Singular Value Decomposition Projection for solving the small sample size problem in face recognition

•The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained projection samples do not correlate with each other.•SVDP keeps the simplicity and effectiveness of an unsupervised dimensionality reduction algorith...

Full description

Saved in:
Bibliographic Details
Published inJournal of visual communication and image representation Vol. 26; pp. 265 - 274
Main Authors Wang, Changpeng, Zhang, Jiangshe, Chang, Guodong, Ke, Qiao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2015
Subjects
Online AccessGet full text
ISSN1047-3203
1095-9076
DOI10.1016/j.jvcir.2014.09.013

Cover

Loading…
Abstract •The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained projection samples do not correlate with each other.•SVDP keeps the simplicity and effectiveness of an unsupervised dimensionality reduction algorithm. Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic structure of images and to enhance the computational efficiency. However, the FR methods based on the existing dimensionality reduction often suffer from small sample size (SSS) problems, where the sample dimensionality is larger than the number of training samples per subject. In recent years, Sparse Representation based Classification (SRC) has been demonstrated to be a powerful framework for robust FR. In this paper, a novel unsupervised dimensionality reduction algorithm, called Singular Value Decomposition Projection (SVDP), is proposed to better fit SRC for handling the SSS problems in FR. In SVDP, a weighted linear transformation matrix is derived from the original data matrix via Singular Value Decomposition. The projection obtained in this way is row-orthonormal and it has some good properties. It makes the solution be robust to small perturbations contained in the data and has better ability to represent various signals. Thus, SVDP could better preserve the discriminant information of the data. Based on SVDP, a novel face recognition method SVDP-SRC is designed to enable SRC to achieve better performance via low-dimensional representation of faces. The experiments carried out with some simulated data show that SVDP achieves higher recovery accuracy than several other dimensionality reduction methods. Moreover, the results obtained on three standard face databases demonstrate that SVDP-SRC is quite effective to handle the SSS problems in terms of recognition accuracy.
AbstractList •The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained projection samples do not correlate with each other.•SVDP keeps the simplicity and effectiveness of an unsupervised dimensionality reduction algorithm. Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic structure of images and to enhance the computational efficiency. However, the FR methods based on the existing dimensionality reduction often suffer from small sample size (SSS) problems, where the sample dimensionality is larger than the number of training samples per subject. In recent years, Sparse Representation based Classification (SRC) has been demonstrated to be a powerful framework for robust FR. In this paper, a novel unsupervised dimensionality reduction algorithm, called Singular Value Decomposition Projection (SVDP), is proposed to better fit SRC for handling the SSS problems in FR. In SVDP, a weighted linear transformation matrix is derived from the original data matrix via Singular Value Decomposition. The projection obtained in this way is row-orthonormal and it has some good properties. It makes the solution be robust to small perturbations contained in the data and has better ability to represent various signals. Thus, SVDP could better preserve the discriminant information of the data. Based on SVDP, a novel face recognition method SVDP-SRC is designed to enable SRC to achieve better performance via low-dimensional representation of faces. The experiments carried out with some simulated data show that SVDP achieves higher recovery accuracy than several other dimensionality reduction methods. Moreover, the results obtained on three standard face databases demonstrate that SVDP-SRC is quite effective to handle the SSS problems in terms of recognition accuracy.
Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic structure of images and to enhance the computational efficiency. However, the FR methods based on the existing dimensionality reduction often suffer from small sample size (SSS) problems, where the sample dimensionality is larger than the number of training samples per subject. In recent years, Sparse Representation based Classification (SRC) has been demonstrated to be a powerful framework for robust FR. In this paper, a novel unsupervised dimensionality reduction algorithm, called Singular Value Decomposition Projection (SVDP), is proposed to better fit SRC for handling the SSS problems in FR. In SVDP, a weighted linear transformation matrix is derived from the original data matrix via Singular Value Decomposition. The projection obtained in this way is row-orthonormal and it has some good properties. It makes the solution be robust to small perturbations contained in the data and has better ability to represent various signals. Thus, SVDP could better preserve the discriminant information of the data. Based on SVDP, a novel face recognition method SVDP-SRC is designed to enable SRC to achieve better performance via low-dimensional representation of faces. The experiments carried out with some simulated data show that SVDP achieves higher recovery accuracy than several other dimensionality reduction methods. Moreover, the results obtained on three standard face databases demonstrate that SVDP-SRC is quite effective to handle the SSS problems in terms of recognition accuracy.
Author Chang, Guodong
Ke, Qiao
Zhang, Jiangshe
Wang, Changpeng
Author_xml – sequence: 1
  givenname: Changpeng
  surname: Wang
  fullname: Wang, Changpeng
– sequence: 2
  givenname: Jiangshe
  surname: Zhang
  fullname: Zhang, Jiangshe
  email: jszhang@mail.xjtu.edu.cn
– sequence: 3
  givenname: Guodong
  surname: Chang
  fullname: Chang, Guodong
– sequence: 4
  givenname: Qiao
  surname: Ke
  fullname: Ke, Qiao
BookMark eNqFkLtOxDAQRS0EEs8voHFJkzCO4yQuKBBvCQkkHq3ldSbgyIkXO7sSfD3eXSoKqDyW7rmaOftke_QjEnLMIGfAqtM-75fGhrwAVuYgc2B8i-wxkCKTUFfbq7msM14A3yX7MfYAwCUv9wg-2fFt4XSgr9otkF6i8cPcRztZP9LH4Hs067HzgUbvlilOp3ekcdDO0aiHuUsf-4V0HvzM4UBtCmuDNKSqt3FddEh2Ou0iHv28B-Tl-ur54ja7f7i5uzi_zwzn1ZQJVsi20V2LsjZlW5a6mIHsGtFKUQO2goM0spKdaQthZl05k00lCtkAF1BAzQ_IyaY37fKxwDipwUaDzukR_SIqVlWyEYIJSFG-iZrgYwzYqXmwgw6fioFaSVW9WktVK6kKpEpSEyV_UcZOenXiFLR1_7BnGxaTgaXFoKKxOBpsbVI1qdbbP_lvwf2XfA
CitedBy_id crossref_primary_10_1016_j_neucom_2016_12_059
crossref_primary_10_1016_j_jvcir_2017_02_009
crossref_primary_10_1016_j_jvcir_2016_05_019
crossref_primary_10_1007_s10462_017_9578_y
crossref_primary_10_1016_j_compeleceng_2017_11_025
crossref_primary_10_1142_S0219691317500497
Cites_doi 10.1137/S003614450037906X
10.1002/cpa.20132
10.1109/TIP.2013.2262292
10.1109/JSTSP.2007.910281
10.1016/j.imavis.2009.08.002
10.1109/TPAMI.2005.55
10.1109/TPAMI.2012.191
10.1109/TIP.2006.881945
10.1016/S0031-3203(02)00052-3
10.1109/34.879790
10.1016/0031-3203(92)90007-6
10.1016/j.neucom.2012.04.034
10.1006/cviu.1999.0830
10.1109/TPAMI.2008.79
10.1090/psapm/048/1314843
10.1137/060657704
10.1145/954339.954342
10.1109/JSTSP.2007.910971
10.1016/0024-3795(93)00066-9
10.1109/TPAMI.2012.30
10.1016/j.jvcir.2012.05.003
10.1109/ICICIC.2008.234
10.1109/TPAMI.2007.1131
10.1162/jocn.1991.3.1.71
10.1109/TPAMI.2011.182
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jvcir.2014.09.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
EndPage 274
ExternalDocumentID 10_1016_j_jvcir_2014_09_013
S104732031400159X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-5129d8afde97c4d44a2b09f85d9570ed5309c969fcd25cbf4b986529803502073
IEDL.DBID .~1
ISSN 1047-3203
IngestDate Thu Jul 10 23:09:01 EDT 2025
Tue Jul 01 03:09:44 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Fri Feb 23 02:24:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Singular Value Decomposition
Recognition accuracy
Small sample size problem
Face recognition
Row-orthonormal
Sparse Representation based Classification
Transformation matrix
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-5129d8afde97c4d44a2b09f85d9570ed5309c969fcd25cbf4b986529803502073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669855150
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1669855150
crossref_primary_10_1016_j_jvcir_2014_09_013
crossref_citationtrail_10_1016_j_jvcir_2014_09_013
elsevier_sciencedirect_doi_10_1016_j_jvcir_2014_09_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Journal of visual communication and image representation
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Donoho (b0030) 2006; 59
Yang, Zhou, Ganesh, Sastry, Ma (b0140) 2013; 22
A. Martinez, R. Benavente, The AR face database. CVC Technical Report. 24 1998.
Brukstein, Donoho, Elad (b0040) 2009; 51
Y. Xu, Z. Jin, Down-sampling face images and low-resolution face recognition, in: The Third International Conference on Innovative Computing, Information and Control, 2008, pp. 392–395.
Cai, He, Han, Zhang (b0075) 2006; 15
Turk, Pentland (b0055) 1991; 3
Kokiopoulou, Saad (b0050) 2007; 29
Gross, Matthews, Cohn, Kanade, Baker (b0150) 2010; 28
Leonardis, Bischof (b0045) 2000; 78
Wipf (b0160) 2011
Zhao, Chellappa, Phillips, Rosenfeld (b0015) 2003; 35
Horn, Johnson (b0135) 1987
Fasel, Luettin (b0010) 2003; 36
Figueiredo, Nowak, Wright (b0090) 2007; 1
Deng, Hu, Guo (b0105) 2012; 34
Li, Lu (b0110) 2013; 116
Phillips, Moon, Rizvi, Rauss (b0155) 2000; 22
Samal, Iyengar (b0005) 1992; 25
Wright, Yang, Ganesh, Sastry, Ma (b0025) 2009; 31
Eckart, Young (b0115) 1936
Higham (b0120) 1995; 214
.
D. Cai, X. He, K. Zhou, J. Han, H. Bao, Locality sensitive discriminant analysis, in: International Joint Conferences on Artificial Intelligence, 2007, pp. 708–713.
Hua, Yang, Learned-Miller, Ma, Turk, Kriegman, Huang (b0020) 2011; 33
Kim, Koh, Lustig, Boyd, Gorinevsky (b0130) 2007; 1
N.J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in: Mathematics of Computation 1943-1993: A Half Century of Computational Mathematics, 1994, pp. 49–77.
Goal, Bebis, Nefian (b0060) 2005; 5779
magic: recovery of sparse signals via convex programming, 2005.
Liao, Jain, Li (b0100) 2013; 35
Chen, Donoho, Saunders (b0035) 2001; 43
He, Yan, Niyogi, Zhang (b0070) 2005; 27
Lu, Min, Gui, Zhu, Lei (b0095) 2013; 24
E. Candes, J. Romberg
10.1016/j.jvcir.2014.09.013_b0125
Samal (10.1016/j.jvcir.2014.09.013_b0005) 1992; 25
Brukstein (10.1016/j.jvcir.2014.09.013_b0040) 2009; 51
10.1016/j.jvcir.2014.09.013_b0145
Goal (10.1016/j.jvcir.2014.09.013_b0060) 2005; 5779
Donoho (10.1016/j.jvcir.2014.09.013_b0030) 2006; 59
Figueiredo (10.1016/j.jvcir.2014.09.013_b0090) 2007; 1
Hua (10.1016/j.jvcir.2014.09.013_b0020) 2011; 33
Zhao (10.1016/j.jvcir.2014.09.013_b0015) 2003; 35
Higham (10.1016/j.jvcir.2014.09.013_b0120) 1995; 214
Liao (10.1016/j.jvcir.2014.09.013_b0100) 2013; 35
Gross (10.1016/j.jvcir.2014.09.013_b0150) 2010; 28
10.1016/j.jvcir.2014.09.013_b0080
Deng (10.1016/j.jvcir.2014.09.013_b0105) 2012; 34
Eckart (10.1016/j.jvcir.2014.09.013_b0115) 1936
Phillips (10.1016/j.jvcir.2014.09.013_b0155) 2000; 22
Kokiopoulou (10.1016/j.jvcir.2014.09.013_b0050) 2007; 29
Li (10.1016/j.jvcir.2014.09.013_b0110) 2013; 116
10.1016/j.jvcir.2014.09.013_b0065
10.1016/j.jvcir.2014.09.013_b0085
Leonardis (10.1016/j.jvcir.2014.09.013_b0045) 2000; 78
Cai (10.1016/j.jvcir.2014.09.013_b0075) 2006; 15
He (10.1016/j.jvcir.2014.09.013_b0070) 2005; 27
Lu (10.1016/j.jvcir.2014.09.013_b0095) 2013; 24
Yang (10.1016/j.jvcir.2014.09.013_b0140) 2013; 22
Chen (10.1016/j.jvcir.2014.09.013_b0035) 2001; 43
Wright (10.1016/j.jvcir.2014.09.013_b0025) 2009; 31
Fasel (10.1016/j.jvcir.2014.09.013_b0010) 2003; 36
Horn (10.1016/j.jvcir.2014.09.013_b0135) 1987
Kim (10.1016/j.jvcir.2014.09.013_b0130) 2007; 1
Turk (10.1016/j.jvcir.2014.09.013_b0055) 1991; 3
Wipf (10.1016/j.jvcir.2014.09.013_b0160) 2011
References_xml – volume: 59
  start-page: 797
  year: 2006
  end-page: 829
  ident: b0030
  article-title: For most large underdetermined systems of linear equations the minimal
  publication-title: Commun. Pure Appl. Math.
– volume: 34
  start-page: 1864
  year: 2012
  end-page: 1870
  ident: b0105
  article-title: Extended SRC: undersampled face recognition via intraclass variant dictionary
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 65
  year: 1992
  end-page: 77
  ident: b0005
  article-title: Automatic recognition and analysis of human faces and facial expressions: a survey
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: b0025
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 78
  start-page: 99
  year: 2000
  end-page: 118
  ident: b0045
  article-title: Robust recognition using Eigenimages
  publication-title: Comput. Vis. Image Understand.
– start-page: 2016
  year: 2011
  end-page: 2024
  ident: b0160
  article-title: Sparse estimation with structured dictionaries
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1987
  ident: b0135
  article-title: Matrix Analysis
– volume: 15
  start-page: 3608
  year: 2006
  end-page: 3614
  ident: b0075
  article-title: Orthogonal laplacianfaces for face recognition
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 111
  year: 2013
  end-page: 116
  ident: b0095
  article-title: Face recognition via weighed sparse representation
  publication-title: J. Visual Commun. Image Represent.
– volume: 1
  start-page: 586
  year: 2007
  end-page: 597
  ident: b0090
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 211
  year: 1936
  end-page: 218
  ident: b0115
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychutnetiku
– volume: 22
  start-page: 1090
  year: 2000
  end-page: 1104
  ident: b0155
  article-title: The FERET evalution methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 328
  year: 2005
  end-page: 340
  ident: b0070
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 43
  start-page: 129
  year: 2001
  end-page: 159
  ident: b0035
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  ident: b0055
  article-title: Eigenfaces for recognition
  publication-title: J. Cognit. Neurosci.
– reference: E. Candes, J. Romberg,
– reference: N.J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in: Mathematics of Computation 1943-1993: A Half Century of Computational Mathematics, 1994, pp. 49–77.
– volume: 29
  start-page: 2143
  year: 2007
  end-page: 2156
  ident: b0050
  article-title: Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 116
  start-page: 265
  year: 2013
  end-page: 271
  ident: b0110
  article-title: A new decision rule for sparse representation based classification for face recognition
  publication-title: Neurocomputing
– volume: 51
  start-page: 34
  year: 2009
  end-page: 81
  ident: b0040
  article-title: From sparse solutions of systems of equations to sparse modeling of signals and images
  publication-title: SIAM Rev.
– reference: magic: recovery of sparse signals via convex programming, 2005. <
– volume: 1
  start-page: 606
  year: 2007
  end-page: 617
  ident: b0130
  article-title: An interiorpoint method for large-scale
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 33
  start-page: 1921
  year: 2011
  end-page: 1924
  ident: b0020
  article-title: Introduction to the special section on the real-world face
  publication-title: IEEE Trans. Pattern Anal. Mach. Int.
– reference: A. Martinez, R. Benavente, The AR face database. CVC Technical Report. 24 1998.
– volume: 35
  start-page: 399
  year: 2003
  end-page: 458
  ident: b0015
  article-title: Face recognition: a literature survey
  publication-title: ACM Comput. Surv.
– reference: >.
– volume: 22
  start-page: 3234
  year: 2013
  end-page: 3246
  ident: b0140
  article-title: Fast L1-minimization algorithms for robust face recognition
  publication-title: IEEE Trans. Image Process.
– reference: Y. Xu, Z. Jin, Down-sampling face images and low-resolution face recognition, in: The Third International Conference on Innovative Computing, Information and Control, 2008, pp. 392–395.
– volume: 214
  start-page: 193
  year: 1995
  end-page: 213
  ident: b0120
  article-title: Condition numbers and their condition numbers
  publication-title: Linear Algebra Appl.
– volume: 35
  start-page: 1193
  year: 2013
  end-page: 1205
  ident: b0100
  article-title: Partial face recognition: an alignment free approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: D. Cai, X. He, K. Zhou, J. Han, H. Bao, Locality sensitive discriminant analysis, in: International Joint Conferences on Artificial Intelligence, 2007, pp. 708–713.
– volume: 28
  start-page: 807
  year: 2010
  end-page: 813
  ident: b0150
  article-title: Multi-PIE
  publication-title: Image Vis. Comput.
– volume: 5779
  start-page: 426
  year: 2005
  end-page: 437
  ident: b0060
  article-title: Face recognition experiments with random projection
  publication-title: Int. Soc. Optics Photonics
– volume: 36
  start-page: 259
  year: 2003
  end-page: 275
  ident: b0010
  article-title: Automatic facial expression analysis: a survey
  publication-title: Pattern Recognit.
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 10.1016/j.jvcir.2014.09.013_b0035
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– volume: 59
  start-page: 797
  issue: 6
  year: 2006
  ident: 10.1016/j.jvcir.2014.09.013_b0030
  article-title: For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20132
– volume: 22
  start-page: 3234
  issue: 8
  year: 2013
  ident: 10.1016/j.jvcir.2014.09.013_b0140
  article-title: Fast L1-minimization algorithms for robust face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2262292
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  ident: 10.1016/j.jvcir.2014.09.013_b0090
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910281
– start-page: 211
  year: 1936
  ident: 10.1016/j.jvcir.2014.09.013_b0115
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychutnetiku
– ident: 10.1016/j.jvcir.2014.09.013_b0085
– volume: 28
  start-page: 807
  year: 2010
  ident: 10.1016/j.jvcir.2014.09.013_b0150
  article-title: Multi-PIE
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.08.002
– year: 1987
  ident: 10.1016/j.jvcir.2014.09.013_b0135
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  ident: 10.1016/j.jvcir.2014.09.013_b0070
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.55
– volume: 35
  start-page: 1193
  issue: 5
  year: 2013
  ident: 10.1016/j.jvcir.2014.09.013_b0100
  article-title: Partial face recognition: an alignment free approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.191
– volume: 5779
  start-page: 426
  year: 2005
  ident: 10.1016/j.jvcir.2014.09.013_b0060
  article-title: Face recognition experiments with random projection
  publication-title: Int. Soc. Optics Photonics
– volume: 15
  start-page: 3608
  issue: 11
  year: 2006
  ident: 10.1016/j.jvcir.2014.09.013_b0075
  article-title: Orthogonal laplacianfaces for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881945
– volume: 36
  start-page: 259
  issue: 1
  year: 2003
  ident: 10.1016/j.jvcir.2014.09.013_b0010
  article-title: Automatic facial expression analysis: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00052-3
– ident: 10.1016/j.jvcir.2014.09.013_b0145
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  ident: 10.1016/j.jvcir.2014.09.013_b0155
  article-title: The FERET evalution methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– volume: 25
  start-page: 65
  year: 1992
  ident: 10.1016/j.jvcir.2014.09.013_b0005
  article-title: Automatic recognition and analysis of human faces and facial expressions: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(92)90007-6
– volume: 116
  start-page: 265
  year: 2013
  ident: 10.1016/j.jvcir.2014.09.013_b0110
  article-title: A new decision rule for sparse representation based classification for face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.034
– volume: 78
  start-page: 99
  issue: 1
  year: 2000
  ident: 10.1016/j.jvcir.2014.09.013_b0045
  article-title: Robust recognition using Eigenimages
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1006/cviu.1999.0830
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.jvcir.2014.09.013_b0025
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– ident: 10.1016/j.jvcir.2014.09.013_b0125
  doi: 10.1090/psapm/048/1314843
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  ident: 10.1016/j.jvcir.2014.09.013_b0040
  article-title: From sparse solutions of systems of equations to sparse modeling of signals and images
  publication-title: SIAM Rev.
  doi: 10.1137/060657704
– volume: 35
  start-page: 399
  issue: 4
  year: 2003
  ident: 10.1016/j.jvcir.2014.09.013_b0015
  article-title: Face recognition: a literature survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/954339.954342
– volume: 1
  start-page: 606
  issue: 4
  year: 2007
  ident: 10.1016/j.jvcir.2014.09.013_b0130
  article-title: An interiorpoint method for large-scale ℓ1-regularized least squares
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910971
– ident: 10.1016/j.jvcir.2014.09.013_b0080
– volume: 214
  start-page: 193
  year: 1995
  ident: 10.1016/j.jvcir.2014.09.013_b0120
  article-title: Condition numbers and their condition numbers
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(93)00066-9
– volume: 34
  start-page: 1864
  issue: 9
  year: 2012
  ident: 10.1016/j.jvcir.2014.09.013_b0105
  article-title: Extended SRC: undersampled face recognition via intraclass variant dictionary
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.30
– start-page: 2016
  year: 2011
  ident: 10.1016/j.jvcir.2014.09.013_b0160
  article-title: Sparse estimation with structured dictionaries
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 111
  issue: 2
  year: 2013
  ident: 10.1016/j.jvcir.2014.09.013_b0095
  article-title: Face recognition via weighed sparse representation
  publication-title: J. Visual Commun. Image Represent.
  doi: 10.1016/j.jvcir.2012.05.003
– ident: 10.1016/j.jvcir.2014.09.013_b0065
  doi: 10.1109/ICICIC.2008.234
– volume: 29
  start-page: 2143
  issue: 12
  year: 2007
  ident: 10.1016/j.jvcir.2014.09.013_b0050
  article-title: Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1131
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  ident: 10.1016/j.jvcir.2014.09.013_b0055
  article-title: Eigenfaces for recognition
  publication-title: J. Cognit. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– volume: 33
  start-page: 1921
  issue: 10
  year: 2011
  ident: 10.1016/j.jvcir.2014.09.013_b0020
  article-title: Introduction to the special section on the real-world face
  publication-title: IEEE Trans. Pattern Anal. Mach. Int.
  doi: 10.1109/TPAMI.2011.182
SSID ssj0003934
Score 2.091517
Snippet •The new linear transformation produced by SVDP makes the obtained projection row-orthonormal.•In SVDP, row-orthonormal makes the features of obtained...
Numerous dimensionality reduction methods have achieved impressive performance in face recognition field due to their potential to exploit the intrinsic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms Accuracy
Algorithms
Computer simulation
Decomposition
Dimensionality reduction
Face recognition
Preserves
Projection
Recognition accuracy
Reduction
Representations
Row-orthonormal
Singular Value Decomposition
Small sample size problem
Sparse Representation based Classification
Transformation matrix
Title Singular Value Decomposition Projection for solving the small sample size problem in face recognition
URI https://dx.doi.org/10.1016/j.jvcir.2014.09.013
https://www.proquest.com/docview/1669855150
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuQwELUQXJjDaFhGMCwyEuJE6DheEh9RA2pWITb1zXJsRwpq0oh0c-DAt-NKHJaRhsOcsqgSRa5K1ZP96hmh7YJo6asAi3ItTMSEkJE2PIksLUyjHmIJNDifX4jBLTsZ8uEM6ne9MECrDLm_zelNtg53emE0e49l2bsGkQGagPw6FH45hA52loJ-_t7rB82DynZlGRQJwLpTHmo4XvfPpgRRUNKKnRL6r-r0V55uis_RL_QzoEa8337YAppx1SL68UlLcBGtBaOyfsA7-EvfR72E3LU3AsYpvtOjqcMHDrjkgbCFL9vpGDj1GBb7cIRpBuyxIa4f9GiEaw0iwrguXxwOW9Dg0htr4_A7BWlcLaPbo8Ob_iAKOyxEhlIxiaDa20wX1snUMMuYTvJYFhm3kqexs5zG0kghC2MTbvKC5TITPJEZrEcmPjv8RrPVuHIrCDOSiDS1lggHKvUk0x5qGQ8WGaea5mQVJd3IKhPkx2EXjJHqeGb3qnGHAneoWCrvjlW0-_7QY6u-8b256FymvgSR8vXh-we3Ogcr_3vBmomu3HhaK-KjN_Ooksd__vfla2jeX_F23mYdzU6epm7DI5lJvtmE6iaa2-9fnV3C8fh0cPEGsXL1LQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HKCHCmgrKC24UtVTo43jx8ZHREHLa1UJqPZmObYjBS1Z1Oz20F_fmcRZFSQ4cIuScRR5JjOfPJ8_E_K1ZFZDFRBJYZVLhFI6sU5mieela9VDPMMNzldjNboV5xM5WSHH_V4YpFXG3N_l9DZbxzuDOJuDh6oaXKPIAM9Qfh0Lv56sknVUp4JgXz86uxiNlwmZ6665jKIEOKAXH2ppXnd_XIW6oKzTO2X8uQL1JFW39ed0i7yNwJEedd-2TVZCvUPe_CcnuEP2o1HV3NNv9NHWj-YdCddghKRT-stOF4H-CEgnj5wt-rNbkcFLgLEUIhJXGijAQ9rc2-mUNhZ1hGlT_Q00nkJDKzC2LtAlC2lWvye3pyc3x6MkHrKQOM7VPMGC73Nb-qCHTnghbFakusyl13KYBi95qp1WunQ-k64oRaFzJTOdY0sygwTxgazVszrsEipYpoZD75kKKFTPcgtoywFeFJJbXrA9kvUza1xUIMeDMKamp5rdmdYdBt1hUm3AHXvk-3LQQyfA8bK56l1mHsWRgRLx8sAvvYMN_GHYNrF1mC0awyCAcwCWMv342pcfko3RzdWluTwbX-yTTXgiu2WcT2Rt_nsRPgOwmRcHMXD_AWce9kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+Value+Decomposition+Projection+for+solving+the+small+sample+size+problem+in+face+recognition&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Wang%2C+Changpeng&rft.au=Zhang%2C+Jiangshe&rft.au=Chang%2C+Guodong&rft.au=Ke%2C+Qiao&rft.date=2015-01-01&rft.issn=1047-3203&rft.volume=26&rft.spage=265&rft.epage=274&rft_id=info:doi/10.1016%2Fj.jvcir.2014.09.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon