfsA7-EvfR72E3LU3AsYpvtOjqcMHDrjkgbCFL9vpGDj1GBb7cIRpBuyxIa4f9GiEaw0iwrguXxwOW9Dg0htr4_A7BWlcLaPbo8Ob_iAKOyxEhlIxiaDa20wX1snUMMuYTvJYFhm3kqexs5zG0kghC2MTbvKC5TITPJEZrEcmPjv8RrPVuHIrCDOSiDS1lggHKvUk0x5qGQ8WGaea5mQVJd3IKhPkx2EXjJHqeGb3qnGHAneoWCrvjlW0-_7QY6u-8b256FymvgSR8vXh-we3Ogcr_3vBmomu3HhaK-KjN_Ooksd__vfla2jeX_F23mYdzU6epm7DI5lJvtmE6iaa2-9fnV3C8fh0cPEGsXL1LQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HKCHCmgrKC24UtVTo43jx8ZHREHLa1UJqPZmObYjBS1Z1Oz20F_fmcRZFSQ4cIuScRR5JjOfPJ8_E_K1ZFZDFRBJYZVLhFI6sU5mieela9VDPMMNzldjNboV5xM5WSHH_V4YpFXG3N_l9DZbxzuDOJuDh6oaXKPIAM9Qfh0Lv56sknVUp4JgXz86uxiNlwmZ6665jKIEOKAXH2ppXnd_XIW6oKzTO2X8uQL1JFW39ed0i7yNwJEedd-2TVZCvUPe_CcnuEP2o1HV3NNv9NHWj-YdCddghKRT-stOF4H-CEgnj5wt-rNbkcFLgLEUIhJXGijAQ9rc2-mUNhZ1hGlT_Q00nkJDKzC2LtAlC2lWvye3pyc3x6MkHrKQOM7VPMGC73Nb-qCHTnghbFakusyl13KYBi95qp1WunQ-k64oRaFzJTOdY0sygwTxgazVszrsEipYpoZD75kKKFTPcgtoywFeFJJbXrA9kvUza1xUIMeDMKamp5rdmdYdBt1hUm3AHXvk-3LQQyfA8bK56l1mHsWRgRLx8sAvvYMN_GHYNrF1mC0awyCAcwCWMv342pcfko3RzdWluTwbX-yTTXgiu2WcT2Rt_nsRPgOwmRcHMXD_AWce9kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+Value+Decomposition+Projection+for+solving+the+small+sample+size+problem+in+face+recognition&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Wang%2C+Changpeng&rft.au=Zhang%2C+Jiangshe&rft.au=Chang%2C+Guodong&rft.au=Ke%2C+Qiao&rft.date=2015-01-01&rft.issn=1047-3203&rft.volume=26&rft.spage=265&rft.epage=274&rft_id=info:doi/10.1016%2Fj.jvcir.2014.09.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon |